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This paper describes a new way to employ problem-specific heuristics to improve evolutionary

algorithms: the Population Training Algorithm (PTA). The PTA keeps stored the individual

and its best neighbor in the population for a number of generations inversely proportional

to the difference between their evaluation. The population is then ranked by a coefficient

that contemplates the double evaluation of individuals, in order that, the best individuals by

this rank have greater probability to be selected for recombination and mutation operations.

Applications are examined for two sequencing problems: the gate matrix layout and the

minimization of open stacks. A 2-Opt-like heuristic and other based upon Faggioli and

Bentivoglio’s greedy procedure are employed as training heuristics and their performance

are compared, using instances taken from the literature.

(Hybrid evolutionary algorithms; Population training; MOSP; GMLP)

1. Introduction

Evolutionary algorithms are efficient to explore a wide search space, converging quickly to

local minima. However, their lack of exploiting local information is a well-known drawback

to reach a global minima. Heuristics and local search procedures has been encapsulated

by evolutionary operators to incorporate knowledge about problems’ particularities, driving

the evolutionary process to build a population with some desired feature, gaining speed and

accuracy. The local search procedures are, in general, applied to only individuals considered

elite, avoiding unnecessary objective function calls. For the same reason, problem-specific
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heuristics has been employed to analyze and manipulate individuals’ structure, improving it

without objective function evaluation.

The Constructive Genetic Algorithm (CGA) was proposed in (Lorena and Furtado 2001)

to location problems, and applied to timetabling (Lorena and Ribeiro 2001). The CGA a

number of new features compared to a traditional genetic algorithm, such as a dynamic-

sized population composed of schemata (incomplete solutions) and structures (complete

solutions), and the possibility of employing heuristics in structure representation and in the

fitness function definitions.

Applications of CGA to sequencing problems, such as the gate matrix layout (Oliveira

and Lorena 2002), and the minimization of open stack (Oliveira and Lorena 2002), have

employed a 2-Opt-like heuristic to define the fitness function. The individual has a double

evaluation based upon the solution that it represents and an estimate of how much it can

be improved by the 2-Opt-like heuristic.

Considering such CGA applications, two processes are identified and performed in par-

allel: a 2-Opt training and a constructive process. The structures and schemata are trained

with the 2-Opt-like heuristic, and at the same time, more and more structures are built

from the initial population composed only by schemata. These applications were the first

to evaluate the individuals based upon a problem-specific heuristic and the obtained results

were encouraging. However, some relevant aspects of population training were not studied

in previous works, as the flexibility of the algorithm to incorporate other training heuristics

and number of objective function calls.

In this work, only the heuristic training process is considered and new features are ag-

gregated to the algorithm, such as a new ranking (without contemplating the constructive

process) and evolutionary operators. The employment of two distinct training heuristics is

focused and the results are compared. This approach is called population training algorithm

(PTA).

This paper is organized as follows. Section 2 presents the guidelines of PTA and Section

3 presents theoretical aspects of the problems at hand. The aspects of modeling, such as

representation, evaluation and ranking of individuals are presented in Section 4. Section

5 describes the evolutionary process and how the dynamic-sized population is controlled.

Section 6 presents the training heuristics employed in this work and Section 7 presents

the operators and the algorithm implemented. A comparison between different training

heuristics and approaches in some issues of performance are presented in Section 8.
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2. General Aspects of PTA

Typical hybrid evolutionary algorithms work as follows. Whether an individual is the best

one inside a delimited search subspace (called neighborhood), it is kept in population. Oth-

erwise, it is replaced as soon as a better solution is obtained. Local search heuristics can be

applied on a given individual to evaluate its neighborhood.

In PTA, on the other hand, another way to deal with a better solution obtained by

heuristic is proposed: keep both, the individual and its best neighbor, in the population for

a number of generations inversely proportional to the difference of evaluation between them.

The population is then ranked by a coefficient that contemplates this double evaluation of

individuals, in order that, the best individuals by this rank have greater probability to be

selected from the population for recombination and mutation operations.

The process works as whether the population was trained by a problem-specific heuristic

(called training heuristic), where well-adapted individuals are privileged. The evolutionary

process penalizes the ill-adapted individuals, promoting the replacement of them along the

generations. The individuals representing local minima (or maxima) solutions (can not be

improved by the training heuristic) tend to dominate the population.

Each individual must be evaluated by the objective function, at least, two times, consid-

ering one call to evaluate the solution and other call to evaluate the neighborhood around it.

For example, in sequencing problems as in (Oliveira and Lorena 2002), a 2-Opt neighborhood

is evaluated from 1 up to N objective function calls, where N is the problem length (number

of items to be permuted). The best neighbor is reached by changes in the permutation and

every new generated permutation is evaluated by the objective function. This procedure

works as it was applying a small local search to the whole population and a meaningful

number of objective function calls can be required.

In this work, another type of heuristics has been investigated for gate matrix layout and

minimization of open stack problems, based upon expertise knowledge about the problems

that can decrease the computational effort to evaluate the individual. There is a problem-

specific heuristic proposed by Faggioli and Bentivoglio (Faggioli and Bentivoglio 1998) that

always generates a single neighbor to be evaluated, considering the similarity among the

patterns/gates of the problem. This work presents a comparison between 2-Opt-like heuristic

and Faggioli’s greedy procedure, being employed as training heuristics.
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3. Theoretical Issues of MOSP

Minimization of Open Stacks Problem (MOSP) appears in a variety of industrial sequencing

settings, where distinct patterns need to be cut and each one may contain a combination of

piece types. For example, consider an industry of woodcut where pieces of different sizes are

cut of big foils. Pieces of equal sizes are heaped in a single stack that stays open until the

last piece of the same size is cut.

A MOSP consists of determining a sequence of cut patterns that minimizes the maximum

number of opened stacks during the cutting process. Typically, this problem is due to

limitations of physical space, so that the accumulation of stacks can cause the temporary

need of removal of one or other stack, delaying the whole process.

The data for a MOSP are given by an IxJ binary matrix P , representing patterns (rows)

and pieces (columns), where Pij = 1, if pattern i contains piece j, and Pij = 0 otherwise.

Patterns are processed sequentially, opening stacks whenever new piece types are processed

and closing stacks of pieces that do not have any items else to be cut. The sequence of

patterns being processed determines the number of stacks that stays open at same time.

Another binary matrix, here called the open stack matrix Q, can be used to calculate

the maximum number of open stacks for a certain pattern permutation. It is derived from

the input matrix P , by following rules:

• Qij = 1 if there exists x and y|π(x) ≤ i ≤ π(y) and Pxj = Pyj = 1;

• Qij = 0, otherwise;

where π(b) is the position of pattern b in the permutation.

Considering matrix Q, the maximum of open stacks (MOS) can be easily computed as:

MOS = max
i∈I

∑
j∈J

Qij

 (1)

The matrix Q clarifies the stacks that are open (consecutive-ones in the columns) along

the cutting of patterns. The Figure 1 shows an example of matrix P , your corresponding

matrix Q, and MOS calculated for same example. The Q shows the consecutive-ones prop-

erty (Golumbic 1980) for columns being applied to P . In each column, one can see when a

stack is open (first “1”), and when it is closed (last “1”). Between first and last “1” ’s, the

stack stays opened (“1” ’s sequence).
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The sum of “1” ’s by rows, computes the number of open stacks when each pattern is

processed. For the example of Figure 1, when pattern 1 is cut there are 2 open stacks,

then pattern 2 is cut opening 5 stacks, and so on. One can note that, at most, 5 stacks

(MOS = 5) are needed to process the permutation of patterns π0 = {1, 2, 3, 4, 5}.

 

 

 

pieces 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 ∑
pattern 1 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 2

Pij = pattern 2 1 1 0 0 1 1 0 0 Qij = 1 1 1 0 1 1 0 0 5
pattern 3 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 3
pattern 4 0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 1 4
pattern 5 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 2

MOS= max {2,5,3,4,2} = 5

(a)         (b) 

Figure 1: MOSP instance: a) original problem matrix P ; b) corresponding matrix Q

For MOSP, the objective is to find out the optimal permutation of patterns that minimizes

the MOS value. The Figure 2 shows Q of the optimal permutation, π1 = {5, 3, 1, 2, 4}, for

the example of Figure 1.

pieces 1 2 3 4 5 6 7 8 ∑
pattern 5 0 0 1 0 0 0 1 0 2
pattern 3 1 0 1 0 0 0 0 0 2
pattern 1 1 0 1 0 1 0 0 0 3
pattern 2 1 1 0 0 1 1 0 0 4
pattern 4 0 0 0 1 1 0 0 1 3

MOS = max {2,2,3,4,3} = 4

Figure 2: Optimal solution for MOSP instance

Other permutations with MOS = 4 can exist, for example π2 = {2, 3, 1, 5, 4}, but π1

holds an advantage to the others: the time that the stacks stay open (TOS). The TOS can

be calculated by the sum of all “1” ’s in Q. It comes from the distance, in the permutation,

between the pattern that opens and the pattern that closes each stack. This would be

a second objective for MOSP: to close the stacks as soon as possible, allowing that the

customer’s requests be available.

A more detailed introduction to MOSP can be found in Becceneri (Becceneri 1999)

and practical applications in (Yanasse 1996). With respect to complexity of MOSP, some

works NP-hardness of MOSP have been published in the last decade. (Andreatta et al.,

1989) formulated the cutting sequencing problem as a minimum cut width problem on a

hypergraph and showed that it and showed that it is NP-Complete (Andreatta et al. 1989).

Recently, presented several aspects of MOSP and other related problems, like the GMLP
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(Gate Matrix Layout Problem), including the including the NP-hardness of them (Linhares

2002).

The GMLP is a known NP-hard problem and arises on VLSI design (Möhring 1990),

(Kashiwabara and Fujisawa 1979). Its goal is to arrange a set of circuit nodes (gates) in an

optimal sequence, such that the layout area is minimized, i.e., it minimizes the number of

tracks necessary to cover the gates interconnection. The relationship between MOSP and

GMLP resides in the consecutive-ones property:

• a stack is opened at the moment that the first piece of a type is cut and stays opened

until the cut of the last piece of this same type, occupying a physical space during this

time; at same way,

• a metal link is begun from the leftmost gate in a net and passes by all gates of the

circuit until the rightmost gate, occupying a physical space inside of a track.

Concerning input matrix P of MOSP, the consecutive-ones property: occurs in the

columns, differently of GMLP that occurs in rows. Figure 3 shows an example of input

matrix in GMLP. The corresponding gate matrix is derived by consecutive-ones property

applied to rows and, in bottom, one can see the number of track overlaps.

Figure 3: GMLP instance: a) original gate matrix; b) corresponding gate matrix

4. PTA Modeling

The modeling of MOSP and GMLP are quite similar, in general. The main difference between

them is the objective function. For this reason, all modeling aspects are treated only for

MOSP. More details about GMLP can be found in (Oliveira and Lorena 2002).

A very simple representation is implemented for MOSP and GMLP: a direct alphabet

of symbols (natural numbers) represents the pattern (or gate) permutation. Each label is
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associated to a row of binary numbers, representing the piece type presence in each pattern.

A permutation of rows is called structure and consists of a candidate solution for an MOSP

instance. The Figure 4 shows structures for the MOSP instance of Figure 1.

Figure 4: Examples of structures (candidate solutions)

In the modeling process, the original problem, MOSP, is transformed in a bi-objective

problem that considers how good the structures are with respect the original objective func-

tion and other desired features, established by a problem-specific heuristic. The MOSP,

being a minimization problem, is modeled as:


min {g(Sk)− f(Sk)}
min {g(Sk)}

Subject to g(Sk) ≥ f(Sk),∀Sk ∈ X

(2)

All structures, Sk, are evaluated by two fitness functions, f and g, defined on the search

space X of all structures that can be obtained by the direct alphabet of symbols. The

function g is the original objective function and the function f evaluates certain desirable

features, determined by a problem-specific heuristic. Such desirable features could improve

the objective function of any structure, but not always that happens. Thus, the interval g−f

estimates the difference between “what the structure is” and “what the structure should be”.

The bi-objective problem can not be solved directly due to X be unknown or very large,

but indirectly, through a genetic algorithm. By this way, all structures Sk ∈ X are treated

as an individual in a population.

For MOSP (or GMLP), the function g reflects the total cost of a given permutation

of patterns (or gates). To increase the fitness distinction among the individuals of the

population, it is used a formulation that considers the MOS minimization as primary ob-

jective and TOS minimization as a secondary one. Therefore, it is defined as g(Sk) =

I · J ·MOS(Sk) + TOS(Sk) or
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g(Sk) = I · J ·max
i∈I

∑
j∈J

Qij

 +
∑
i∈I

∑
j∈J

Qij (3)

where the product I · J is a weight to reinforce the part of the objective considering the

maximum number of open stacks and making it more important than the second part,

concerning the time of open stacks.

The fitness function f is defined to drive the evolutionary process to a population trained

by a heuristic. A heuristic defines a neighborhood relationship between individuals, delimit-

ing a search subset around them. Typically, a local search procedure can be used to improve

the solution, represented by a given individual, Sk, i.e., to find the best solution inside the

neighborhood defined by the heuristic H applied to Sk. Thus, function f can be defined by:

f(Sk) = min{g(S1), g(S2), . . . , g(SV ), g(Sk)} (4)

where {S1, S2, . . . , SV } are a set of structures of the search space, called H-neighborhood of

Sk, generated by the training heuristic H, from Sk.

The heuristic H is employed to generate a set of structures (solutions), {S1, S2, . . . , SV },
from Sk that are evaluated, aiming to find the best. The best evaluation found, Sv, is

assigned to f(Sk). In this work, a 2-Opt like heuristic and a Faggioli’s greedy procedure are

used as training heuristics. A more detailed description of them is presented later.

Considering, Gmax, an estimate of the upper bound for all possible values of the function

g, the interval I1, Gmax − g(Sk), gives the distance between structure Sk and the upper

bound. In other words, greater the interval I1, better is a structure Sk for a minimization

problem. In the population training approach, however, is also considered the adaptation of

individual with respect to the training heuristic H, and ill-adapted individuals are penalized

by the interval I2, g(Sk)− f(Sk). For minimization problems, all individuals are ranked by

the following:

δ(Sk) = d · [Gmax − g(Sk)]− [g(Sk)− f(Sk)] (5)

where d is a constant percentage of Gmax, i.e., a proportionality constant for interval I1.

In general, d = 1/Gmax(Gmax > 0) and Gmax can be estimated by sampling or effectively

computed, considering the problem instance.

All individuals, Sk, are firstly evaluated by the objective function g, followed by function

f , that evaluates the H-neighborhood of Sk. If Sk can not be improved by H, then Sk is well-
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adapted to H. Otherwise, the difference (g(Sk)−f(Sk)) is subtracted from d ·(Gmax−g(Sk))

penalizing the individual. For minimization problems, the well-evaluated individuals have

low g evaluation and are well-adapted to H, g − f ∼= 0.

5. The Evolutionary Process

A dynamic-sized population was implemented and controlled by an adaptive rejection thresh-

old that eliminates the ill-adapted individuals, i.e., structures such that α ≥ δ(Sk).

The adaptive rejection threshold, α, is initialized at the beginning of the process with the

rank of the worst individual in population. During the evolutionary process, α is updated

with adaptive increments, considering the current range of the rank values in the population,

the population size, and the remaining number of generations. The adaptive increment of α

is shown in (6):

α = α + Step · PS · (δbst − δwst)

RG
(6)

where δbst and δwst are, respectively, the best and the worst rank of structures in current

population, PS is the current population size, RG is the remaining number of generations,

and Step is an adjustment constant, used to give more or less speed to the evolutionary

process.

The values of Step controls the step length of α. Starting from the initial population,

new individuals are generated, by recombination and mutation operations, exploring new

solutions and their neighborhoods. At the beginning, the population tends to grow up,

generally, accepting all new individuals. After some generations, α determines the adaptation

values that can be kept in population and the ill-adapted individuals are eliminated. When

no improvement is obtained, the population decreases, until becomes empty. Therefore,

the parameter Step sets how many generations will happen before the population becomes

empty.

6. Training Heuristics

The well-adapted individuals have best ranking and are kept in the population for more

generations. To compute the adaptation of individuals, different heuristics can be employed.

Each heuristic defines a different neighborhood between structures in the search space.
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In general, the heuristic is applied to the individual Sk being evaluated and one or more

structures are generated. One can say that such structures are neighbors of Sk. These

structures are evaluated with respect to the objective function and the best value is set as

f(Sk).

In this work, it is used a 2-Opt-like heuristic and other based upon Faggioli’s greedy

procedure (Faggioli and Bentivoglio 1998). Both are explained in the next subsections.

6.1 The 2-Opt Heuristic

The 2-Opt-like heuristic is employed to train the population by the fitness function f . An-

other application to 2-Opt is to perform a local search mutation and is better explained

later.

To generate the 2-Opt neighborhood, an iterative process starts, inspecting all possible

2-move changes in the structure. Each 2-move generates a neighbor structure that will be

evaluated, looking for the best objective function value. At the end, up to 0.5(N2 − N)

neighbor structures are evaluated (N is the number of patterns in problem instance).

Figure 5: 2-move changes using a) non-consecutive and b) consecutive reference points

An example of 2-move change is showed in Figure 5. The marks in positions of the

structures mean reference points to be changed. Non-consecutive references cause the first

change type, as showed in Figure 5a. Consecutive points cause the second change type in

Figure 5b. For example, inspecting 4 neighbors, from first position in Figure 5, generates 6

pairs of reference points:

{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}.

6.2 The Faggioli’s Heuristic

The Faggioli’s heuristic is also employed to train the population by the fitness function f

and is based upon the greedy heuristic procedure described in Faggioli and Bentivoglio’s
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paper. The basic idea of this heuristic is, from a initial group of patterns, to minimize

the differences with respect to a subsequent one, and so on, until one permutation with all

patterns is completed.

The initial group of patterns (the first N/2 pattern), in a given structure, is accepted

as start patterns. The neighborhood is defined as all structures that begin with the start

group of patterns and minimize the difference to the subsequent patterns, accordingly with

Faggioli’s heuristic. Then, the next pattern to be sequenced is chosen from the remaining

group, according with a three stage criterion.

At the first stage, the patterns that open as less new stacks as possible are chosen. A

stack is opened when the new sequenced pattern contains a piece type that is not yet stacked,

i.e., the ith item presents a 0− 1 transition, from previous pattern to next.

At the second stage, the pattern that removes the greatest number of stack is chosen

among the patterns previously selected. A stack is removed when the new sequenced pattern

ends a piece type that is being stacked, i.e., the ith item presents a 1 − 0 transition, from

previous pattern to next.

At the last stage, the pattern that continues the production of the greatest number of

stacked pieces is chosen among the patterns previously selected. The production continues

when the new sequenced pattern contains a piece type that is already stacked, i.e., the ith

item presents a 1− 1 transition, from previous pattern to next.

If these three rules lead to more than one pattern to be inserted in sequence, one of them

is selected at random. This random decision gives a random nature to neighborhood being

built, that is to say, more than one neighbors can exist to a given structure.

7. Evolutionary Operators and Algorithm

The structures in population are kept in descending order, according to the ranking in (5).

Thus, well-adapted individuals appear in first places on the population, being privileged for

selection, recombination and mutation operations.

7.1 Selection and Recombination

Two structures are selected for recombination. The first is called the base (Sbase) and is

randomly selected out from the first positions in the population. The second structure is

called the guide (Sguide) and is randomly selected out of the entire population.
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In this work, the recombination implemented is a variant of the Order Crossover (OX)

called Block Order Crossover (BOX) (Syswerda 1991). The parent(A) and parent(B) are

mixed into only one offspring, by copying blocks of both parents, at random. Pieces copied

from a parent are not copied from other, keeping the offspring feasible. This crossover tends

to be less disruptive than others, as the Partially Matched Crossover (PMX). The Figure 6

shows an example of BOX.

Figure 6: Example of Block Order Crossover (BOX)

7.2 Local Search Mutation

The local search mutation is applied to each new structure generated with a certain prob-

ability. This procedure is very important to get intensification moves around a solution.

In (Oliveira and Lorena 2002), a stand-alone 2-Opt procedure was also implemented and

tested, obtaining good results to small problems, whether compared to others procedures.

The local search mutation considers several better individuals per mutation, exploring

a search tree. A neighborhood is inspected in each tree level and the best found structure

is held on to be used as starting point to next tree level. Successive neighborhoods are

generated and new best structures are held on until a pre-defined maximum number of

neighborhoods (J).

To avoid increasing the computational efforts, each neighborhood is limited to a constant

number of neighbors (L) around the starting structure. An initial point in structure is

chosen at random and an iterative process starts from it, inspecting some 2-move changes

in the structure, until the maximum length previously established. Each 2-move generates

a neighbor structure that is evaluated, looking for the best in each neighborhood.

The 2-Opt local search mutation is showed in Figure 7. The neighborhood length (L)

and the number of neighborhoods (J) are set together with other parameter settings that are
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described in next section. Generally, L and J receive the same value, called neighborhood

width (NeighborhoodWidth).

Figure 7: Search tree generated by the 2-Opt local search mutation

7.3 The Algorithm

The algorithm implemented in this work is showed as follows. The end condition can be

any of the following events: a) after a given number of generations; b) the emptying of the

population.

Initialize(P,alpha, t);

while (not END_CONDITION)

t = t+1;

Select(P, base, BasePercentage);

Select(P, guide,WholePopulation);

New=Recombine(base,guide);

EvaluateIndividual (new);

if (rand() < MutationPercetange)

Mutation(new,NeighborhoodWidth);

end_if

EvaluateNeighborhood(new);

CalculateDelta(new);

if (delta(new) > alpha)

UpdateInPopulation(P,new);

end_if
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alpha := alpha + AdaptiveIncrement(Step);

While (exist delta(S) < alpha)

EliminateFromPopulation(P,S);

end_while

end;

This algorithm is quite intuitive and is based upon traditional genetic algorithms. The

following parameter settings are described in next section.

• BasePercentage: percentage of individuals considered as possible base individuals;

• MutationPercentage: probability of local search mutation;

• Step: controls the step length of α;

• NeighborhoodWidth: neighborhood width.

The parameter BasePercentage controls the diversification of parents in the recombina-

tion. MutationPercentage controls the number of individuals suffering local search and, con-

sequently, the computational effort during the evolutionary process. The parameter Neigh-

borhoodWidth is also associated with the computational effort, during the local search. At

last, the parameter Step can avoid a premature emptying of the population.

8. Computational Tests

A pool of 300 MOSP instances, taken from Faggioli and Bentivoglio’s paper (Faggioli and

Bentivoglio 1998), and one GMLP instance taken from literature were chosen for tests. The

MOSP instances are grouped by number of patterns (10, 15, 20, 25, 30, 40). Each one of these

pattern groups has five piece type subgroups (10, 20, 30, 40, 50) and each piece type subgroup

has ten instances with different solutions. The GMLP instance (called w4 ) has 141 gates

and 202 nets and is the largest instance found in the literature (Linhares et al. 1999). The

main reason to taken these instances is that some best known solutions were found recently

and are considered a challenge (Linhares 2002), (Linhares et al. 1999).

The Population Training Algorithm (PTA) for MOSP/GMLP was coded in ANSI C and

it was run on Intel AMD (1.33 GHz) hardware. For the computational tests, some PTA
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parameters were adjusted. The best results were obtained with BasePercentage=20%, Mu-

tationPercentage=20%, Step=0.001 and neighborhood width NeighborhoodWidth=20. The

PTA was initialized with 50 and 100 individuals for MOSP instances and GMLP instance,

respectively. Two versions of PTA (PTAopt and PTAfag), using the 2-Opt-like and Faggioli’s

greedy heuristics for training, were built and compared to evaluate how different heuristics

interfere in the algorithm performance.

In Faggioli and Bentivoglio’s work, six methods are presented, and the best two are:

a) a tabu search method (TS) based upon an optimized move selection process; and b) a

generalized local search method (GLS) that employs the Faggioli’s greedy procedure in a

simplified tabu search that only accepts improving moves.

In this work, besides the two previously mentioned methods (TS, GLS), another three

methods are included for comparison with PTA: c) the Constructive Genetic Algorithm

(CGA) (Oliveira and Lorena 2002); d) the Collective method (COL) proposed recently by

Linhares (Linhares 2002); and e) a dynamic-sized population genetic algorithm without

local search (DPGA).

The original version of CGA employs only 2-Opt-like heuristic as training heuristic, but,

in this work, CGA was adapted to work with Faggioli’s greedy heuristic too and new sim-

ulations were performed with both versions. The CGA’s parameter settings are the same

found in (Oliveira and Lorena 2002).

The COL method explores distance measures among permutations to drive the search

of an algorithm similar to the simulated annealing, where the moves in the search space are

based upon exchange in pattern positions. Its results were taken from (Linhares 2002).

The DPGA has the same algorithm structure of PTA, but do not use any local search

method. Instead, it uses a mutation that exchanges labels inside structures with certain

probability. Besides, DPGA is ranked by traditional fitness, i.e., by the objective func-

tion shown in (3). The best DPGA performance was obtained with a population of 1000

individuals (initially) and mutation probability of 5%.

The Table 1 shows the best solution averages obtained by PTA (both versions PTAfag

and PTAopt), COL, TS, GLS, CGA (both versions CGAfag and CGAopt) and DPGA for

each instance group. Only the MOS minimization is compared because the TOS is not

considered on the other works. For this test, CGA, DPGA and PTA were run 20 times.

Considering the best known solutions, only CGA and PTA have found the best overall

average of solutions for the instance groups, i.e., 100% of success. The COL appears with
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the second best performance, achieving the best average in 80% of instance groups (24 of

30), DPGA (46% or 14 of 30), TS (37% or 11 of 30), and GLS (33% or 10 of 30) of success

rate, respectively.

Table 1: Performance comparison with another approaches per instance groups
I J PTA COL TS GLS CGA DPGA

10 10 5.5 5.5 5.5 5.5 5.5 5.5
- 20 6.2 6.2 6.2 6.2 6.2 6.2
- 30 6.1 6.1 6.1 6.2 6.1 6.1
- 40 7.7 7.7 7.7 7.7 7.7 7.7
- 50 8.2 8.2 8.2 8.2 8.2 8.2

15 10 6.6 6.6 6.6 6.6 6.6 6.6
- 20 7.2 7.2 7.2 7.5 7.2 7.3
- 30 7.3 7.3 7.4 7.6 7.3 7.4
- 40 7.2 7.2 7.3 7.4 7.2 7.3
- 50 7.4 7.4 7.6 7.6 7.4 7.4

20 10 7.5 7.5 7.7 7.5 7.5 7.5
- 20 8.5 8.5 8.7 8.6 8.5 8.5
- 30 8.8 9.0 9.2 8.9 8.8 9.1
- 40 8.5 8.6 8.6 8.7 8.5 8.5
- 50 7.9 7.9 8.0 8.2 7.9 8.0

25 10 8.0 8.0 8.0 8.0 8.0 8.0
- 20 9.8 9.8 9.8 9.9 9.8 10.0
- 30 10.5 10.6 10.7 10.6 10.5 10.5
- 40 10.3 10.4 10.7 10.6 10.3 10.5
- 50 10.0 10.0 10.1 10.2 10.0 10.1

30 10 7.8 7.8 7.8 7.8 7.8 7.8
- 20 11.1 11.2 11.2 11.2 11.1 11.2
- 30 12.2 12.2 12.6 12.2 12.2 12.4
- 40 12.1 12.1 12.6 12.4 12.1 12.5
- 50 11.2 11.2 12.0 11.8 11.2 11.3

40 10 8.4 8.4 8.4 8.4 8.4 8.4
- 20 13.0 13.0 13.1 13.1 13.0 13.3
- 30 14.5 14.5 14.7 14.6 14.5 14.7
- 40 14.9 15.0 15.3 15.3 14.9 15.1
- 50 14.6 14.6 15.3 14.9 14.6 15.0

The MOSP instances p2040n6, p2540n3, and p4050n7 are instances of the groups 20x40,

25x40, and 40x50 and were considered the hardest instances to solve. The success rate

for them is about 50% or less and the other approaches were not able to find their solu-

tions. These MOSP instances and the GMLP instance w4 were chosen for a more detailed

performance analysis.

The Table 2 shows the comparison between PTAfag, PTAopt, CGAfag and CGAopt in

20 trials (except for w4, with 10 trials), considering the found average of MOS (AS), the

success rate (SR), the average of objective function calls (FC) and the average of running

time (RT) in seconds. FC and RT were measured only for trials that reached success, i.e,

for cases in which the best known solution was found. The description of the instance, IxJ,

means I patterns (or gates), J pieces (nets).

Observing Table 2, PTAopt has obtained the best AS and SR on the MOSP instances

(p2040n6, p2540n3, and p4050n7 ). Considering these same instances, PTAfag and CGAopt
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Table 2: Full comparison between PTA and CGA employing 2-Opt-like and Faggioli-
Bentivoglio’s greedy procedure as training heuristics

PTA(opt) PTA(fag)
Instances AS SR FC RT AS SR FC RT

(%) (106) (s) (%) (106) (s)
p2040n6 8,7 30 0,578 20,0 8,7 30 0,405 14,3
p2540n3 10,7 30 0,414 21,7 10,8 20 0,708 30,0
p4050n7 14,7 35 1,052 83,1 14,8 25 1,190 94,6

w4 28,6 10 8,488 6.935,5 28,3 20 9,330 7.598,0

CGA(opt) CGA(fag)
Instances AS SR FC RT AS SR FC RT

(%) (106) (s) (%) (106) (s)
p2040n6 8,9 10 0,322 11,0 8,9 10 0,303 10,0
p2540n3 10,7 30 0,747 32,3 10,9 10 1,019 36,0
p4050n7 14,7 30 0,749 52,8 14,8 20 0,788 62,3

w4 28,0 70 6,537 6.592,1 29,0 10 10,240 8.264,5

has obtained similar AS and SR results. It can not be distinguished a winner between them,

except by the FC. In fact, CGAopt has called the objective function lesser than any other

version for all instances taken for this test (MOSP and GMLP).

Despite the CGAopt to have reached good results, even the best for some cases, the

CGAfag has failed in finding good results and has obtained the worst overall performance.

On the other hand, CGAopt has pointed out the best AS, SR, FC and RT with respect to

GMLP instance w4. The constructive process and 2-Opt-like training heuristic seems to be

an efficient association for this instance. Faggioli and Bentivoglio’s greedy procedure needs

information to evaluate the solution neighborhood and CGA population is composed initially

only of schemata (incomplete solutions). This can explain the reason for this performance

gap between them.

Considering the training heuristic employed by PTA, one can note their overall per-

formance are slightly equivalent with respect to AS and SR. Once more, a overall winner

heuristic can not be found. However, as one can see in convergence trail experiment (seen

at following), PTAfag has presented an faster approaching to best solution.

Despite the Faggioli and Bentivoglio’s greedy procedure seemingly could performe less

function calls than 2-Opt-like heuristic, this can not be observed in FC. It was expected a

superior FC for versions employing 2-Opt. This fact can be explained perhaps by the muta-

tion procedure: the mutation would dominate the number of function calls and the training

heuristic was not relevant for FC. Another possibility is that 2-Opt-like training heuristic

would improve the algorithm performance so that it could compensate its computational

cost.

The running time (RT) presented by all versions was coherent with the FC. One can
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see that the rate RT/FC is basically the same for all, i.e., RT/FC = 0.0008 seconds per

function call (s/fc), except by the CGAopt with RT/FC = 0.0010s/fc.

The convergence trail of PTA, CGA and DPGA can be observed in Figure 8. The

graphic shows the average of the best found solution sampled at each 105 objective function

evaluations for instance w4 in 10 trials. The convergence trail was split off (Figure 8a and

Figure 8b) for clarifying the experiment.

DPGA approaches very fast to the best known solution (27 tracks), but was not able to

reach it, probably, due to diversity loss. PTAfag slowly approaches to 27 tracks, reaching

a good average solution at last, much better than PTAopt. However, as one can observe

in Figure 8, CGA has the best behavior, with CGAopt, and the worst too, with CGAfag,

among all the population training approaches.
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Figure 8: Convergence trail for instance w4

9. Conclusion

This paper describes a new way to employ problem-specific heuristics to improve evolutionary

algorithms: the Population Training Algorithm (PTA). The PTA keeps stored the individual

and its best neighbor in the population for a number of generations inversely proportional

to the difference between their evaluation. To define the individual’s neighborhood, different

heuristics can be employed, and the best individuals are called well-adapted to the heuristic.

Two versions of PTA (PTAopt and PTAfag), using the 2-Opt-like heuristic and Faggioli

and Bentivoglio’s greedy procedure for training, were built and compared to evaluate how

different heuristics interfere in the algorithm performance. Computational tests has showed

18



that their overall performance are slightly equivalent, but for a GMLP instance w4, PTAfag

has presented a better convergence.

PTA was also compared with other approaches, taken from the literature, including an-

other algorithm that employs training heuristic: the Constructive Genetic Algorithm (CGA).

The CGA combines two processes performed in parallel: a heuristic training and a construc-

tive process. In the constructive process, well-adapted solutions are built from an initial

population of schemata.

PTA and CGA were the only ones to find all best known solutions of a pool of 300

MOSP/GMLP instances. PTA has presented the best average solution and success rate for

MOSP instances, and CGA for the biggest GMLP instance (w4 ).
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