
2-Opt Population Training for Minimization of Open
Stack Problem

Alexandre César Muniz de Oliveira

DEINF/UFMA
Av. dos Portugueses, s/n, Campus do

Bacanga, São Luíz MA,
Brazil.

acmo@deinf.ufma.br

Luiz Antonio Nogueira Lorena

LAC/INPE
Caixa Postal 515

12.201-970 São José dos Campos - SP
Brazil

lorena@lac.inpe.br

Abstract. This paper describes an application of a Constructive Genetic
Algorithm (CGA) to the Minimization Open Stack Problem (MOSP). The
MOSP happens in a production system scenario, and consists of determining a
sequence of cut patterns that minimizes the maximum number of opened stacks
during the cutting process. The CGA has a number of new features compared to
a traditional genetic algorithm, as a population of dynamic size composed of
schemat a and structures that is trained with respect to some problem specific
heuristic. The application of CGA to MOSP uses a 2-Opt like heuristic to define
the fitness functions and the mutation operator. Computational tests are
presented using available instances taken from the literature.

1 Introduction

Minimization of Open Stacks Problem (MOSP) appears in a variety of industrial
sequencing settings, where distinct patterns need to be cut and each one may contain a
combination of piece types. For example, consider an industry of wood cut where
pieces of different sizes are cut of big foils. Pieces of equal sizes are heaped in a
single stack that stays open until the last piece of the same size is cut.

A MOSP consists of determining a sequence of cut patterns that minimizes the
maximum number of opened stacks during the cutting process. Typically, this
problem is due the limitations of physical space, so that the accumulation of stacks
can cause the temporary need of removal of one or other stack, delaying the whole
process.

This paper describes the application of a Constructive Genetic Algorithm (CGA) to
MOSP. The CGA was recently proposed by Lorena and Furtado [1] and applied to
Timetabling and Gate Matrix Layout Problems [2-3], and differs from messy-GAs
[4]-[6], basically, for evaluating schemata directly. It also has a number of new
features compared to a traditional genetic algorithm. These include a population of
dynamic size composed of schemata and structures, and the possibility of using
heuristics in structure representation and in the fitness function definitions.

The CGA evolves a population, initially formed only by schemata, to a population
of well-adapted structures (schemata instantiation) and schemata. Well-adapted
structures are solutions, which cannot be improved using a specific problem heuristic.
In this work, it is used a 2-Opt like heuristic to train the population of structures and
schemata.

The CGA application can be divided in two phases, the constructive and the
optimal: a) the constructive phase is used to build a population of quality solutions,
composed of well-adapted schemata and structures, through operators as selection,
recombination and specific heuristics; and b) the optimal phase is conducted
simultaneously and transforms the optimization objectives of the original problem on
an interval minimization problem that evaluates schemata and structures in a common
way. In this paper, CGA is applied to MOSP and further conjectures are approached,
as the performance of 2-Opt heuristic that is used to define the fitness functions and
the mutation operator.

This paper is organized as follows. Section 2 presents theoretical aspects of MOSP.
Section 3 presents the aspects of modeling for schema and structure representations
and the consideration of the MOSP as a bi-objective optimization problem. Section 4
describes the some CGA operators, namely, selection, recombination and mutation.
Section 4 shows computational results using instances taken from the literature.

2 Theoretical Issues of MOSP

The data for a MOSP are given by an IxJ binary matrix Pij, representing patterns
(rows) and pieces (columns), where Pij=1, if pattern i contains piece j, and Pij=0
otherwise. Each pattern is processed by your time, piece by piece, opening stacks
(when a new piece type is cut) and closing stacks (when all items of a same that piece
type were cut). The sequence of patterns being processed determines the number of
stacks that stays open at same time.

Another binary matrix, here called of open stack matrix Qij, can be used to
calculate the maximum of open stacks for a certain pattern permutation. It is derived
from the input matrix Pij, by following rules:
• qij = 1 if there exists x and y | π(x) ≤ i ≤ π (y) and pxj = pyj = 1
• 0, otherwise; where π (b) is the position of pattern b in the permutation.

Considering matrix Qij, the maximum of open stacks (MOS) can be easily
computed as:

∑ =
∈

= J
j ij

Ii
qMOS 1

},...,1{
max

(1)

The matrix Qij clarifies the stacks that are open (consecutive-ones in the columns)
along the cutting of patterns. The Table 1 shows an example of matrix Pij, your
corresponding matrix Qij, and MOS calculated for same example. The Qij shows the
consecutive-ones property [7] for columns being applied to Pij. In each column, one
can see when a stack is open (first "1"), and when it is closed (last "1"). Between first
and last "1" 's, the stack stays opened ("1" 's sequence).

The sum of "1" 's by rows, computes the number of open stacks when each pattern
is processed. For the example of Table 1, when pattern 1 is cut there are 2 open

stacks, then pattern 2 is cut opening 5 stacks, and so on. One can note that, at most, 5
stacks (MOS=5) are need to process the permutation of patterns ρ0={1, 2, 3, 4, 5}.

Table 1. Example of matrices P ij and Qij

In MOSP, the objective is to find out the optimal permutation of patterns that
minimizes the MOS value. The Table 2 shows Qij of the optimal permutation,
ρ1={5,3,1,2,4}, for the example of Table 1.

Table 2. Optimal solution

Other permutations with MOS=4 can exist, for example ρ2={2,3,1,5,4}, but ρ1
holds an advantage to the others: the time that the stacks stay open (TOS). The TOS
can be calculated by the sum of all "1" 's in Qij. It comes from the distance, in the
permutation, between the pattern that opens and the pattern that closes each stack.
This would be a second objective in MOSP: to close the stacks as soon as possible,
allowing that the customer’s requests be available.

A more detailed introduction to MOSP can be found in Becceneri [8] and practical
applications in [9]. With respect to complexity of MOSP, some works approaching
the NP-hardness of MOSP have been published in the last decade. Andreatta et al.
(1989) formulated the cutting sequencing problem as a minimum cutwidth problem
on a hypergraph and showed that it is NP-Complete [10]. Recently, Linhares (2002)
presented several aspects of MOSP and other related problems, like the GMLP (Gate
Matrix Layout Problem), including the NP-hardness of them [11].

The GMLP is a known NP-hard problem and arises on VLSI design [12-13]. Its
goal is to arrange a set of circuit nodes (gates) in an optimal sequence, such that the
layout area is minimized, i.e., it minimizes the number of tracks necessary to cover
the gates interconnection. The relationship between MOSP and GMLP resides in the
consecutive-ones property: a) a stack is open at moment that the first piece of a type is
cut and stays open until the cut of the last piece of this same type, occupying a

pieces 1 2 3 4 5 6 7 8 ∑
pattern 5 0 0 1 0 0 0 1 0 2
pattern 3 1 0 1 0 0 0 0 0 2
pattern 1 1 0 1 0 1 0 0 0 3
pattern 2 1 1 0 0 1 1 0 0 4
pattern 4 0 0 0 1 1 0 0 1 3

MOS = max {2,2,3,4,3} = 4

pieces 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 ∑
pattern 1 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 2

Pij = pattern 2 1 1 0 0 1 1 0 0 Qij = 1 1 1 0 1 1 0 0 5
pattern 3 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 3
pattern 4 0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 1 4
pattern 5 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 2

MOS= max {2,5,3,4,2} = 5

physical space during this time; at same way, b) a metal link is begun from the
leftmost gate requiring connection in a net and passes by all gates in circuit until the
rightmost gate requiring connection, occupying a physical space inside of a track.
Concerning input matrix Pij of MOSP, this property occurs in columns, differently of
GMLP that occurs in rows.

 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

3 3 3 5 6 7 7 5 3
Fig. 1. Example of an input matrix in GMLP. a) Original gate matrix; b) Gate matrix derived
by consecutive-ones property applied on rows and, in bottom, the number of track overlaps.

3 CGA Modeling

Very simple structure and schema representations are implemented to the MOSP. A
direct alphabet of symbols (natural numbers) represents the pattern permutation and
each pattern is associated to a row of binary numbers, representing the piece type
presence in each pattern. The symbol # is used to express indetermination (# - do not
care) on schemata. Fig.2 shows the representation for the MOSP instance of Table 1,
and examples of structures and a schema. The symbols ‘?’ mean there is no
information in this row, once the pattern number is an indetermination ‘#’.

1 0 0 1 0 1 0 0 0
2 1 1 0 0 1 1 0 0
3 1 0 1 0 0 0 0 0
4 0 0 0 1 1 0 0 1
5 0 0 1 0 0 0 1 0

2 1 1 0 0 1 1 0 0
5 0 0 1 0 0 0 1 0
3 1 0 1 0 0 0 0 0
1 0 0 1 0 1 0 0 0
4 0 0 0 1 1 0 0 1

? ? ? ? ? ? ? ?
5 0 0 1 0 0 0 1 0
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
4 0 0 0 1 1 0 0 1

si = (1 2 3 4 5) sj = (2 5 3 1 4) sk = (# 5 # # 4)

Fig. 2. Examples of structures (Si and Sj) and schema (Sk)

To attain the objective of evaluating schemata and structures in a common way,
two fitness functions are defined on the space X of all schemata and structures that
can be obtained this representation. The MOSP is modeled as the following Bi-
objective Optimization Problem (BOP):

)}()({ kk sfsgMin −

)(ksgMax

Subject to g(sk) ≥ f(sk) ∀ sk ∈Χ

(2)

Function g is the fitness function that reflects the total cost of a given permutation
of patterns. To increase the fitness differentiation among the individuals of the
population, it is used in the formulation that considers the MOS minimization as
primary objective and TOS minimization as a secondary one. Therefore, it is defined
as g(sk) = I⋅ J⋅MOS(sk) + TOS(sk), or

∑ ∑+∑⋅⋅=
=

==
∈

I

i

J
j ij

J
j ijIik qqJIsg

1
11

},...,1{
max)(

 (3)

where the I⋅J product is a weight to reinforce the part of the objective considering the
maximum number of open stacks and to make it proportional to the second part of the
objective concerning the time of open stacks. If sk is schema, the non-defined columns
(# label) are bypassed. It seems as these columns do not exist and the Qij matrix used
to compute g(sk) contains only columns with information. In the example of Fig 2, the
MOS is max{?, 2, ?, ?, 3} = 3 and the TOS is sum{0+2+0+0+3} =5.

The other fitness function f is defined to drive the evolutionary process to a
population trained by a heuristic. The chosen heuristic is the 2-Opt neighborhood.
Thus, function f is defined by:

)()(,},...,,{),()(2
21 kv

Opt
Vvvk sgsgsssssgsf ≤ϕ⊆∈= − (4)

where ϕ2-Opt is a 2-Opt neighborhood of structure or schema sk.
By definition, f and g are applied to structures and schemata, just differing in the

amount of information and consequently in the values associated to them. More
information means larger values. In this way, the g maximization objective in BOP
drives the constructive phase of the CGA aiming that schemata will be filled up to
structures.

4 Evolution Process

The BOP defined above is not directly considered as the set X is not completely
available. Alternatively is considered an evolution process to attain the objectives
(interval minimization and g maximization) of the BOP . At the beginning of the
process, two expected values are given to these objectives:
• g maximization: a non-negative real number gmax > maxs∈X{g(s)} that is an upper

bound on the objective value;
• interval minimization: an interval length d⋅gmax, obtained from gmax considering a

real number 0<d≤ 1.
The evolution process is then conducted considering an adaptive rejection

threshold, which contemplates both objectives in BOP. Given a parameter α ≥ 0, the
expression

g(sk) - f(sk) ≥ d⋅gmax - α⋅d⋅[gmax - g(sk)] (5)

presents a condition for rejection from the current population of a schema or structure
sk. The right hand side of (5) is the threshold, composed of the expected value to the
interval minimization d⋅gmax, and the measure gmax - g(sk), that shows the difference of
g(sk) and gmax evaluations.

Expression (5) can be examined varying the value of α. For α=0, both schemata
and structures are evaluated by the difference g-f (first objective of BOP). When α
increases, schemata are most penalized than structures by the difference gmax - g
(second objective of BOP).

Parameter α is related to time in the evolution process. Considering that the good
schemata need to be preserved for recombination, the evolution parameter α starts
from 0, and then increases slowly, in small time intervals, from generation to
generation. The population at the evolution time α, denoted by Pα, is dynamic in size
accordingly the value of the adaptive parameter α, and can be emptied during the
process. The parameter α is now isolated in expression (6), thus yielding the
following expression and corresponding rank to sk:

).(
)]([

)]()([

max

max
k

k

kk s
sggd

sfsggd δ=
−

−−⋅≥α

(6)

At the time they are created, structures and/or schemata receive their corresponding

rank value δ(sk). These ranks are compared with the current evolution parameter α.
The higher the value of δ(sk), and better is the structure or schema to the BOP, and
they also have more surviving and recombination time.

For the MOSP, the overall bound gmax is obtained at the beginning of the CGA
application, by generating a random structure and making gmax receive the g
evaluation for that structure. In order to ensure that gmax is always an upper bound,
after recombination, each new structure generated snew is rejected if gmax ≤ g(snew).

4.1 Selection and Recombination

The structures and schemata in population Pα are maintained in ascending order,
according to the key:

η
1

)
)(

)()(
1()(⋅

−
+=∆

k

kk
k sg

sfsg
s

 (7)

where η is the number of genes containing information (not #). Thus, well-adapted
individuals (small g(sk) – f(sk)) with more genetic information (higher η) appear in
first order places on the population.

Two structures and/or schemata are selected for recombination. The first is called
the base (sbase) and is randomly selected out of the first positions in Pα, and in general
it is a good structure or a good schema. The second structure or schema is called the
guide (sguide) and is randomly selected out of the total population. The objective of the
sguide selection is the conduction of a guided modification on sbase.

In the recombination operation, the current labels in corresponding positions are
compared. Let snew be the new structure or schema (offspring) after recombination.
Structure or schema snew is obtained by applying only one of the following operations:

{ Recombination }
For i from 1 to individual length

1) if sBASE(i)=# and sGUIDE(i)= #
 set sNEW(i)= #

2) if sBASE(i) = # and sGUIDE(i)<> #
 if sGUIDE(i)is not in sNEW
 set sNEW(i)= sGUIDE(i)
 else set sNEW(i)= #

3) if sBASE(i)<># and sGUIDE(i)= #
 if sBASE(i)is not in sNEW
 set sNEW(i)= sBASE(i)
 else set sNEW(i)= #

4) if sBASE(i)<> # and sGUIDE(i)<> #
 if sBASE(i)is not in sNEW
 set sNEW(i)= sBASE(i)
 else
 if sGUIDE(i)is not in sNEW
 set sNEW(i)= sGUIDE
 else set sNEW(i) = #

Observe that sbase is a privileged individual to compose snew , but it is not totally
predominant. There is a small probability of the sguide gene information to be used
instead of sbase one. More detailed information about CGA features to permutation
problems can be found in [3].

4.2 The 2-Opt Heuristic

The 2-Opt like heuristic is used to train the population by the fitness function f . The
well-adapted individuals have better ranking and are maintained in the population for
more generations. Another application to 2-Opt is to run a local search mutation that
is always applied to structures (not to schemata).

To avoid the increasing of computational efforts, only a constant number of
neighbors around the structure is inspected, looking for the best. The neighbors are
generated by all the 2-move changes in a constant length part of the structure. An
initial position is chosen at random and an iterative process starts from it, inspecting
all possible 2-move changes in the structure until a maximum length previously
established. Each 2-move generates a neighbor structure that will be evaluated and the
best one will be hold on.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
I N I T I A L

1 2 3 4 5 6 7 8

1 2 3 6 5 4 7 8C H A N G E D

1 2 3 4 5 6 7 8

4 5 6 7 8 1 2 3

a) b)

Fig. 3. Examples of one-move in 2-Opt neighborhood; a) non-consecutive reference points

change; b) consecutive reference

The example of 2-move change is showed in Fig.3. The marks in positions of the
structures mean reference points to be changed. Non-consecutive references cause the
first change type, as showed in Fig.3a. Consecutive points cause the second change
type in Fig.3b. For example, inspecting 4 neighbors, from first position in Fig.3,
generates 6 pairs of reference points: {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}, i.e.,
0.5*nw*(nw-1) pairs, where nw is the neighborhood width and, together with other
parameter settings, will be described in next section.

5 Computational Tests

The CGA for MOSP was coded in ANSI C and it was run on Intel Pentium II
(266Mhz) hardware. For the computational tests, some CGA parameters were
adjusted. The d parameter was set to 0.15 (usually between 0.10 and 0.20 values, for
other applications [1-2]). This configures the interval d⋅gmax, establishing the survival
time of each individual, once the expected δ values are proportional to this interval.
The ε was set to 0.001 and also contributes to the higher survival time of each
individual in Pα. These parameters avoid the premature termination with an empty
population.

Each schema of the initial population received 50% of # genes (indetermination
percentage), and 20% of population (the first individuals ranked by expression 7)
were considered base individuals for base-guide selection, determining a small degree
of diversification in selection process.

Local search mutation rate was fixed in 100%, which means a constant
improvement of individuals. The number of individuals initially generated was
proportional to problem length (at least the number of patterns). Other important
parameter to be tuned is the neighborhood width (nw) to each local search mutation.
After some simulations the better results arise for nw = 20. The ideal situation would
be to use greater values for nw, but this would turn the mutation very slow.

The CGA was initially applied to 300 instances taken from the paper of Fraggioli
and Bentivoglio [14]. These instances are grouped by number of patterns (10,15,20,
25,30,40). Each one of these pattern groups has five piece type subgroups
(10,20,30,40,50) and each piece type subgroup has ten instances with different
solutions.

In Fraggioli and Bentivoglio's work are presented six solution methods, and the
three best are: a) an implicit enumeration method (OPT) that enhances the implic it
search procedure of Yuen and Richardson [15], and is used to verify the optimality of
the found solutions; b) a tabu search method (TS) based on an optimized move
selection process; and c) a generalized local search method (GLS) that works by
employing multiple applications of a simplified tabu search that only accepts
improving moves. In this work, besides the three previously mentioned methods
(OPT, TS, GLS), another two solution methods are included for comparison with
CGA: a) the 2-Opt local search heuristic (2-Opt); and b) the collective method (COL)
proposed recently by Linhares [11].

The 2-Opt method employs the same heuristic used to train the population in CGA.
Initially, a static population of 20 structures is randomly generated, and 2-Opt is
applied for each one of them until no more improvement be found. The best solution
is held. The 2-Opt parameter nw (neighborhood width) is set to maximum size, i.e.,
the number of patterns of the problem. This exhaustive local search demands a
significant computational effort and the running time for large problems (above 100
patterns) is prohibitive.

The COL method explores distance measures among permutations to drive the
search of an algorithm similar to the simulated annealing, where the moves in the
search space are based on exchange in pattern positions.

The Table 3 shows the solution averages obtained by OPT, COL, TS, GLS, CGA
and 2-Opt for each instance group. Only the MOS minimization is compared because

the TOS is not considered on the other works. The columns I and J refer to numbers
of patterns and piece types of each instance group, respectively. The entries
emphasized in gray are better than the reported OPT optimum values. Observe that
although claimed to be optimal in [14] some entries in OPT column (instances 15x30,
15x40, 15x50, and 40x40) have higher values than, at least, one of these methods:
COL, CGA and 2-Opt . This may appear to be a contradiction but these are the new
best bounds.

Considering these new best-known solutions, the CGA found the best overall
average of solutions for the instance groups, i.e., 100% of success. The COL appears
with the second best performance, achieving the best average in 87% of instance
groups (26 of 30), followed by 2-Opt (73% or 22 of 30), TS (40% or 12 of 30) and
GLS (33% or 10 of 30) of success rate, respectively.

Table 3. Solution averages obtained by OPT, COL, TS, GLS, CGA and 2-Opt

The comparison between CGA and 2-Opt procedure is meaningful, once CGA
employs 2-Opt heuristic for fitness definition and local search mutation. The
difference between them is the genetic constructive process that exists behind CGA.
Selection, recombination and ranking contribute to the construction of well-adapted
structures from an initial population of schemata. All these features seem become
CGA more robust than other non-population approaches, like COL and 2-Opt.

One can also suppose that 2-Opt could achieve all best solution averages after
several trials. However, Table 3 have showed that the 2-Opt is not to be able to find
all best solutions. Besides, 2-Opt turns to be prohibitive for large scale instances
(above 100 patterns). This can be best verified by the following experiment. The 2-
Opt was applied to an instance of another problem type, the GMLP (Gate Matrix
Layout Problem), already mentioned in this paper (see section 2). There is a well-
known GMLP instance (namely w4) with 141 gates and 202 nets. This is equivalent
to a MOSP instance of 141 patterns of 202 piece types. The 2-Opt procedure was run
10 times for w4 instance and did not achieve the best-known solution (27 tracks). The
solution 29 was found after 198 minutes. The CGA reach the 27 tracks in 30% of
trials and 87 minutes (average time)[3].

I J OPT COL TS GLS CGA 2-Opt I J OPT COL TS GLS CGA 2-Opt
10 10 5.5 5.5 5.5 5.5 5.5 5.5 25 10 8.0 8.0 8.0 8.0 8.0 8.0

- 20 6.2 6.2 6.2 6.2 6.2 6.2 - 20 9.8 9.8 9.8 9.9 9.8 9.8
- 30 6.1 6.1 6.1 6.2 6.1 6.1 - 30 10.5 10.6 10.7 10.6 10.5 10.5
- 40 7.7 7.7 7.7 7.7 7.7 7.7 - 40 10.4 10.4 10.7 10.6 10.4 10.5
- 50 8.2 8.2 8.2 8.2 8.2 8.2 - 50 10.0 10.0 10.1 10.2 10.0 10.0

15 10 6.6 6.6 6.6 6.6 6.6 6.6 30 10 7.8 7.8 7.8 7.8 7.8 7.8
- 20 7.2 7.2 7.2 7.5 7.2 7.2 - 20 11.1 11.2 11.2 11.2 11.1 11.1
- 30 7.4 7.3 7.4 7.6 7.3 7.6 - 30 12.2 12.2 12.6 12.2 12.2 12.2
- 40 7.3 7.2 7.3 7.4 7.2 7.3 - 40 12.1 12.1 12.6 12.4 12.1 12.2
- 50 7.6 7.4 7.6 7.6 7.4 7.4 - 50 11.2 11.2 12.0 11.8 11.2 11.2

20 10 7.5 7.5 7.7 7.5 7.5 7.5 40 10 8.4 8.4 8.4 8.4 8.4 8.4
- 20 8.5 8.5 8.7 8.6 8.5 8.5 - 20 13.0 13.0 13.1 13.1 13.0 13.0
- 30 8.8 9.0 9.2 8.9 8.8 8.9 - 30 14.5 14.5 14.7 14.6 14.5 14.5
- 40 8.6 8.6 8.6 8.7 8.6 8.6 - 40 15.0 15.0 15.3 15.3 14.9 15.0
- 50 7.9 7.9 8.0 8.2 7.9 8.0 - 50 14.6 14.6 15.3 14.9 14.6 14.9

6. Conclusion

This work describes an application of the Constructive Genetic Algorithm (CGA) to
Minimization of Open Stack Problems (MOSP). The CGA adapted to work with
MOSP uses a 2-Opt heuristic as local search mutation and on definition of the two
fitness functions (f and g). The algorithm constructs a population of well-adapted
structures trained by the 2-Opt heuristic.

Regarding the computational tests, the CGA reached all the best-known results for
instances taken from the literature and presented the best results in comparison to
other methods. It also appear to be more robust than the standalone application of
procedure 2-Opt.

References

1. L. A. N. Lorena, and J. C. Furtado, "Constructive genetic algorithm for clustering problems,"
Evolutionary Computation 9(3): 309-327, 2001.

2. G. Ribeiro Filho, and L. A. N. Lorena, "A Constructive Evolutionary Approach to School
Timetabling," In Applicat ions of Evolutionary Computing, Boers, E.J.W., Gottlieb, J., Lanzi, P.L.,
Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H., (Eds.) - Springer Lecture Notes in
Computer Science vol. 2037, pp. 130-139 - 2001

3. A. C. M. Oliveira and L. A. N. Lorena, "A Constructive Genetic Algorithm for Gate Matrix Layout
Problems". Accepted to IEEE Transaction on Computer-Aided Designed of Integrated Circuits and
Systems. 2002.

4. D. E. Goldberg, B. Korb, and K. Deb, "Messy genetic algorithms: motivation, analysis, and first
results," Complex Systems v. 3: p. 493 -530, 1989.

5. D. E. Goldberg, K. Deb, H. Kargupta, and G. Harik, "Rapid, accurate optimization of difficult
problems using fast messy genetic algorithms," IlliGAL Report No. 93004, Illinois Genetic
Algorithms Laboratory, Department of General Engineering, University of Illinois, Urbana, 1993.

6. H. Kargupta, "Search, polynomial complexity, and the fast messy genetic algorithm," Ph.D. thesis,
IlliGAL Report No. 95008, Illinois Genetic Algorithms Laboratory, Department of General
Engineering, University of Illinois, Urbana, 1995.

7. M. Golumbic, "Algorithmic Graph Theory and Perfect Graphs". Academic Press, New York. 1980.
8. J.C. Becceneri,. "O problema de sequenciamento de padrões para minimização do número máximo de

pilhas abertas em ambientes de corte industriais". Doctoral Thesis, Instituto Tecnológico de
Aeronáutica, São José dos Campos, Brazil, 1999.

9. H.H. Yanasse, "Minimization of open orders -polynomial algorithms for some special cases." Pes quisa
Operacional, v.16, p.1 -26, 1996.

10. G. Andreatta, A. Basso, A. Caumo, and L. Deserti. "Un problema min cutwidth generalizzato e sue
applicazionni ad un FMS. Atti delle giornate di lavoro AIRO, pp. 1-17. 1989.

11. A. Linhares. "Industrial Pattern Sequencing Problems: Some Complexity Results And New Local
Search Models". Doctoral Thesis, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos
Campos, Brazil, 2002.

12. R. Möhring, "Graph problems related to gate matrix layout and PLA folding," Computing, Vol 7, pp.
17-51, 1990.

13. T. Kashiwabara, and T. Fujisawa, "NP-Completeness of the problem of finding a minimum clique
number interval graph containing a given graph as a subgraph," In Proc. Symposium of Circuits and
Systems. 1979.

14. E. Fraggioli and C. A. Bentivoglio, "Heuristic and exact methods for the cutting sequencing
problem.", European Journal of Operational Research, 110, pp. 564-575. 1998.

15. B J Yuen and K V Richardson "Establishing the optimality of sequencing heuristics for cutting stock
problems". European Journal of Operational Research, 84, 590-598, 1995.

