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São José dos Campos SP, Brazil
{lorena,airam,stephan}@lac.inpe.br

Abstract

Genetic algorithms, inspired by the theory of evolu-
tion of species, are intended to be unfair. Individuals
compete against each other and the best-adapted ones
prevail. Unfairness is due to big differences of skills,
generally evaluated by a fitness measure, in a popula-
tion of individuals competing for survival. However,
population diversity is important to preserve some fea-
tures that are not always associated to high ranked
skills. Such diversity can be achieved by imposing
fairness rules to the competition. The adaptive hier-
archical fair competition genetic algorithm has been
proposed to comply with this feature by segregating
individuals in casts or demes, according to their fit-
ness. This work proposes a parallel implementation
that enhances the capabilities and computational per-
formance of an adaptive hierarchical fair competition
genetic algorithm. The code was parallelized using
the MPI (Message Passing Interface) communication
library and executed in a distributed memory paral-
lel machine, a PC cluster. Test results are shown for
standard numerical optimization problems presenting
hundreds of variables.

1 Introduction

Genetic Algorithms (GA) are stochastic search
methods based on natural selection and reproduction of
a population of individuals, that evolves along the gen-
erations. Each individual has its particular genotype
and is associated to a candidate solution. A coding
strategy is required to define the genotype. The evolu-
tionary process generates new individuals using opera-

tors for selection, crossover and mutation. Particularly,
real-coded GA’s have been employed in numerical op-
timization with good results [9].

Sequential implementations of GA’s have been suc-
cessful for many applications in very different domains.
However, very large-search spaces could possibly be
better explored using Parallel GA’s (PGA). In such
cases, a very large population is required to sample the
problem domain and processing/memory demands are
heavy for a single processor, precluding the GA imple-
mentation to be efficient.

Sequential GA’s may also get trapped in a sub-
optimal region of the search space thus being unable to
find better solutions. On the other hand, PGA’s can
overcome such limitation by exploring in parallel differ-
ent search sub-spaces. A reason for this is that multiple
populations allow speciation, i.e., different populations
evolve in different directions. Therefore, PGA’s are not
just extensions of standard sequential GA’s, but consti-
tute a new paradigm that is able to perform a selective
search in the space of solutions. GA parallelization
requires some decisions, such as: (a) individual evalu-
ation or genetic operators performed or not in paral-
lel, (b) the use of a single or multiple sub-populations
(demes), (c) migration policy of individuals between
processors, etc.

Some of the models described in the literature are
[10]: (a) master-slave (or global) parallelization, (b)
multiple demes with migration, and (c) demes with
static or dynamic overlapping. In the master-slave
PGA, the tasks of evaluating the individuals and ap-
plying the genetic operators are divided among slave
processors. A master processor controls the evolution
of the population. This is a straightforward parallel
extension of standard GA’s. Multiple-deme GA’s are



the most popular PGA’s. Depending on the number
and size of the demes, they are called coarse or fine-
grained models. The coarse-grained algorithms use a
small number of demes with many individuals. Most
of the processing time is spent in the generation of
the demes and only occasionally individuals are ex-
changed between demes, according to a migration pol-
icy. Each deme can be associated to a GA executed in
a specific processor. Migration patterns include broad-
casting of individuals among processors (island model)
or exchange of individuals between neighbouring pro-
cessors (stepping-stones model). On the other hand,
fine-grained models divide the population into a large
number of smaller demes. Inter-deme communication
is generally accomplished by overlapping demes. The
migration policy is defined by some parameters: (a) the
topology that defines the connections between demes,
(b) the migration frequency and the number of individ-
uals exchanged, and (c) the criteria for choosing the mi-
grants. Finally, PGA’s with overlapping schemes define
areas obtained by the intersection of demes, following
some defined topology. These areas allow the propa-
gation of the genetic characteristics of best evaluated
individuals through the demes.

A recently parallel model, the Hierarchical Fair
Competition (HFC), was proposed, inspired by the
stratifying nature of the society, but only a sequen-
tial version was implemented. The population is seg-
regated in casts or demes according to individual skills
[8]. These skills are evaluated by a fitness function as
in standard GA’s. Individuals may move from a low-
fitness to high-fitness demes, according to the fitness-
based admission thresholds of the demes. HFC has
been successfully applied to the analog circuit syn-
thesis problem using a genetic programming (HFC-
GP) [8]. This work presents a new implementation
of the hierarchical fair competition genetic algorithm
applied to numerical optimization (function parame-
ter optimization). Enhancements include paralleliza-
tion, asynchronous exchange of individuals betweens
casts, and different evolutionary environments for the
casts. Each cast is mapped to a different processor.
The code employs the Message Passing Interface (MPI)
[12, 6] communication library to exchange individu-
als between demes. The proposed implementation was
evaluated with standard numerical optimization test
functions with hundreds of variables.

2 Hierarchical Fair Competition model

Convergence is a desirable feature for a GA, but
must be controlled in order to avoid get trapped in lo-
cal optima. It is common to have high-fitness individu-

als supplanting low-fitness ones or being selected more
often, and thus dominating the evolutionary process.
Genetic algorithms, inspired by the theory of evolu-
tion of species, are intended to be unfair. Individuals
compete against each other and the best-adapted ones
prevail, restricting population diversity. However, it is
important to preserve sample individuals scattered in
the search space in order to increase the probability of
reaching the global optima in multi-modal optimiza-
tion problems. Population diversity can be achieved
by keeping the competition among individuals fairer.
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Figure 1. The Hierarchical Fair Competition
model.

The Hierarchical Fair Competition (HFC) model
was proposed to avoid the premature convergence in
traditional evolutionary algorithms [8]. Fair competi-
tion is enforced by segregating the individuals in inde-
pendent casts or classes according to their skills. Such
model mimic some advanced social organizations that
preclude unfair competition.

In the HFC model, multiple demes are organized in
a hierarchy, in a way that each deme can only contain
individuals within its specific range of fitness. Thus the
fitness domain is mapped to a finite number of fitness
ranges, defined by admission thresholds. Individuals
are moved from low-fitness to high-fitness demes if and
only if they exceed the admission threshold of upper-
fitness demes. No individuals are moved to low-fitness
demes. Therefore, the HFC model migration operator
is unidirectional. Figure 1 illustrates the topology of
the HFC model. Arrows indicate the migrations that
are possible. The entry deme (primary level) may send
individuals to all other demes, while the elite deme
only can receive individuals, without sending any. This
model can be represented by a directed graph, in which
only some moves are allowed.



Concerning the migration frequency, the HFC model
establish that individuals must be moved at uniform in-
tervals, using admission buffers to collect the migrants
that came from other demes. Any individuals with fit-
ness outside (above) the fitness range of its deme must
migrate to the suitable deme. The amount of individ-
uals to be exchanged can not be predicted as it de-
pends on the evolution of each deme. A heterogeneous
evolutionary environment can be included in the HFC
model. In such environment, each deme would evolve
individuals employing different search strategies, sub-
population sizes, evolutionary operators, parameters,
etc. Different migration patterns could also be em-
ployed [8].

The fitness ranges are determined according to the
problem and to the number of levels. An adaptive
scheme that employs a few generation calibration stage
is employed to determine an initial range of fitness val-
ues. This stage computes the average fitness fµ, the
standard deviation σf , and the best fitness fmin of
the population that are used to define the admission
thresholds. Afterwards, the individuals of the initial
population are classified according to their fitnesses
and moved to the corresponding levels. In regular inter-
val generations, an update stage is performed in order
to recalculate the admission thresholds of the above-
entry levels by evaluating again fµ, σf , and fmin. Both
the calibration and update stages are employed to deal
with the lack of previous knowledge about the problem,
incorporating an adaptive feature to the algorithm [8].

3 The proposed implementation

An enhanced adaptive HFC algorithm that includes
parallelization is presented in this work, the Paral-
lel Adaptive Fair Competition Algorithm (PAHFCGA).
Some of the enhancements were suggested in the orig-
inal proposal of the HFC model for further implemen-
tation [8] as (a) an adaptive determination of number
of levels; (b) a more sophisticated admission threshold
adaptation mechanism; and (c) multi-processor paral-
lel implementation of HFC and testing on huge prob-
lems. The PAHFCGA implements (b) and (c), while
presenting (d) an asynchronous exchange of individu-
als between levels, and (e) different sets of evolutionary
parameters and operators for the demes of each level.
Each deme is mapped to a different processor and in-
dividual exchanges between processors are performed
through message-based communication, implemented
using the Message Passing Interface (MPI) library.

It is not a trivial task to divide the fitness space into
uniform ranges, as the search space may present val-
leys, plateaus, and peaks. In the PAHFCGA, the fitness

is not equal to the value f of the objective function.
Instead, a mapping is made from this value to a lin-
ear interval [0−, R+], where R is a scaling constant,
providing an even distribution of the fitness domain.
The PAHFCGA starts with the calibration stage and
each processor records the highest and lowest objective
function values (fU and fL, respectively). The fitness
value gij of the jth individual in ith level is:

gij = R [(fij − fL)/(fU − fL)] (1)

In minimization problems, the admission threshold ATi

of the ith level is given by:

AT[i=0] = +∞

AT[i>0] = g + (i−1)
(D−2) [g − g∗]

(2)

where D is the number of levels (demes). g is the aver-
age of the fitness values, while g∗ is the average of the
above-average fitness values, defined for population size
M (equal for all demes):

g = minD
i

[
1
M

∑M
j gij

]
g∗ = minD

i

[
1
M

∑M
j max(0, gi − gij)

] (3)

Figure 2. Mapping of f → g, for R = 100.

During the regular evolution, individuals with ob-
jective function value out of the range [fU , fL] can
be generated. They must be treated as a special case
of the mapping. Figure 2 depicts a mapping scheme
f → g for the three possible cases that are defined by:

1) gij = R [(fL − fij)/(fU − fij)], fij ∈ [−∞, fL]

2) gij = R [(fij − fL)/(fU − fL)], fij ∈ [fL, fU ]

3) gij = R [(1 + fij − fU )/(fij − fL)], fij ∈ [fU ,∞]



After the calibration stage, as evolution proceeds,
each deme may present individuals that are classified
as inferior, pertinent or superior, according to their
fitness value. The entry deme has no inferior individ-
uals nor the elite deme has superior ones. In former
HFC implementations, superior individuals were kept
in their demes of origin until the exchange time, par-
ticipating of the deme evolutionary process. Exchange
of individuals between demes was performed in a syn-
chronous manner, after a fixed number of generations.
In the PAHFCGA, individual exchange is fully asyn-
chronous and superior individuals are put in an output
buffer, being therefore excluded from the demes, not
affecting any further generations.

When the output buffer of any deme is full, or a cer-
tain number of generations is reached, the evolutionary
process of that deme is stopped and all superior indi-
viduals are exported, emptying the buffer. Afterwards,
incoming individuals from lower levels are received in
the admission buffer, if they exist. These individuals
are included in the deme, taking the place of less-fitted
individuals (steady-state-like updating strategy) [11].
Then, the algorithm is continued by running the next
generation.

PAHFCGA employs standard genetic operators as
the roulette wheel selection [5], blend crossover [4],
and non-uniform mutation [9]. A heterogeneous evo-
lutionary environment is provided by taking distinct
values of three evolutionary parameters in each level:
the mutation rate MR, the blend crossover parameter
BLXα, that is associated to the diversification of the
offsprings, and the local search probability LSP . Con-
sidering 0 ≤ MR ≤ 0.5% and 0.10 ≤ BLXα ≤ 0.25,
discrete values of these parameters are distributed
linearly among the demes, the upper bound corre-
sponding to the elite deme and the lower bound to the
entry deme. The local search operator, in this case,
the Hooke and Jeeves operator [7], is used only in the
elite deme. The PAHFCGA pseudo-code is:

1: for all demes do
2: InitializePopulation(P);
3: CalibrationStage calculating fU and fL;
4: GetLocalParameters (MR, LSP , BLXα);
5: repeat
6: if (updatetime) then
7: ComputeLocal (g, g∗);
8: ComputeGloal (g, g∗, AT );
9: Send (AT , AllDemes);

10: end if
11: EvolveDeme(P,MaxIterations);
12: while (output buffer is not empty) do
13: Send (individual to respective deme);

14: end while
15: if (entry deme) then
16: ComplementPopulation(P);
17: else
18: while (there are incoming individuals) do
19: Receive (Individual from anywhere);
20: UpdatePopulation(P, Individual);
21: end while
22: end if
23: until (stop criteria)
24: end for

The procedure ComplementPopulation(P) is run
only in the entry level, in order to replace the exported
individuals. It can be said that this level acts as a
generator of individuals, feeding continuously all demes
with new genetic material [8]. The stop criteria is given
by a specific maximum number of objective function
calls or by the quality of the best solution found.

4 Test results

Many applications related to numerical optimiza-
tion are very suitable for the use of evolutionary al-
gorithms. Such applications include neural network
training, fuzzy set optimization, and inverse problems.
It is a common practice to test numerical optimization
algorithms with “benchmark” test functions found in
literature. In this work, the well-known test functions
rosenbrock (Ros), schwefel (Sch), griewank (Gri), and
rastringin (Ras) are used. These functions can be set
with large number n of variables and are described in
[2, 3]. In particular, the PAHFCGA was tested with
200 ≤ n ≤ 700, to check its effectiveness for large-scale
numerical optimization. The experiments were run on
a distributed memory parallel machine, a cluster with
15 nodes based on the AMD (1.67 GHz) platform and
a Fast Ethernet network.

Tests intended (a) to prove the effectiveness of the
proposed algorithm for large-scale problems, (b) to test
the new features of the algorithm, described in the pre-
ceding section, (c) to evaluate the influence of the num-
ber of demes/processors in the performance and quality
of results, and (d) to test different values of the evolu-
tionary parameters and of the local search probability.

Some parameters were set based on [8]: deme size
and buffer sizes were set to 100, the calibration stage
was run with 10 generations and the update stage pro-
cedure was performed at every 2000 generations. Each
trial was finished if 20 × 106 objective function calls
were reached by any of processors (generally, the en-
try deme due to its continuous individual generation).
Each experiment consists of 10 trials. SN denotes the
number of successful trials. FS is the average best solu-



tion, and ET is the average maximum execution time of
the successful trials. Each trial is considered successful
if a 0.001 solution is reached.

Table 1 shows the results obtained by the PAHFCGA
for the test functions Ros(n = 500), Sch(n = 200),
Gri(n = 200/700), and Ras(n = 200). The local search
probability LSP was take in the range 0% − 0.5%.
For LSP = 0% (without local search), no satisfac-
tory solutions were obtained for Ros(n > 100) and
Gri(n > 200). Thus, for LSP = 0%, only results are
showed for Gri, Ras and Sch (both with n = 200). For
LSP = 0.1% and LSP = 0.5%, the expected solution
was found for Gri(n = 700) and Ros(n = 500). The ex-
periments were performed with D = {6, 9, 12, 15} pro-
cessors.

It is difficult to select an optimal number of proces-
sors/demes D, as performance does not scale linearly
with D. This is due to the evolutionary behaviour of
multiple demes. The same consideration applies to
the local search probability. This operator could not
improve the performance in the cases Ras(n = 200)
and Sch(n = 200). However, for Gri(n = 200/700),
one can observe that the best results were obtained
using 15 demes. Figure 3 shows the ET obtained in
the test cases for the different test functions, number
of variables, local search probability and number of
processors.
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Figure 3. Execution times (ET).
A gain of performance it is always expected when

parallel algorithms are used. However, it is not possi-
ble to predict the behaviour of multiple demes evolv-
ing in separate processors. The PAHFCGA was com-

pared with a sequential real-coded genetic algorithm
(SRCGA) that is very similar to the EvolveDemes pro-
cedure, i.e., using the same evolutionary and local
search operators. The same stop criteria was applied
and 10-trial averages were taken. Results of the SRCGA
are compared to those of the PAFCGA for n = 200 in
Table 2. In this table, PAFCGA results correspond to
the case LSP = 0% and D = 12. The SRCGA did not
solve the Rosenbrock function for n > 100, neither the
Gri(n = 700) case.

5 Final Remarks

A new implementation of the Hierarchical Fair Com-
petition GA has been presented, the Parallel Adap-
tive Hierarchical Fair Competition GA (PAHFCGA).
The proposed implementation has enhancements such
as parallelization, asynchronous exchange of individu-
als betweens casts, and fully stratified casts, i.e., each
cast has its own set of evolutionary parameters. These
new features provided a higher fidelity to the original
model. A local search operator was also included in
the elite cast. Each cast is mapped to a different pro-
cessor according to a distributed memory model. Indi-
vidual exchanges between casts are performed through
message-based communication between processors, im-
plemented using the Message Passing Interface (MPI)
communication library.

The PAHFCGA evaluation was performed using stan-
dard numerical optimization test functions with hun-
dreds of variables. Results were compared with a se-
quential GA that has the same evolutionary and local
search operators. The PAHFCGA presented significant
improvements in the quality of solutions and compu-
tation performance. It is difficult to define an optimal
number of processors for all the tested benchmark func-
tions. The same applies concerning the suitability of
the use of the local search operator.

The HFC model does not divide into processors the
search space, but the fitness space. Fitness does not al-
ways reflect the entire complexity of the search space.
It is possible that certain fitness ranges become over-
crowded of search space points, causing an unbalanced
migration. Even though, the use of such model in the
PAHFCGA reduced the execution time in the large-scale
numerical optimization problems that were tested. Re-
sults obtained so far are very promising. Large-scale
optimization is commonly found in areas such as in-
verse design or neural network training, thus present-
ing a good potential for the use of the PAHFCGA. In a
further step, it is intended to use this algorithm in an
inverse problem related to aircraft structural damage
detection [1].



Table 1. PAFCGA results for different evolutionary parameters.

f n FS SN ET(s) FS SN ET(s) FS SN ET(s) FS SN ET(s)
LSP 0% D = 6 LSP 0% D = 9 LSP 0% D = 12 LSP 0% D = 15

Gri 200 0.0010 8 212.1 0.0034 6 246.5 0.0032 9 196.3 0.0010 10 149.8
Ras 200 0.0009 8 338.8 0.0016 8 375.8 0.0015 8 335.3 0.0021 4 348.7
Sch 200 0.0010 10 439.4 0.0009 10 323.0 0.0010 10 409.0 0.0010 9 537.6

LSP 0.1% D = 6 LSP 0.1% D = 9 LSP 0.1% D = 12 LSP 0.1% D = 15
Gri 700 0.0003 10 753.1 0.0005 10 725.8 0.0002 8 751.1 0.0001 10 660.4
Ras 200 0.0026 8 379.8 0.0034 6 327.2 0.0023 6 319.1 0.0013 5 305.5
Ros 500 0.0007 10 506.7 0.0005 8 312.9 0.0007 10 392.1 0.0004 10 344.9
Sch 200 0.0009 10 318.5 0.0010 8 334.2 0.0009 8 288.2 0.0009 10 445.7

LSP 0.5% D = 6 LSP 0.5% D = 9 LSP 0.5% D = 12 LSP 0.5% D = 15
Gri 700 0.0003 10 781.8 0.0002 10 825.4 0.0002 10 842.1 0.0001 10 583.3
Ras 200 0.0022 8 322.4 0.0023 6 317.3 0.0029 8 330.6 0.0026 8 336.8
Ros 500 0.0006 10 415.2 0.0009 10 491.6 0.0008 10 585.0 0.0003 8 322.3
Sch 200 0.0010 10 266.7 0.0011 8 318.5 0.0010 8 267.9 0.0018 8 348.8

Table 2. SRCGA × PAFCGA for n = 200.

f FS SN ET(s) FS SN ET(s)
Gri 0.0183 4 566.4 0.0032 9 196.3
Ras 0.0130 2 480.6 0.0015 8 335.3
Sch 0.0520 3 529.5 0.0010 10 409.0
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