
Population Training Heuristics

Alexandre C. M. Oliveira1 and Luiz A. N. Lorena2

1 Universidade Federal do Maranhão - UFMA, Depto. de Informática,
S. Lúıs MA, Brasil
acmo@deinf.ufma.br

2 Instituto Nacional de Pesquisas Espaciais - INPE, Lab. Associado de Computação e
Matemática Aplicada, S. José dos Campos SP, Brasil

lorena@lac.inpe.br

Abstract. This work describes a new way of employing problem-specific
heuristics to improve evolutionary algorithms: the Population Training
Heuristic (PTH). The PTH employs heuristics in fitness definition, guid-
ing the population to settle down in search areas where the individuals
can not be improved by such heuristics. Some new theoretical improve-
ments not present in early algorithms are now introduced. An application
for pattern sequencing problems is examined with new improved compu-
tational results. The method is also compared against other approaches,
using benchmark instances taken from the literature.

Keywords: Hybrid evolutionary algorithms; population training; MOSP;
GMLP.

1 Introduction

Evolutionary algorithms are efficient to explore a wide search space, converging
quickly to local minima. However, their lack of exploiting local information is
a well-known drawback to reach global minima. Evolutionary operators to in-
corporate knowledge about problem particularities have encapsulated heuristics
and local search procedures. Such procedures basically consist in searching for
better solutions in the set of candidate solutions (neighborhood) that can be
obtained from a given solution by heuristic moves. An individual improved by
heuristic, in general, is replaced as soon as a better individual is obtained. The
more individuals are heuristically improved, the more the heuristic leads the
population to incorporate the desired features.

Due to the computational cost of some heuristic procedures, a challenge in
such hybrid methods is to define efficient strategies to cover all search space,
applying local search only in actually promising neighborhoods. Elitism plays
an important role towards achieving this goal, once the best individuals can rep-
resent such promising neighborhoods. But the elite can be sharing the same few
neighborhoods and then the heuristic moves does not improve the population.

The Population Training Heuristic (PTH) proposes a way of leading the pop-
ulation to acquire desired characteristics. All individuals are evaluated by two

G.R. Raidl and J. Gottlieb (Eds.): EvoCOP 2005, LNCS 3448, pp. 166–176, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Population Training Heuristics 167

functions: a function computing what the individual is and another estimating
what it should be. The later does not take account of a presumed potential of
the individual, but its deficiency by not being what it should be.

The evolutionary process is driven by a problem-specific heuristic (called
training heuristic), employed in the fitness function formulation. The well-adapted
individuals are those who can not be improved by the training heuristic. They
are what they should be, i.e., the best inside the neighborhood generated by the
training heuristic and tend to stay in the population longer times.

The Constructive Genetic Algorithm (CGA) was proposed in [1] to Location
Problems, and applied to other problems as Timetabling [2]. The CGA presents
a number of new features compared to a traditional genetic algorithm, such as
a dynamic-sized population composed of schemata (incomplete solutions) and
structures (complete solutions). Each individual (structure or schema) has a
fitness evaluation based on two functions, f and g (fg-fitness), that are built
considering specific aspects of the problem at hand in a way that an individual
with |f − g| ≈ 0 corresponds to an optimal solution. A further optimization
objective is introduced to guide the search to find structures: to maximize g.
Thus, no matter the nature of the problem (minimization or maximization),
the original problem is transformed in a bi-objective problem (BOP): f − g
minimization (optimal phase) and g maximization (constructive phase) [1].

The CGA was inspiration to PTH, especially by the double evaluation of indi-
viduals. In PTH, the fg-fitness leads population to subsearch spaces where no im-
provement can be reached by applying the training heuristic, probably optimal so-
lutions depending on how much less approximative is the heuristic. To avoid costly
fitness evaluation, light heuristics are used. Local search mutations are included in
the evolutionary process to make a fine tuning of the well-adapted individuals.

Some early CGA applications, since they employ training heuristics, can be
considered as based on PTH fundamentals [3], [4]. Such applications rank the
population by a constructive ranking that considers simultaneously a construc-
tive and optimal phases, as in the CGA original form. The constructive approach
of PTH is still called Constructive Genetic Algorithm, but denoted by CGAH ,
to avoid misunderstanding with the original CGA, which no heuristic training
had been employed yet [1], [2].

On the other hand, the non-constructive ranking, proposed in this work, only
focuses the optimal phase, concerning to the adaptation of individuals to training
heuristic. The main reason for this alternative form of ranking is to aggregate
more flexibility to the approach, not necessarily coding individuals as incom-
plete solutions. The non-constructive approach is called Population Training
Algorithm (PTA) and it was firstly applied to numerical optimization [5].

This work introduces theoretical improvements for PTH and also presents
new results for pattern sequencing problems not found in early works [3], [4], [5].
The remainder of this paper is organized as follows. Section 2 presents the general
guidelines of PTH, consolidating the formulation needed to future applications.
In section 3, an application in pattern sequencing problems is modeled. The
conclusions are summarized in the section 4.

168 A.C.M. Oliveira and L.A.N. Lorena

2 General Guidelines of PTH

The PTH can be defined by the tuple {P,Θ, f,H, ℘, δ}, where P is a population
sampled from the coded search space S, hence individuals sk ∈ P ⊂ S. Individu-
als are generated by a set of evolutionary specific operators Θ and evaluated by
an objective function f that maps S in �. The training heuristic H is defined
by the pair {ϕH , g}, where g heuristically evaluates each solution generated by
the neighborhood relationship ϕH . The neighborhood relationship ϕH can be
understood as set of solutions which can be obtained from an original one, sk,
by heuristic moves (H moves):

ϕH(sk) = {sk, sv1, sv2, . . . , svl} (1)

where l + 1 is the length of the neighborhood of sk, including itself.
The heuristic knowledge about a problem is then used to define g. A typical

g, adopted in this work, is the objective function f calculated over ϕH(sk). Thus,
for minimization problems:

g(sk) = f(svb) = min{f(sk), f(sv1), f(sv2), . . . , f(svl)} (2)

The best neighbor of sk is denoted by svb. The concept of proximity, ℘, is
concerned with the effort necessary to reach svb from sk by H moves. More
proximity means more adaptation of sk to the heuristic that generated svb. De-
pending on the coding being employed in the application, some distance metrics
may be used, such as hamming for binary-coded, euclidean for real-coded and
heuristic distance [6]. In this application, the fitness distance between sk and svb

is adopted:

℘(sk, svb) = |f(sk) − f(svb)| (3)

Independently of the nature of the problem (minimization or maximization),
the ℘(sk, svb), adopted in this work, always reflects how much svb is better than
sk. However, if another distance metric was used, ℘(sk, svb) would mean just the
adaptation to the training heuristic. Finally, the entire population is ranked by
a function δ that considers the overall individual adaptation. The constructive
and non-constructive rankings are, respectively:

δcons(sk) =
d · Gmax − |f(sk) − g(sk)|

d · [Gmax − g(sk)]
(4)

δncons(sk) = d · [Gmax − g(sk)] − |f(sk) − g(sk)| (5)

Considering Gmax an estimate of the upper bound for all possible values of
the function g (even function f), the interval Gmax − g(sk), gives the fitness
distance between individual sk and the upper bound. This distance is used in
two distinct ways. In the constructive ranking, to estimate the completeness of
the individuals, penalizing the schemata. In the non-constructive ranking, such

Population Training Heuristics 169

interval just considers the objective function evaluation, once in minimization
problems, the greater is Gmax − g(sk), the better is the individual.

The constant d is used to equilibrate both ranking equations (generally, about
1/Gmax). In the beginning of the evolution, the upper bound Gmax can be ana-
lytically calculated, considering the problem instance, or estimated by sampling.
For maximization problems, a lower bound Gmin is introduced in the construc-
tive ranking:

δmax
ncons(sk) = d · [g(sk) − Gmin] − |f(sk) − g(sk)| (6)

The constructive ranking considers simultaneously a constructive and optimal
phases, as in the CGA original form. The non-constructive ranking, on the other
hand, only focuses the optimal phase. The main reason for these two forms
of ranking is to aggregate more flexibility to the approach, as the possibility
of employing distinct heuristics, evolutionary operators and, especially, other
solution codings: incomplete solutions (schemata) not always may be naturally
incorporated by the evolutionary process. A good example of such applications
is the numerical optimization coded in real numbers [5].

3 Applications in Pattern Sequencing Problems

The problems treated in this section can be classified as pattern sequencing
problems. Pattern sequencing problems may be stated by a matrix with integer
elements where the objective is to find a permutation of rows or patterns (client
orders, or gates in a VLSI circuit, or cutting patterns) minimizing some objective
function [7]. Objective functions considered here differ from traveling salesman
like problems because the evaluation of a permutation can not be computed by
using values that only depend on adjacent patterns.

The PTA is modeled for two similar pattern sequencing problems found in
the literature: Minimization of Open Stacks Problem (MOSP) and Gate Ma-
trix Layout Problem (GMLP). Theoretical aspects are basically the same for
both problems. The difference between them resides only in their enunciation.
A more detailed description of the MOSP is emphasized in next sections. The
particularities of the GMLP are occasionally presented, when needed.

3.1 Theoretical Issues of the MOSP

The MOSP appears in a variety of industrial sequencing settings, where distinct
patterns need to be cut and each one may contain a combination of piece types.
For example, consider an industry of woodcut where pieces of different sizes are
cut of big foils. Pieces of equal sizes are heaped in a single stack that stays opened
until the last piece of the same size is cut. A stack is considered opened while
there exist pieces of the same size to be cut. A MOSP consists of determining
a sequence of cut patterns that minimizes the maximum of open stacks (MOS)

170 A.C.M. Oliveira and L.A.N. Lorena

during the cutting process. Typically, this problem is due to limitations of phys-
ical space, so that the accumulation of stacks can cause the temporary need of
removal of one or other stack, delaying the whole process.

The data for a MOSP are given by an I × J binary matrix P , representing
patterns (rows) and pieces (columns), where Pij = 1, if pattern i contains piece
j, and Pij = 0 otherwise. Patterns are processed sequentially, opening stacks
whenever new piece types are processed and closing stacks of pieces that do
not have any items else to be cut. The sequence of patterns being processed
determines the number of stacks that stays open at same time. Another binary
matrix, here called the open stack matrix Q, can be used to calculate the MOS
for a certain pattern permutation. It is derived from the input matrix P , by the
following rules:

– Qij = 1 if there exists x and y|π(x) ≤ i ≤ π(y) and Pxj = Pyj = 1;
– Qij = 0, otherwise;

where π(b) is the position of pattern b in the permutation.
The Q shows the consecutive-ones property [8] applied to P : in each column,

“0” ’s between “1”’s are replaced by “1” ’s. The sum of “1” ’s, by row, computes
the number of open stacks when each pattern is processed. Figure 1 shows an
example of matrix P , its corresponding matrix Q, and the number of open stacks
to each pattern processed. When pattern 1 is cut, 3 stacks are opened. No stack
else is opened for patterns 2 and 3, but pattern 4 requires 5 open stacks. At
most, 7 stacks (MOS = max{3, 3, 3, 5, 6, 7, 7, 5, 3} = 7) are needed to process
the permutation π0 = {1, 2, 3, 4, 5, 6, 7, 8, 9}.

Fig. 1. MOSP (or GLMP) instance: original and corresponding matrix

Recently, several aspects of the MOSP and other related problems, as the
GMLP, have been presented, including the NP-hardness of them [9], [10], [11].
The GMLP goal is to arrange a set of gates (horizontal wires), which are inter-
connected by nets (vertical wires), such that the number of tracks is minimized.
This can be achieved by placing non-overlapping nets in the same track. The
same example of Figure 1 can be seen as a GMLP instance. The number of open
stack is equivalent to the number of overlapping nets.

Population Training Heuristics 171

3.2 PTA Modeling

A very simple representation is implemented for the MOSP and GMLP: a direct
alphabet of symbols (natural numbers) represents the pattern (or gate) permu-
tation. Each label is associated to a row of binary numbers, representing the
piece type presence in each pattern. A permutation of rows is called structure
and consists of a candidate solution for an instance.

A second objective for the MOSP have been used by early works: to close
the stacks as soon as possible, allowing that the customer’s requests be available
with minimum delay [11], [3]. The second objective is to minimize the time that
the stacks stay open (TOS) and it can be calculated by the sum of all “1” ’s in
Q. The TOS is particularly useful for increasing the fitness distinction among
individuals. The function f reflects the total cost of a given permutation and
considers the primary (MOS) and secondary (TOS) objectives:

f(sk) = I · J · max
i∈I

⎧⎨
⎩

∑
j∈J

Qij

⎫⎬
⎭ +

∑
i∈I

∑
j∈J

Qij (7)

where the product I · J is a weight to reinforce MOS part of the cost.
A dynamic-sized population was implemented and controlled by an adaptive

rejection threshold that eliminates the ill-adapted individuals, i.e., structures
such that α ≥ δ(sk). The adaptive rejection threshold, α, is initialized at the
beginning of the process with the rank of the worst individual in population.
During the evolutionary process, α is updated with adaptive increments, con-
sidering the current range of the rank values in the population, the population
size, and the remaining number of generations. The adaptive increment of α is:

α = α + Step · |P | · (δbst − δwst)
RG

(8)

where δbst and δwst are, respectively, the best and the worst rank of structures
in current population, |P | is the current population size, RG is the remaining
number of generations, and Step is an adjustment parameter, used to give more
or less speed to the evolutionary process.

At the beginning, the population tends to grow up, generally, accepting all
new individuals. After some generations, α determines the adaptation values
that can be kept in population and the ill-adapted individuals are eliminated.
Whenever no improvement is obtained, the population eventually can collapse,
becoming empty. Therefore, the correct adjustment of Step (generally, a value
about 0.001 is used) is needed to avoid premature emptying of the population.

3.3 The Training Heuristics

The 2-Opt is a well-known improvement heuristic based on k-changes over a com-
plete initial solution. Typically, a 2-change of a permutation consists of deleting
2 edges and replacing them by 2 other edges to form a new permutation. It can
be obtained by breaking the permutation in 2 reference points and inverting the

172 A.C.M. Oliveira and L.A.N. Lorena

order in the middle subpermutation. For example, {1−2−3−4−5−6−7−8},
breaking in 3 and 6 becomes {1 − 2 − 3 − 6 − 5 − 4 − 7 − 8}.

The 2-Opt-like heuristic is employed in function g for training the population.
Each one of the 2-changes generates a neighbor structure that is evaluated,
looking for the best objective function value. At the end, up to 0.5 · (I2 − I)
neighbor structures are evaluated .

Another heuristic used in this work, called the Faggioli-Bentivoglio’s heuris-
tic, is based on the constructive heuristic described in [12]. The basic idea of
this heuristic is to build a complete solution, minimizing the differences among
the patterns. An initial group of patterns (in this work, the first N/2 patterns),
in a given structure, is accepted as start patterns. The neighborhood is defined
as all structures that begin with the start group of patterns and minimize the
difference to the subsequent patterns, according to a three stage criterion.

At the first stage, the patterns that open as few new stacks as possible are
chosen. A stack is opened when the new sequenced pattern contains a piece
type that is not yet stacked, i.e., the ith item presents a 0 − 1 transition, from
previous pattern to next. At the second stage, the pattern that removes the
greatest number of stack is chosen among the patterns previously selected. A
stack is removed when the new sequenced pattern ends a piece type that is being
stacked, i.e., the ith item presents a 1 − 0 transition, from previous pattern to
next. At the last stage, the pattern that continues the production of the greatest
number of stacked pieces is chosen among the patterns previously selected. The
production continues when the new sequenced pattern contains a piece type that
is already stacked, i.e., the ith item presents a 1 − 1 transition, from previous
pattern to next. If these three rules lead to more than one pattern to be inserted
in sequence, one of them is selected at random.

3.4 Evolutionary Operators

The structures in the population are kept in descending order, according to the
ranking in equation 5. Thus, well-adapted individuals appear in first places on
the population, being privileged for evolutionary operations.

Two structures are selected for recombination. The first is called the base
(sbase) and it is randomly selected out from the first positions in the popula-
tion (generally, about 20% from the population). The second structure is called
the guide (sguide) and is randomly selected out of the entire population. They
are recombined by a variant of the Order Crossover (OX) called Block Order
Crossover (BOX) [13]. The parent(A) and parent(B) are mixed into only one
offspring, by copying blocks of both parents, at random. Pieces copied from a
parent are not copied from other, keeping the offspring feasible (Figure 2a).

A local search mutation is applied to each new structure generated with a
certain probability (generally, about 20%). This procedure is very important to
get intensification moves around a solution. The local search mutation explores
a search tree, considering several 2-Opt neighborhoods, not only one as fitness
function g (Figure 2b).

Population Training Heuristics 173

Fig. 2. (a) Block order crossover and (b) local search mutation tree

Some neighbors (generally, l = 20 neighbors) are evaluated in each tree level
and the best one is held on to be used as starting point to next tree level.
Successive neighborhoods are generated until a pre-defined maximum number of
neighborhoods (generally, m = 20 neighborhoods).

The PTA pseudo-code, shown as follows, is based on traditional genetic al-
gorithms. The stop criteria is either when the best-known solution is found, or
after a certain number of objective function calls, to be set depending on the
number of patterns (length) of the instance at hand. Once the stop criteria is
reached the searching process has failed to find the best-known (optimal) solu-
tion.

{PTA pseudo-code}
RandomlyInitialize (Pα);
for all sk ∈ Pα do

Compute f(sk), g(sk), δ(sk); {equations 7, 2, 5}
end for
α := δwst;
while not stopCriteria do

while numberOfCrossovers do
SelectionBaseGuide (sbase, sguide);
CrossoverBOX (sbase, sguide) giving snew;
if mutationCondition then

LocalSearchMutation (snew);
end if
Compute f(snew), g(snew), δ(snew);
Update (snew) in Pα;

end while
α := AdaptiveIncrement (α); {equation 8}
for all sk ∈ Pα e δ(sk) < α do

Delete (sk) from Pα;
end for

end while

174 A.C.M. Oliveira and L.A.N. Lorena

3.5 Computational Tests

A pool of 300 MOSP instances and one GMLP instance were chosen for tests,
taken from [11], [12]. The MOSP instances have different number of patterns
(I ∈ {10, 15, 20, 25, 30, 40}), each one of them with different number of piece
types (J ∈ {10, 20, 30, 40, 50}). The GMLP instance, called w4, has 141 gates
(patterns) and 202 nets (piece types) and it is the largest instance of pattern
sequencing found in literature [11].

The PTA population size was 50 for the MOSP instances and 100 for GMLP
instance. Two versions of PTA (PTA2opt and PTAfag), respectively using the 2-
Opt-like and Faggioli-Bentivoglio’s heuristics for training, were built to evaluate
how different heuristics interfere in the algorithm performance.

The best two approaches presented in [12]: a) a tabu search method (TS)
based on an optimized move selection process; and b) a generalized local search
method (GLS) that employs the Faggioli-Bentivoglio’s procedure in a simpli-
fied tabu search that only accepts improving moves [12]. Besides, another two
methods are included in this comparison: c) the Constructive Genetic Algorithm
(CGA2opt); and d) the Collective method (COL). The CGA2opt employs 2-Opt-
like heuristic as training heuristic [3], [4]. The COL method explores distance
measures among permutations and employs 2-exchange local search to drive the
search of a simulated annealing like algorithm [11].

Table 1 shows the best MOS averages obtained by the methods in each in-
stance group. Each pair (I, J) is an instance group with ten instances and differ-
ent solutions. A comparison is made putting together the results shown in [11],
[12] and the new results found by the PTH approaches in this work.

Both versions PTAfag and PTA2opt found the same results and were referred
as PTA. The TOS is not considered in the other works and was excluded from the
comparison. For this test, CGA2opt and PTA were run 10 times. The PTA have
found the best overall average of solutions for the instance groups. The CGA2opt

appears with the second best performance, failing in achieving the best average
in 2 instance groups (20 × 40 and 25 × 40). The hardest instances to find the
best-known solution were p2040n6, p2540n3.

Other performance aspects are focused in Table 2: average of the MOS found
(AS), the number of times that the best solution was found (NS), the average of

Table 1. Performance comparison with another approaches per instance groups

I J COL TS GLS CGA PTA I J COL TS GLS CGA PTA I J COL TS GLS CGA PTA
10 10 5.5 5.5 5.5 5.5 5.5 20 10 7.5 7.7 7.5 7.5 7.5 30 10 7.8 7.8 7.8 7.8 7.8

20 6.2 6.2 6.2 6.2 6.2 20 8.5 8.7 8.6 8.5 8.5 20 11.2 11.2 11.2 11.1 11.1
30 6.1 6.1 6.2 6.1 6.1 30 9.0 9.2 8.9 8.8 8.8 30 12.2 12.6 12.2 12.2 12.2
40 7.7 7.7 7.7 7.7 7.7 40 8.6 8.6 8.7 8.6 8.5 40 12.1 12.6 12.4 12.1 12.1
50 8.2 8.2 8.2 8.2 8.2 50 7.9 8.0 8.2 7.9 7.9 50 11.2 12.0 11.8 11.2 11.2

15 10 6.6 6.6 6.6 6.6 6.6 25 10 8.0 8.0 8.0 8.0 8.0 40 10 8.4 8.4 8.4 8.4 8.4
20 7.2 7.2 7.5 7.2 7.2 20 9.8 9.8 9.9 9.8 9.8 20 13.0 13.1 13.1 13.0 13.0
30 7.3 7.4 7.6 7.3 7.3 30 10.6 10.7 10.6 10.5 10.5 30 14.5 14.7 14.6 14.5 14.5
40 7.2 7.3 7.4 7.2 7.2 40 10.4 10.7 10.6 10.4 10.3 40 15.0 15.3 15.3 14.9 14.9
50 7.4 7.6 7.6 7.4 7.4 50 10.0 10.1 10.2 10.0 10.0 50 14.6 15.3 14.9 14.6 14.6

Population Training Heuristics 175

objective function calls (FC). A parallel memetic algorithm (PMA) taken from
[14] was included in this comparison. The PMA presents a new 2-exchange local
search with a reduction scheme, which discards useless swaps, avoiding unnec-
essary objective function calls. Table 2 shows the comparison among PTAfag,
PTA2opt, CGA2opt and PMA in 10 trials for GMLP instance w4.

Table 2. Comparison between PTA and CGA2opt and PMA for instance w4

AS NS FC AS NS FC

PTA2opt 28.6 2 8,488,438 CGA2opt 28.0 3 6,537,706

PTAfag 28.3 2 9,330,802 PMA 29.4 2 9,428,591

Observing Table 2, CGA2opt has obtained the best AS and NS for w4.
PTAfag and PTA2opt are slightly similar in AS, but the later seems to perform
less function calls. All approaches based on population training were better than
PMA. Despite the Faggioli-Bentivoglio’s procedure seemingly should perform
less function calls than 2-Opt-like heuristic, this can not be observed in FC.
Indeed, it was expected a superior FC for versions employing 2-Opt. This fact
can be explained perhaps by the mutation procedure: the mutation would domi-
nate the number of function calls and the training heuristic was not relevant for
FC. Another possibility is that 2-Opt-like training heuristic would improve the
algorithm performance so that it could compensate its computational cost.

The comparison among the methods here presented are based only in the av-
erage performance because the other works found in literature does not mention
nothing about the variability of their models. Table 3 shows the average and
standard desviation in 20 trials for the hard MOSP instances p2040n6, p2540n3.

Table 3. Average and standard desviation for MOSP instances p2040n6 and p2540n3

Instances (solution) PT A2opt PT Afag CGA2opt CGAfag

p2040n6 (8, 0) 8, 7 ± 0, 5 8, 7 ± 0, 5 8, 9 ± 0, 3 8, 9 ± 0, 3
p2540n3 (10, 0) 10, 7 ± 0, 5 10, 8 ± 0, 4 10, 7 ± 0, 5 10, 9 ± 0, 3

Statistical tests showed that the differences in averages are not statisticaly
significant for MOSP instances p2040n6 and p2540n3. For GMLP instance w4,
averages obtained by CGA2opt was significantly better than those obtained by
PTAfag and PTA2opt.

4 Conclusion

In the Population Training Heuristic (PTH), proposed in this paper, the evolu-
tionary process is driven by a training heuristic, employed in the fitness defini-
tion. The population is led to settle down in search areas where the individuals
can not be improved by such heuristic. In this work, the general guidelines for

176 A.C.M. Oliveira and L.A.N. Lorena

PTH are introduced and new versions employing a non-constructive ranking are
presented.

The algorithms based on PTH showed the best performance when com-
pared against other approaches found in literature. Both constructive and non-
constructive approaches were able to reach the known optimal solutions. The
2-Opt-like training heuristic has presented better results concerning the com-
putational cost. For further work, it is intended to implement a multi-heuristic
version with subpopulations trained by different heuristics, evolving in parallel,
for multi-objective problems.

References

1. Lorena, L.A.N., Furtado, J.C.: Constructive genetic algorithm for clustering prob-
lems. Evolutionary Computation. (2001) 9(3): 309-327.

2. Ribeiro Filho, G., Lorena, L.A.N.: A constructive evolutionary approach to school
timetabling, In: Applications of Evolutionary Computing, Boers, E.J.W., Gottlieb,
J., Lanzi, P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H., (Eds.)
- Springer LNCS 2037(2001). 130-139.

3. Oliveira, A.C.M., Lorena, L.A.N.: A constructive genetic algorithm for gate matrix
layout problems. IEEE Trans. on Computer-Aided Designed of Integrated Circuits
and Systems(2002) 21(8): 969-974.

4. Oliveira, A.C.M., Lorena, L.A.N.: 2-Opt population training for minimization of
open stack problem. Advances in Artificial Intelligence - XVI Brazilian Sympo-
sium on Artificial Intelligence. Guilherme Bittencourt e Geber L. Ramalho (Eds).
Springer LNAI 2507. (2002) 313-323.

5. Oliveira, A.C.M., Lorena, L.A.N.: Real-coded evolutionary approaches to uncon-
strained numerical optimization. Advances in Logic, Artificial Intelligence and
Robotics. Jair Minoro Abe and João I. da Silva Filho (Eds). (2002) 10-15.

6. Reeves, C.R. Landscapes, operators and heuristic search. Annals of Operations
Research, v. 86, p. 473490, 1999.

7. Fink, A., Voss, S.: Applications of modern heuristic search methods to pattern
sequencing problems, Computers and Operations Research, (1999) 26(1): 17-34.

8. Golumbic, M.: Algorithmic graph theory and perfect graphs. Academic Press, New
York (1980).

9. Möhring, R.: Graph problems related to gate matrix layout and PLA folding,
Computing (1990) 7: 17-51.

10. Kashiwabara, T., Fujisawa, T.: NP-Completeness of the problem of finding a min-
imum clique number interval graph containing a given graph as a subgraph, In
Proc. Symposium of Circuits and Systems(1979).

11. Linhares, A.: Industrial pattern sequencing problems: some complexity results and
new local search models. Doctoral Thesis, INPE, S. José dos Campos, Brazil (2002).

12. Faggioli, E., Bentivoglio, C.A.: Heuristic and exact methods for the cutting se-
quencing problem, European Journal of Operational Research(1998) 110: 564-575.

13. Syswerda, G.: Schedule optimization using genetic algorithms. Handbook of Genetic
Algorithms,Van Nostrand Reinhold, New York (1991) 332-349.

14. Mendes, A., Linhares, A.: A multiple population evolutionary approach to gate
matrix layout, Int. Journal of Systems Science, Taylor & Francis Eds, (2004),
35(1): 13-23.

	Introduction
	General Guidelines of PTH
	Applications in Pattern Sequencing Problems
	Theoretical Issues of the MOSP
	PTA Modeling
	The Training Heuristics
	Evolutionary Operators
	Computational Tests

	Conclusion

