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Abstract. In this paper we present a hybrid heuristic for the capacitated p-
median problem (CPMP). This problem considers a set of n points, each of 
them with a known demand, the objective consists of finding p medians and 
assign each point to exactly one median such that the total distance of assigned 
points to their corresponding medians is minimized, and the a capacity limit on 
the medians may not be exceeded. The purpose of this paper is to present a new 
hybrid heuristic to solve the CPMP, called Clustering Search (CS), which 
consists in detecting promising search areas based on clustering. Computational 
results show that the CS found the best known solutions in all most instances. 
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1   Introduction 

This paper presents a new hybrid heuristic to solve the Capacitated p-Median Problem 
(CPMP). The CPMP is a classical location problem with various applications in many 
practical situations. It can be described as follows: given a set of n points (customers), 
each of them with a known demand, the problem consists of finding p medians 
(centers) and assign each point to exactly one median such that the total distance of 
assigned points to their corresponding medians is minimized, and the capacity limit 
on the medians may not be exceeded. 

The CPMP also appears under the names Capacitated Clustering Problem, 
Capacitated Warehouse Location Problem, Sum-of-Stars Clustering Problem and 
others. Various heuristics and metaheuristics have been proposed for these problems, 
which are known to be NP-hard [4]. Osman and Christofides [11] propose a simulated 
annealing and tabu search method. Maniezzo et al. [7] present a bionomic algorithm 
to solve this problem. Lorena and Senne [6] explore local search heuristics based on 
location-allocation procedures and Lorena and Senne [5] use column generation to 
CPMP. Diaz and Fernández [2] examine a hybrid scatter search and path-relinking 
method and Scheuerer and Wendolsky [12] a scatter search method. Recently, Fleszar 
and Hindi [3] propose a variable neighborhood search heuristic and Osman and 
Ahmadi [10] investigate a guide construction search metaheuristic based on a periodic 
local search procedure or a greedy random adaptive construction search procedure 
(GRASP) to solve the CPMP. 



The CPMP considered in this paper is modeled as the following binary integer 
programming problem: 
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where: 
− N = {1,...,n} is the index set of points to allocate and also of possible 

medians, where p medians will be located; 
− qi is the demand of each point and Q the capacity of each possible median; 
− dij is a distance matrix; 
− xij is the allocation matrix, with xij = 1 if point i is allocated to median j, 

and xij = 0, otherwise; xjj = 1 if median j is selected and xjj = 0, otherwise. 
The objective of the CPMP is expressed in (1). Constraints (2) impose that each 

point is allocated to exactly one median. Constraint (3) set the number of medians to 
be located. Constraint (4) imposes that a total median capacity must be respected, and 
(5) provides the integer conditions. 

In this paper, we propose a hybrid heuristic for the CPMP, known by Clustering 
Search (CS). The CS, proposed by Oliveira and Lorena [9], consists in detecting 
promising areas of the search space using a metaheuristic that generates solutions to 
be clustered. These promising areas should be explored through local search methods 
as soon as they are discovered. 

The remainder of the paper is organized as follows. Section 2 describes the basic 
ideas and components of CS. Section 3 present the CS applied to CPMP. Section 4 
presents the computational results and conclusions are presented in Section 5. 

2   Clustering Search 

The Clustering Search (CS) generalizes the Evolutionary Clustering Search (ECS) 
proposed by Oliveira and Lorena [9] that employs clustering for detecting promising 
areas of the search space. It is particularly interesting to find out such areas as soon as 
possible to change the search strategy over them.  

In the ECS, a clustering process is executed simultaneously to an evolutionary 
algorithm, identifying groups of individuals that deserve special interest. In the CS, 



the evolutionary algorithm was substituted by distinct metaheuristics, such as Tabu 
Search, Variable Neighborhood Search or Simulated Annealing. 

The CS attempts to locate promising search areas by framing them by clusters. A 
cluster can be defined as a tuple G = {c; r; s} where c, r and s are, respectively, the 
center and the radius of the area, and a search strategy associated to the cluster. 

The center c is a solution that represents the cluster, identifying the location of the 
cluster inside of the search space. The radius r establishes the maximum distance, 
starting from the center, that a solution can be associated to the cluster. The search 
strategy s is a systematic search intensification, in which solutions of a cluster interact 
among themselves along the clustering process, generating new solutions. 

The CS is hybrid metaheuristic that consists of four conceptually independent 
components with different attributions: a search metaheuristic (SM); an iterative 
clustering (IC); an analyzer module (AM); and a local searcher (LS). 

The SM component works as a full-time solution generator. The algorithm is 
executed independently of the remaining components and must to be able provide the 
continuous generation of solutions directly to the clustering process. Simultaneously, 
clusters are kept to represent these solutions. This entire process works like an infinite 
loop, in which solutions are generated along the iterations. 

The IC component aims to gather similar solutions into groups, keeping a 
representative cluster center for them. To avoid extra computational effort, IC is 
designed as an online process, in which the clustering is progressively fed by 
solutions generated in each iteration of SM. A maximum number of clusters NC is an 
upper bound value that prevents an unlimited cluster creation. A distance metric must 
be defined, a priori, allowing a similarity measure for the clustering process. 

The AM component provides an analysis of each cluster, in regular intervals, 
indicating a probable promising cluster. A cluster density, δi, is a measure that 
indicates the activity level inside the cluster. For simplicity, δi counts the number of 
solutions generated by SM and allocated to the cluster i. Whenever δi reaches a 
certain threshold, such cluster must be better investigated to accelerate the 
convergence process on it. 

At last, the LS component is a local search module that provides the exploitation of 
a supposed promising search area, framed by cluster. This process happens after AM 
finds a promising cluster and the local search is applied on the cluster center. LS can 
be considered as the particular search strategy s associated with the cluster, i.e., a 
problem-specific local search to be employed into the cluster. 

3   CS for CPMP 

A version of CS for CPMP is presented in this section. The application details are 
now described, clarifying this approach. The component SM, responsible for 
generating solutions to clustering process, was a Simulated Annealing (SA) 
metaheuristic [13], which is capable to generate a large number of different solutions 
for this process. The others components of CS are also explained in the following. 



3.1   Simulated Annealing 

In the component SM, the metaheuristic used to generate solutions to clustering 
process is based on the Simulated Annealing (SA) [13]. The algorithm starts from a 
random initial solution which is obtained choosing randomly the medians and 
assigned the points to the closer median that not exceed the capacity of it. The next 
step follows the traditional simulated annealing algorithm schema. Given a 
temperature T, the algorithm randomly selects one of the moves to a neighborhood 
and computes the variation of the objective function. If it improves the current 
solution the move is accepted, otherwise there is a probability of acceptance that is 
lower in low temperatures. 

Four different moves have been defined to compose distinct kinds of 
neighborhood, named N1, N2, N3 and N4, from a solution s. N1 is obtained by 
swapping the allocation of two points of different medians. N2 is obtained by 
swapping a median with an assigned point to it. N3 is obtained by dropping a point of 
a median and add in other median. And N4 is obtained by swapping a median with 
any other point that is not a median. 

The parameters of control of the procedure are the rate of cooling or decrement 
factor α, the number of iterations for each temperature (SAmax) and the initial 
temperature To. In this paper, we use α = 0.95, SAmax = 1000 and To = 1000000. 

3.2   The CS application 

The IC is the CS’s core, working as a classifier, keeping in the system only relevant 
information, and driving the search intensification in the promising search areas. 
Initially, all clusters are created randomly (NC = 20), the ith cluster has its own center 
ci, and a radius r that is identical to the other clusters.  

Solutions generated by SA are passed to IC that attempts to group as known 
solution, according to a distance metric. If the solution is considered sufficiently new, 
it is kept as a center in a new cluster. Otherwise, redundant solution activates the 
closest center ci (cluster center that minimizes the distance metric), causing some kind 
of perturbation on it. In this paper, the metric distance was the number of points 
assigned to different medians in the solutions of the SA and the cluster center, and a 
larger distance imply in more dissimilarity. 

Perturbation means an assimilation process, in which the cluster center is updated 
by the new generated solution. Here, we used the path-relinking method [8], that 
generates several points (solutions) taken in the path connecting the solution 
generated by SA and the cluster center. The assimilation process itself is an 
intensification mechanism inside the clusters. The new center ci’ is the best evaluated 
solution sampled in the path. 

Path-relinking starts from two solutions. The first is the solution that comes from 
the SA (initial). The second is the closest cluster center ci (guide). Starting from the 
first to the second solution, paths are generated and explored in the search for better 
solutions. To generate paths, moves are selected by changing one median of the initial 
by one from the guide, changing the allocation solution. The best solution in one 
move is defined as the new initial. 



The AM is executed whenever a solution is assigned to a cluster, verifying if the 
cluster can be considered promising. A cluster becomes promising when reaches a 
certain density δi, 
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where, NS is the number of solutions generated in the interval of analysis of the 
clusters, |Clus| is the number of cluster, and PD is the desirable cluster density beyond 
the normal density, obtained if NS was equally divided to all clusters. In this paper, 
we use NS = 100 and PD = 2. 

The component LS is activated when the AM discover a promising cluster. The LS 
uses the Location-Allocation heuristic [6], which seeks to improve the center of the 
promising cluster. This heuristic is based on the observation that the cluster center 
have p medians and their allocated points, and, this solution can be improved by 
searching for a new median, swapping the current median by a non-median point 
assigned to it, and reallocating. We consider two steps for reallocating the points. The 
first one is to examine the points that were allocated to the current median and 
reallocate to the closest one. The second step is to examine the points assigned to the 
others medians and calculate the saving of moving them to the new one, if it improves 
the solution the point is reallocated to the new median. If the solution is improved, the 
process can be repeat until no more improvements occur. 

The whole CS pseudo-code is presented in following. 
Procedure CS 
  Create Initial Solution (s) 
  Create Initial Clusters 
  IterT = 0 
  T = To 
  while (T > 0.0001) 
    while (IterT < SAmax) 
      IterT = IterT + 1 
      Generate at random s’∈ Nk(s) 
      ∆ = f(s’) – f(s) 
      if (∆ <0) 
        s = s’ 
      else 
        Let x ∈ [0,1] 
        if (x < e-∆/T) 
          s = s’ 
      end-if 
      component IC (s’) 
      component AM (active cluster) 
      if (active cluster is promising) then 
        component LS (cluster center) 
    end-while 
    T = T x α 
    IterT = 0 
  end-while 
end-CS. 



4   Computational Results 

The CS was coded in C++ and the computational tests executed on a Pentium IV 3.02 
GHz. Two problem sets are used in this tests: a classical set introduced by Osman and 
Cristofides [11], that contains 10 problems of size n = 50 and p = 5, and 10 problems 
of size n = 100 and p = 10 (these problems are named of p1 to p20), and a set of real 
data collected at the São José dos Campos city introduced by Lorena and Senne [5], 
that contains 6 problem instances named “sjc”. Those instances can be downloaded 
from or through the OR-Library. 

Table 1 gives the obtained results for each instance, comparing the performance of 
the CS and the SA without the clustering process. Column best gives the values of the 
best known solutions found in literature. The best solutions found by the approaches 
(sol*), the time to obtain the best solution (Time*) in seconds, the average of solutions 
(sol), and the total time (Time) in seconds, used to compare the CS and SA. Each 
instance has been run 10 times. The improvement of the CS in relation to SA is 
reported in terms of the relative percentage deviation (RPD). 

Table 1.  Results of the CS 

  CS SA  
ID best sol* Time* sol Time sol* sol Time RPD 
p1 713 713 0.02 713.00 2.24 713 721.60 1.56 1.21 
p2 740 740 0.01 740.00 2.34 740 740.00 1.59 0.00 
p3 751 751 0.08 751.00 2.29 751 751.60 1.46 0.08 
p4 651 651 0.03 651.00 2.24 651 651.20 1.52 0.03 
p5 664 664 0.03 664.00 2.35 664 664.40 1.51 0.06 
p6 778 778 0.01 778.00 2.35 778 778.00 1.57 0.00 
p7 787 787 0.01 787.00 2.34 787 788.60 1.55 0.20 
p8 820 820 0.08 820.00 2.38 821 825.80 1.60 0.71 
p9 715 715 0.02 715.00 2.36 715 717.80 1.46 0.39 
p10 829 829 2.09 829.00 2.36 829 833.80 1.58 0.58 
p11 1006 1006 7.97 1006.00 35.24 1007 1015.40 10.11 0.93 
p12 966 966 0.05 966.00 49.39 968 970.20 12.74 0.43 
p13 1026 1026 0.06 1026.00 41.05 1026 1028.80 10.00 0.27 
p14 982 982 19.80 982.80 39.14 985 997.20 10.35 1.47 
p15 1091 1091 1.30 1091.00 44.98 1092 1102.60 12.15 1.06 
p16 954 954 15.94 954.00 36.03 957 960.40 10.37 0.67 
p17 1034 1034 19.50 1034.20 48.18 1037 1043.00 12.24 0.85 
p18 1043 1043 48.62 1044.60 46.39 1045 1048.20 11.41 0.34 
p19 1031 1031 10.17 1031.80 38.56 1034 1042.80 10.09 1.07 
p20 1005 1005 5.41 1005.40 48.77 1009 1015.20 12.45 0.97 
sjc1 17288.99 17288.99 0.23 17288.99 22.80 17288.99 17343.96 10.43 0.32 
sjc2 33270.94 33270.94 13.25 33275.43 120.40 33372.98 33491.75 25.70 0.65 
sjc3a 45335.16 45335.16 405.50 45337.34 859.09 46746.68 47110.93 52.51 3.91 
sjc3b 40635.90 40635.90 1626.52 40643.67 1649.41 41551.34 41888.14 54.01 3.06 
sjc4a 61925.51 61928.72 938.45 62017.51 2601.81 63710.71 64574.92 77.19 4.10 
sjc4b 52469.96 52531.27 1402.25 52540.67 7233.59 53789.61 54716.58 92.05 4.14 



CS found the best known solutions for most of the instances. Except for sjc4a and 
sjc4b. The running times of the CS were very competitive, found better solutions in 
small times. The CS is very robust, producing average solutions close to the best 
known ones. The SA, without the clustering process, has worse results than the CS in 
quality of solutions, but the times are smaller. All SA solutions were improved by CS. 

Table 2 present a comparison of the CS solutions with the results of two heuristics 
that have the best performing in the literature, the first is a scatter search with path-
relinking (SS-PR) [12] and the second is a variable neighborhood search (VNS) [3]. 
Note that CS was very competitive to the SS-PR and VNS, failing in find the best 
known solution only for two instances. For the sjc instances, the total time of CS was 
smaller than the others heuristics in thee instances. 

Table 2.  Comparison of the results 

  SS-PR VNS CS 
ID best sol* Time sol* Time sol* Time 
p1 713 713 6 713 0.17 713 2.24 
p2 740 740 6 740 0.05 740 2.34 
p3 751 751 6 751 0.19 751 2.29 
p4 651 651 6 651 0.11 651 2.24 
p5 664 664 6 664 0.27 664 2.35 
p6 778 778 6 778 0.11 778 2.35 
p7 787 787 6 787 0.31 787 2.34 
p8 820 820 6 820 0.92 820 2.38 
p9 715 715 6 715 0.13 715 2.36 
p10 829 829 6 829 0.75 829 2.36 
p11 1006 1006 60 1006 7.91 1006 35.24 
p12 966 966 60 966 4.81 966 49.39 
p13 1026 1026 60 1026 2.17 1026 41.05 
p14 982 982 60 982 10.33 982 39.14 
p15 1091 1091 60 1091 10.23 1091 44.98 
p16 954 954 60 954 4.20 954 36.03 
p17 1034 1034 60 1034 5.50 1034 48.18 
p18 1043 1043 60 1043 9.06 1043 46.39 
p19 1031 1031 60 1031 8.64 1031 38.56 
p20 1005 1005 60 1005 27.34 1005 48.77 
sjc1 17288.99 17288.99 60 17288.99 50.50 17288.99 22.72
sjc2 33270.94 33293.40 600 33270.94 44.08 33270.94 112.81 
sjc3a 45335.16 45338.02 2307 45335.16 8580.30 45335.16 940.75 
sjc3b 40635.90 40635.90 2308 40635.90 2292.86 40635.90 1887.97 
sjc4a 61925.51 61925.52 6109 61925.51 4221.47 61928.72 2885.11 
sjc4b 52469.96 52531.46 6106 52469.96 3471.44 52531.27 7626.33 



5   Conclusions 

This paper has presented a solution for the Capacitated p-Median Problem (CPMP) 
using Clustering Search (CS). The CS is a new method that has been applied with 
success in some combinatorial optimization problems, such as pattern sequencing 
problem [9] and prize collecting traveling salesman problem [1]. The results show 
that the CS approach is competitive for the resolution of this problem in reasonable 
computational times. For the first set of instances considered in computational tests, 
the optimal values have been found, and for instances of the second set the best values 
known have been found in most of cases. Therefore, these results validate the CS 
application to the CPMP, and this approach has an additional advantage: does not use 
any commercial solver. 

Further works can be done by analyzing other metaheuristics to generate solutions 
for the clustering process of CS, such as Ant Colony System, Tabu Search and 
Genetic Algorithm, and by implementing new local search heuristics for the CPMP. 
Besides that, bigger instances of this problem can be generated and solved.  
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