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Abstract. Modern search methods for optimization consider hybrid
search metaheuristics those employing general optimizers working to-
gether with a problem-specific local search procedure. The hybridism
comes from the balancing of global and local search procedures. A chal-
lenge in such algorithms is to discover efficient strategies to cover all
the search space, applying local search only in actually promising search
areas. This paper proposes the Clustering Search (*CS): a generic way
of combining search metaheuristics with clustering to detect promising
search areas before applying local search procedures. The clustering pro-
cess aims to gather similar information about the problem at hand into
groups, maintaining a representative solution associated to this infor-
mation. Two applications to combinatorial optimization are examined,
showing the flexibility and competitiveness of the method.
Keywords: Hybrid search metaheuristic; pattern sequencing problem;
Clustering search.

1 Introduction

Local search methods have been combined with search metaheuristics in differ-
ent ways to solve particular problems more efficiently. Hill-climbing procedures
are largely employed in the so called memetic algorithms (MA) as a Lamarck-
ian learning process [1]. For example, a simple crossover can work as a local
search around the parents, hill-climbing by repeatedly generating some number
of offspring and replacing the worst parent [2].

The main challenge in such hybrid methods is to define efficient strategies
to cover all search space, applying local search only in actually promising ar-
eas. Elitism plays an important role towards achieving this goal, once the best
solutions represent promising neighborhood. However, such well-evaluated solu-
tions can be concentrated in few areas and thus the exploitation moves are not
rationally applied.

An approach attempting to find out relevant areas for continuous optimiza-
tion is a parallel hill-climber, called Universal Evolutionary Global Optimizer



(UEGO) by its authors [3]. The separated hill-climbers work in restricted search
regions (or clusters) of the search space. The volume of the clusters decreases
as the search proceeds, resulting in a cooling effect similar to simulated an-
nealing. Each cluster center represents diversity and quality, since it is result of
hill-climbing procedures [3].

The scatter search (SS), proposed in [4], by another way, separates diversi-
fied and improved solutions in two sets: the reference set, containing the best
solutions found so far and the diversity set, containing the solutions most dis-
tant from the solutions of the reference set. The solutions in these two sets are
improved by local search. Thus, SS employs systematic exploration/exploitation
moves, combining quality and representative solutions [4].

Clusters of mutually close solutions hopefully can correspond to relevant
areas of attraction in the most of search metaheuristics, such as Genetic Algo-
rithms (GA) [5] and Greedy Randomized Adaptive Search Procedure (GRASP)
[6]. Relevant search areas can be treated with special interest by the algorithm
as soon as they are discovered. This basic idea was first employed to propose
the Evolutionary Clustering Search (ECS), applied to unconstrained continuous
optimization [7]. Posteriorly, the search guided by clustering was extended to
a GRASP with VNS (Variable Neighborhood Search[8]), and applied to Prize
Collecting Traveling Salesman Problem (PCTSP) [9].

The clusters work as sliding windows, framing the search areas and giving
a reference point (center) to problem-specific local search procedures. Further-
more, the cluster center itself is always updated by a permanent interaction with
inner solutions, called assimilation [7, 9].

This paper proposes the Clustering Search (*CS) as a generalized way of
detecting promising search areas by clusters of solutions, suitable to be employed
together with any metaheuristic and applicable to combinatorial and continuous
optimization problems. To consolidate this approach as a flexible method, an ECS

and a GRACS(Greedy Randomized Adaptive Clustering Search), both based on
*CS, are proposed for pattern sequencing problems.

The remainder of this paper is organized as follows. In Section 2, the basic
ideas and conceptual components of *CS are described. Theoretical issues of the
sequencing problems are presented in Section 3. In section 4, the GRACS and the
ECS are proposed for pattern sequencing problems. The computational results
are examined in Section 5 and conclusions are summarized in Section 6.

2 Clustering Search foundations

The *CS employs clustering for detecting promising areas of the search space.
It is particularly interesting to find out such areas as soon as possible to change
the search strategy over them. An area can be seen as a search subspace defined
by a neighborhood relationship in metaheuristic coding space.

A cluster can be defined as a tuple G = {c, r, s}, where c and r are the center

and the radius of the area, respectively. The radius of a search area is the distance
from its center to the edge. There also exist different search strategies s associated



to the clusters. Initially, the center c is obtained randomly and progressively
it tends to slip along really promising points in the close subspace. The total
cluster volume is defined by the radius r and can be calculated, considering the
problem nature. It is important that r must define a search subspace suitable to
be exploited by the search strategy s associated to the cluster.

For example, in unconstrained continuous optimization, it is possible to de-
fine r in a way that all search space is covered depending on the maximum
number of clusters [7]. In combinatorial optimization, r can be defined as the
number of movements needed to change a solution into another. In both case,
the neighborhood is function of some distance metric related with the search
strategy s, i.e., a problem-specific local search to be employed into the cluster.

2.1 Components

*CS can be splitted off in 4 conceptually independent parts: (a) a search meta-
heuristic (SM); (b) an iterative clustering (IC) component; (c) an analyzer mod-
ule (AM); and (d) a local searcher (LS). Fig. 1 brings its conceptual design.
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Fig. 1. a) *CS components; b) Simple, path and crossover assimilations, respectively.

The SM component works as a full-time solution generator, according to its
specific search strategy, performing independently of the remaining parts, and
manipulating a set of |P | solutions (|P | > 1 for evolutionary algorithms - EA). In
an EA fashion, for example, individuals are selected, crossed over, and updated
for the next generations. This entire process works like an infinite loop, in which
solutions are generated along the iterations.

IC component aims to gather similar solutions into groups, maintaining a
representative cluster center for them. To avoid extra computational effort, IC

is designed as an online process, in which the clustering is progressively fed
by solutions generated in each regular iteration of SM. A maximum number of
clusters NC is a bound value that prevents a unlimited cluster creation. For



a n−dimensional problem, the IC complexity is, at most, O(NC · n) when all
cluster centers are allocated. A distance metric, ℘, must be defined, a priori,
allowing a similarity measure for the clustering process.

AM component examines each cluster, in regular intervals, indicating a prob-
able promising cluster. A cluster density, δi, is a measure that indicates the
activity level inside the cluster i. For simplicity, δi counts the number of so-
lutions generated by SM (selected solutions, in the EA case[7]). Whenever δi

reaches a certain threshold, meaning that some information template becomes
predominantly generated by SM, such information cluster must be better in-
vestigated to accelerate the convergence process on it. Clusters with lower δi

are eliminated, as part of a mechanism that will allow creating other centers of
information, keeping framed the most active of them. The cluster elimination
does not affect the set of |P | solutions in SM. Only the center of information is
considered irrelevant for the process.

At last, the LS component is an internal searcher module that provides the
exploitation of a supposed promising search area, framed by cluster. This process
can happen after AM having discovered a target cluster or it can be a continuous
process, inherent to IC, being performed whenever a new point is grouped. LS

can be considered as the particular search strategy s associated with the cluster.

2.2 The assimilation process

Solutions generated by SM are passed to IC that attempts to group as known
information, according to ℘. If the information is considered sufficiently new, it
is kept as a center in a new cluster. Otherwise, redundant information activates
a cluster, causing some kind of perturbation on it. This perturbation means an
assimilation process, in which the previously learned knowledge (center of the
cluster) is updated by the received information. More precisely, the assimila-
tion process is applied over the closest center ci, considering the new generated
solution sk. The general assimilation form is:

c′i = ci ⊕ β(sk ⊖ ci) (1)

where ⊕ e ⊖ are abstract operations over ci and sk meaning, respectively, ad-
dition and subtraction of solutions. The operation (sk ⊖ ci) means the vector of
differences between each one of the n variables compounding the solutions sk

and ci, considering ℘. A certain percentage β of the vector is the update step
for ci, giving c′i. According to β, the assimilation can assume different forms:
simple, path and crossover assimilations, represented in Fig. 1b.

In simple assimilation, β ∈ [0, 1] is a constant parameter, meaning a deter-
ministic move of ci in the direction of sk. Only one internal point is generated
more or less closer to ci, depending on β, to be evaluated afterwards. The greater
β, the less conservative the move is. This type of assimilation can be employed
only with real-coded variables, where percentage of intervals is applicable. Its
specific form is:



c′i = ci + β(sk − ci) (2)

Although the name, crossover assimilation is not necessarily associated with
an evolutionary operator. In a general way, it means any random operation
between two candidate solutions, giving other ones, similarly as a crossover op-
eration in EAs. In this assimilation, β is an n−dimensional random vector and c′i
can assume a random point inside the hyper plane containing sk e ci. Since the
whole operation is a crossover or other binary operator between sk and ci, it can
be applied to any type of coding or even problem (combinatorial or continuous

one). The
−→
β parameter is resulting from the type of crossover employed, not the

crossover parameter itself. The crossover assimilation can be written by:

c′i = ci +
−→
β · (sk − ci) (3)

Simple and crossover assimilations generate only one internal point to be
evaluated afterwards. Path assimilation, instead, can generate several internal
points or even external ones, holding the best evaluated one to be the new cen-
ter. It seems to be advantageous, but clearly costly. These exploratory moves
are commonly referred in path relinking theory [10]. In path assimilation, β is
a η−dimensional vector of constant and evenly spaced parameters, used to gen-
erate η samples taken in the path connecting ci and sk. Since each sample is
evaluated by the objective function, the path assimilation itself is an intensifica-
tion mechanism inside the clusters. The new center c′i is given by:

c′i = c′V , f(c′V ) = min
{

f(c′
1
), f(c′

2
), · · · , f(c′η)

}

c′j = ci + βj(sk − ci)
βj ∈ {β1, β2, · · · , βη}

(4)

where βj ∈ {]0, 1[
⋃

]1,∞]}, f(c′V ) is the objective function of the best evaluated
solution sampled in the path and min is concerned to minimization problems.

With respect to the infinite interval in (4), it means the external points can
be sampled indefinitely while there are well-succeeded points beyond sk. A well-
succeeded point has an objective function value better than the previous point
sampled, in a way that a worse point stops the sampling. In the Fig. 1b, the point
ci3 is evaluated after sk. Such extrapolation move is suitable for path relinking
[10] and it can intentionally shift the center cluster beyond the cluster edge.

3 Theoretical issues of the pattern sequencing problem

Pattern sequencing problems may be stated by a matrix with integer elements
where the objective is to find a permutation (or sequencing) of rows or patterns
(client orders, or gates in a VLSI circuit, or cutting patterns) minimizing some
objective function [11]. Objective functions considered here differ from travel-
ing salesman-like problems because the evaluation of a permutation can not be
computed by using values that only depend on adjacent patterns. There are



two similar pattern sequencing problems found in the literature: Minimization
of Open Stacks Problem (MOSP) and Gate Matrix Layout Problem (GMLP)
[12]. The difference between them resides only in their enunciation. This work is
considering only the largest GMLP instances found in the literature.

GMLPs are related to one-dimensional logic arrays and programmable logic
arrays folding [13]. The data for a GMLP are given by an I×J binary matrix P,
representing gates (rows) and nets (columns), where Pij = 1, if gate i belongs
to net j, and Pij = 0 otherwise. Non-overlapping nets can be placed at the
same connection track, minimizing the layout area (cost). A GMLP consists of
determining a sequence of gate that minimizes the maximum of tracks (MOT)
in the circuit. Another binary matrix, here called matrix Q, can be used to
calculate the MOT for a certain gate permutation. It is derived from the input
matrix P, by the following rules:

– Qij = 1 if there exists x and y|π(x) ≤ i ≤ π(y) and Pxj = Pyj = 1;
– Qij = 0, otherwise;

where π(b) is the position of gate b in the permutation. The Q shows the
consecutive-ones property [14] applied to P: in each column, “0” ’s between
“1”’s are replaced by “1” ’s. The sum of “1” ’s, by row, computes the number of
open stacks when each pattern is processed. Fig. 2 shows an example of matrix
P, its corresponding matrix Q, and the number of tracks in the circuit. At most,
7 tracks (MOT = max{3, 3, 3, 5, 6, 7, 7, 5, 3} = 7) are needed to manufacture a
circuit with permutation π0 = {1, 2, 3, 4, 5, 6, 7, 8, 9}.

Fig. 2. GMLP (or MOSP) instance: matrix P and corresponding Q.

4 GRACS and ECS Implementations

Two *CS metaheuristics are now described: a GRACS (Greedy Randomized
Adaptive Clustering Search) and an Evolutionary Clustering Search ECS. In
the latter, the component SM is a steady-state GA employing well-known ge-
netic operators as roulette wheel selection [5], block-order crossover (BOX) [15],
and 2-swap mutation [16]. In BOX, the parent(A) and parent(B) are mixed into



only one offspring, by copying blocks of both parents, at random. Pieces copied
from a parent are not copied from other, keeping the offspring feasible (Fig. 3a).

In general, GRASP consists of a greedy construction phase and a subsequent
one which iterative local search improvements are made in the previously ob-
tained greedy solution. In GRACS, the component SM is a modified GRASP,
removing the native local search procedure from it and adding the IC-AM) com-
ponents, which are responsible for intermediating the local search calls. Instead
of always to perform the local search, the improvements are made according to
the IC-AM criterion for promising search areas.

The constructive greedy procedure chosen for pattern sequencing problems
is based on the rule for filling schemata [17], which says that the new pattern
to be included in greedy solution shall minimize a bit-to-bit xor difference with
respect to the previous included. In other words, examining all the J columns
(nets) of the candidate list, matching bit-to-bit and summing all the xor results
(xor(1, 0) = xor(0, 1) = 1 and xor(0, 0) = xor(1, 1) = 0), the patterns are
included in a sequence that improves the similarity between adjacent ones. A
typical GRASP parameter, α, that balances the greedy/random behaviour of
the constructive phase, was set to 0.10, meaning that only 10% of the candidate
list is considered to choose the next included pattern in solution.

The component LS in both *CS algorithms was implemented by a 2-Opt hill-
climbing procedure which is applied to the center of promising cluster. The hill-
climbing explores a search tree, considering several 2-Opt neighborhoods (Fig.
3b). The best neighbor from a level (bold circle) is taken as starting point to the
next, respecting a maximum width l (maximum number of swaps at each level)
and height m (maximum number of levels). For GRACS, m was set unlimited,
i.e., while better solutions were being found. Rather, for ECS, m ≤ 40. For both,
ECS and GRACS, l was set to 0.70, meaning that 70% of the patterns can be
exchanged in each level during the local search procedure.

Fig. 3. (a) Block order crossover and (b) 2-Opt hill-climbing tree.



Concerning to component IC, for both algorithms, the 2-swap distance metric
is employed, i.e., the number of 2-swap needed to move a solution, along the
search space, to another. Identical solutions need no changes to turn one into
other. By the other side, completely distinct solutions may need about I − 1
2-swap moves to lead a point to another. The radius of a cluster is given by:

rt = ⌈0, 9I⌉ (5)

i.e., a relatively greater radius, because it requires only 10% of labels matching
for a given pattern sequencing to be considered close enough to the center of a
cluster. Whenever a selected individual sk is far away from all centers (a distance
above rt), then a new cluster must be created.

In this application, the path assimilation was chosen. The more distance
℘(ci, sk), the more potential solutions exist between ci and sk. The sampling
process, depending on the number of instance variables, can be costly, since
each solution must be evaluated by objective function. In Table 1, a completely
2-swap path between two solutions, ci and sk, can be seen.

Table 1. Example of full path between center ci and new point sk.

ci= 1 2 3 4 5 6 7 8 9 comparison swap evaluation

1) 4 2 3 1 5 6 7 8 9 1 1 1
2) 4 8 3 1 5 6 7 2 9 1 1 1
3) 4 8 5 1 3 6 7 2 9 1 1 1
4) 4 8 5 9 3 6 7 2 1 1 1 1
5) 4 8 5 9 1 6 7 2 3 1 1 1
6) 4 8 5 9 1 7 6 2 3 1 1 1
7) 4 8 5 9 1 7 6 2 3 1
8) 4 8 5 9 1 7 6 2 3 1

sk= 4 8 5 9 1 7 6 2 3 8 6 6

Each comparison means one iteration in the assimilation algorithm which
also can occur one swap/evaluation of the intermediary points. At last, the cen-
ter will be shiffted to the best point evaluated in this path. Actually, there have
been occurred 6 pattern swaps and, consequently, 6 objective function calls. The
distance ℘(ci, sk) is not necessarily 6 because other paths with distance less
than 6 could be found. However, *CS applications require computing such dis-
tance to associate the point to a particular center during the clustering process.
Therefore, ℘(ci, sk) is estimate considering the number of pattern in different
positions in each permutation (variables that do not match). This value is still
decremented by one, because even all I patterns were in different positions in
each permutation, it would be generated at most I − 1 intermediary solutions.



5 Computational results

ECS, GRACS and GRASP were coded in ANSI C and were run on Intel AMD
(1.33 GHz) platform. The most important performance parameters were set as
follows: for ECS, 20 ≤ NC ≤ 30 and 300 ≤ |P | ≤ 500; for GRACS and GRASP,
α = 0.10 and l = 0.7. For each instance, were performed 20 trials, allowing the
approaches to perform a maximum number of objective function calls. These
parameter values try to make the tuning for the algorithm speed-accuracy trade-
off and they were chosen through the authors’ expertise.

ECS, GRACS and GRASP are now compared against the Parallel Memetic
Algorithm (PMA)[16]. Besides a parallel algorithm, employing a suitable migra-
tion policy, PMA presents a new 2-swap local search with a reduction scheme,
which discards useless swaps, avoiding unnecessary objective function calls. Its
results were considered so far the best ones obtained in the literature, specifically
with large GMLP instances [16].

The Table 2 shows the comparison between all *CS approaches and PMA.
For the latter, the results were obtained in 10 trials[16]. GRASP was included
for verifying a probable improvement by the clustering process, since GRACS is a
modified GRASP. The success rate (SR) to reach the best known solution as well
as the average of the number of objective function calls (FC) were considered
for measuring the algorithm performances. For each tested instance, the result
in bold shows the winning approach. In 3 of 5 instances, at least one of the *CS

approaches was better than PMA. But in the particular contest between GRACS

and GRASP, both performances were very similar. In w4 instance, GRASP has
obtained better SR, but requiring more FCs. This fact evidences the need of
better tuning GRACS, since GRASP/GRACS appear to be very promising ap-
proaches, with SR comparable with the best results found in the literature. For
instance w4, the largest one found in literature, ECS has reached meaningful
best results.

Table 2. Results of ECS, GRACS, GRASP and PMA for GMLP instances.

Inst.(IxJ) ECS GRACS GRASP PMA
SR(%) FC SR(%) FC SR(%) FC SR(%) FC

x0 (48x40) 100 119296.0 100 39187.8 100 24662.6 100 43033.0
v4470 (47x37) 60 169136.0 100 90459.8 100 98081.0 60 176631.0

w2 (33x48) 100 26185.0 100 10002.6 100 12580.7 100 3523.0

w3 (70x84) 50 540893.0 90 372021.0 90 360225.4 90 203892.0

w4 (141x202) 55 1695924.0 20 2357496.0 30 3998868.0 20 9428591.0

6 Conclusion

This paper proposes a new way of detecting promising search areas based on
clustering: the Clustering Search (*CS). Together with other search metaheuris-
tics, working as full-time solution generators, *CS attempts to locate promising



search areas by solution clustering. The clusters work as sliding windows, fram-
ing the search areas and giving a reference point to problem-specific local search
procedures, besides an iterative process, called assimilation.

Two metaheuristics based on *CS were also proposed for large scale GMLP
instances: a GRACS (Greedy Randomized Adaptive Clustering Search) and an
Evolutionary Clustering Search ECS. In comparison against the best results
found in the literature, *CS approaches have achieved similar and sometimes
superior performance. However, in the particular contest between GRACS and
GRASP, both performances were very similar, evidencing the need of further
tuning GRACS. Besides, to combine clustering with other metaheuristics as Im-
mune Systems and Evolution Strategies will be considered in further research.
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