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Abstract. The Prize Collecting Traveling Salesman Problem (PCTSP)
can be associated to a salesman that collects a prize in each city visited
and pays a penalty for each city not visited, with travel costs among
the cities. The objective is to minimize the sum of travel costs and
penalties, while including in the tour enough cities to collect a minimum
prize. This paper presents one solution procedure for the PCTSP, using a
hybrid metaheuristic known as Clustering Search (CS), whose main idea
is to identify promising areas of the search space by generating solutions
and clustering them into groups that are them explored further. The
validation of the obtained solutions was through the comparison with
the results found by CPLEX.

1 Introduction

This paper presents a new hybrid metaheuristic to solve the Prize Collecting
Traveling Salesman Problem (PCTSP). The PCTSP is a generalization of the
Traveling Salesman Problem (TSP), where a salesman collects a prize pi in each
city visited and pays a penalty γi for each city not visited, considering travel
costs cij between the cities. The problem intend to minimize the sum of travel
costs and penalties paid, while including in the tour enough cities to collect a
minimum prize (pmin), defined a priori. In this tour, each city can be visited at
most one time.

The solution of PCTSP is difficult due to a large number of possible solutions.
Since the PCTSP generalizes the TSP it is also a NP-hard problem, as the TSP
is a particular case of PCTSP where the minimum prize is same to the sum of
prizes of all nodes.

In this paper, the PCTSP is solved using a hybrid metaheuristic, known as
Clustering Search (CS), which was proposed by Oliveira and Lorena [1]. The CS
consists of detecting promising areas of the search space using an algorithm that
generates solutions to be clustered. These promising areas may then be explored
through local search methods as soon as they are discovered. The algorithm used

? The authors acknowledge CNPq by partial research support



to generate the solutions was a method combining Greedy Randomized Adaptive
Search Procedure (GRASP) [2], Variable Neighborhood Search (VNS) [3].

The commercial solver CPLEX [4] has been used to solve the formulation
of the PCTSP for small size problems, in order to validate the computational
results of CS.

The remainder of the paper is organized as follows. Section 2 reviews previous
works about PCTSP. Section 3 describes the metaheuristic that was used in this
paper, and section 4 present the CS applied to PCTSP. Section 5 presents the
computational results and section 6 concludes the paper.

2 Literature Review

The PCTSP was introduced by Egon Balas [5, 6] as a model for scheduling the
daily operations of a steel rolling mill. The author presented some structural
properties of the problem and two mathematical formulations.

Fischetti and Toth [7] developed several bounding procedures, based on
different relaxations. A branch and bound algorithm was also developed that
was applied to small size problems.

Goemans and Williamson [8] provided a 2-aproximation procedure to a version
of the PCTSP, without the minimum prize constraint. Dell’Amico et al. [9]
developed a Lagrangean heuristic, which use a Lagrangean relaxation for generating
starting solutions for the heuristic procedure. A procedure Adding-Nodes was
used to obtain feasible solutions for PCTSP through the lower bound and a
procedure Extension and Collapse seeks improving feasible solutions.

Chaves and Lorena [10] proposed new heuristics based in CS to solve the
PCTSP, firstly using an genetic algorithm as generator of solutions for the
clustering process, and later changing the genetic algorithm for other metaheuristics.

Feillet et al. [11] presents a survey on TSP with profits that include the
PCTSP, identifying and comparing the complexity of different classes of applications,
modelling approaches and exact or heuristic solution techniques.

3 Clustering Search

The Clustering Search (CS) generalizes the Evolutionary Clustering Search (ECS)
proposed by Oliveira and Lorena [1], that employ clustering for detecting promising
areas of the search space (see also [12]). It is particularly interesting to find out
such areas as soon as possible to change the search strategy over them. An
area can be seen as a search subspace defined by a neighborhood relationship
in metaheuristic coding space. In the ECS, a clustering process is executed
simultaneously to an evolutionary algorithm, identifying groups of individuals
that deserve special interest. In the CS, the evolutionary algorithm was substituted
by distinct metaheuristics, such as Simulated Annealing, GRASP, Tabu Search,
VNS and others.

The CS attempts to locate promising search areas by framing them by
clusters. A cluster can be defined as a tuple G = {C; r;β} where C, r and β



are, respectively, the center and the radius of the area, and a search strategy
associated to the cluster.

The center C is a solution that represents the cluster, identifying the location
of the cluster inside of the search space. Initially, the centers are obtained
randomly and progressively it tends to slip along really promising points in
the close subspace. The radius r establishes the maximum distance, starting
from the center, that a solution can be associated to the cluster. For example,
in combinatorial optimization, r can be defined as the number of movements
needed to change a solution into another. The search strategy β is a systematic
search intensification, in which solutions of a cluster interact among themselves
along the clustering process, generating new solutions.

The CS consists of four conceptually independent components with different
attributions: a search metaheuristic (SM); an iterative clustering (IC); an analyzer
module (AM); a local searcher (LS);

The search metaheuristic (SM) component works as a full-time solution
generator. The algorithm is executed independently of the remaining components
and must to be able provide the continuous generation of solutions directly for
the clustering process. Simultaneously, clusters are maintained to represent these
solutions. This entire process works like an infinite loop, in which solutions are
generated along the iterations.

The iterative clustering (IC) component aims to gather similar solutions into
groups, maintaining a representative cluster center for them. To avoid extra
computational effort, IC is designed as an online process, in which the clustering
is progressively fed by solutions generated in each iteration of SM. A maximum
number of clusters NC is an upper bound value that prevents an unlimited
cluster creation. A distance metric must be defined, a priori, allowing a similarity
measure for the clustering process.

The analyzer module (AM) component provides an analysis of each cluster,
in regular intervals, indicating a probable promising cluster. A cluster density, δ,
is a measure that indicates the activity level inside the cluster. For simplicity, δi

counts the number of solutions generated by SM and allocated to the cluster
i. Whenever δi reaches a certain threshold, meaning that some information
template becomes predominantly generated by SM, such information cluster
must be better investigated to accelerate the convergence process on it.

At last, the local search (LS) component is a local search module that
provides the exploitation of a supposed promising search area, framed by cluster.
This process can happen after AM having discovered a promising cluster and the
local search is applied on the center of the cluster. LS can be considered as the
particular search strategy β associated with the cluster, i.e., a problem-specific
local search to be employed into the cluster.

4 CS for PCTSP

A version of CS for the PCTSP is presented in this section. The application
details are now described, clarifying the approach.



4.1 The GRASP/VNS Metaheuristic

The component SM, responsible for generating solutions to the clustering process,
was a metaheuristic that combines GRASP and VNS.

The GRASP [2] is basically composed by two different phases: a construction
phase, in which a feasible solution is produced and a local search phase, in which
a local minimum is obtained using the feasible solution generated in the first
phase.

The construction phase of GRASP uses the insertion rule of the procedure
Adding-Nodes [9] to build the candidate list (Clist). Initially two nodes are added
in the tour and then each node is selected in a random way starting from a part
of the Clist containing the best candidates, called Restricted Candidate List
(RCL). This node is added to the solution and the candidate list is updated
at each iteration. The construction phase stops when does not exist candidates
with positive costs and the minimum prize be collected. The insertion rule for
add a node k between the nodes i and j is

g(k) = cij + γk − cik − ckj (1)

that it is composed by the cost of the arc (i, j), the penalty of the node k and
the costs of the arcs (i, k) and (k, j), respectively.

The local search phase of GRASP uses the VNS [3], which is a metaheuristic
going on a systematic change of neighborhood within a local search algorithm.

Initially a set of neighborhood structures is defined through random movements.
The VNS proposed implement nine neighborhood structures, through the following
movements:

– m1: add one node to the tour;
– m2: drop one node from the tour;
– m3: swap position from two nodes of the tour;
– m4: add two nodes to the tour;
– m5: drop two nodes from the tour;
– m6: swap position from four nodes of the tour;
– m7: add three nodes to the tour;
– m8: drop three nodes from the tour;
– m9: swap position from six nodes of the tour;

Starting from the current solution, at each iteration, a randomly neighbor
is selected in the kth neighborhood of the incumbent solution. That neighbor
is then submitted to some local search method. If the solution obtained is
better than the incumbent, update the incumbent and continue the search of
the first neighborhood structure. Otherwise, the search continues to the next
neighborhood. The VNS stopped when the maximum number of iterations since
the last improvement is satisfied.

In this paper we used the method Variable Neighborhood Descent (VND) [3]
as a local search of the VNS, and it is composed by three different improvement



methods, that combine two movements: Add-step and Drop-step [13]. The Add-
step movement consists in a node addition that provides the best value of the
addition function. The Drop-step movement consists in a node removal (from
tour) that provides the best value of the removal function. In both movements, if
the functions value was positive then the objective function will be better after
the movement. The main aspect to be observed is that all moves are executed
preserving feasibility.

The improvement methods of the VND are:

– SeqDrop: to apply a sequence of Drop-step movements while the objective
function value is being decreased;

– AddDrop: to apply one Add-step movement and one Drop-step movement;
– SeqAdd: to apply a sequence of Add-step movements while the objective

function value is being decreased.

Whenever some improvement method obtains a better solution, the VND
returns to the first improvement method. The stopping condition of the VND
was there not to be more improvements for the solution.

4.2 The Clustering Process

The IC is the CS’s core, working as a classifier, keeping in the system only
relevant information, and driving the search intensification in the promising
search areas. Initially, a maximum number of clusters (NC) is defined a priori.
The ith cluster has its own center Ci and a radius r that was identical to the
other clusters.

Solutions generated by GRASP/VNS are passed to IC that attempts to group
as known information, according to a distance metric. The information activates
the closest center Ci (cluster center that minimizes the distance metric), causing
some kind of perturbation on it. In this paper, the metric distance was the
number of different edges between the solution and the center of the cluster, and
a larger number of different edges among them imply in more the dissimilarity.

The perturbation means an assimilation process, in which the center of
the cluster is update by the new generated solution. Here, we used the path-
relinking method [14], that generates several points (solutions) taken in the path
connecting the solution generated by GRASP/VNS and the center of the cluster.
Since each point is evaluated by the objective function, the assimilation process
itself is an intensification mechanism inside the clusters. The new center Ci is
the best evaluated solution sampled in the path.

The AM is executed whenever a solution is assigned to a cluster, verifying if
the cluster can be considered promising. A cluster becomes promising when the
density δi reaches a certain threshold, given for:

δi ≥ PD.
NS
|Clus|

(2)

where, NS is the number of solutions generated in the interval of analysis of the
clusters, |Clus| is the number of clusters, and PD is the desirable cluster density



beyond the normal density, obtained if NS was equally divided to all clusters.
The center of a promising cluster is improved through the LS.

The LS was implemented by a 2-Opt procedure [15], which seeks to improve
the center of the promising cluster. The 2-Opt is based on resequencing of the
route always leads to a better solution, since it may possibly decrease travel costs,
while leaving prizes and penalties unchanged. It amounts to simply considering
the set of nodes currently visited by the route and trying to shorten the length
of the route through these nodes. In this paper, the 2-Opt consists in 2-changes
over a route, deleting two arcs and replacing them by two other arcs to form
a new route. This method continues while there is improvement in the route
through this movement.

The whole CS pseudo-code is presented in Figure 1.

procedure CS 
{ SM component } 
for (number of iterations is not satisfied) do 

{construction phase of GRASP} 
s = ∅ 
while (solution not built) do 

compute candidate list (C) 
RCL = C * α 
e = select at random a value of RCL 
s = s ∪ {e} 

end while 
{local search phase of GRASP - VNS} 
kmax = number of neighborhoods 
while (stop condition is not satisfied) do 

k = 1 
while (k ≤ kmax) do 

generate at random s’ ∈ Nk(s) 
s” = apply VND with s’ as starting point 
if ( f (s”) < f (s) ) then 

s = s” 
k = 1 

else 
k = k + 1 

end while 
end while 
{ IC component } 
calculate the distance of the solution GRASP/VNS (s) and the clusters 
insert the solution in the most similar cluster (Ci) 
apply the assimilation process – path-relinking(s, Ci) 

{ AM component } 
verify if the cluster can be considered promising. If so, the LS component is 
applied to it 

{ LS component } 
apply the 2-Opt heuristic to the promising cluster 

end for 
end procedure 

 

Fig. 1. CS pseudo-code



5 Computational Results

The CS was coded in C++ and it was run on a Pentium 4 of 3.00 GHz. The
experiments were accomplished with objective of evidencing the flexibility of the
method in relation to the algorithm used to feed the clustering process, and also
to validate the proposed approach, showing that the clustering search algorithm
can be competitive to solved the PCTSP.

There are no available instances for PCTSP in the literature. In this paper,
test instances were randomly generated as in [9]. We generated problems with
n = (20, 40, 60, 80, 100, 200, 300, 400, 500) vertices, travel costs cij ∈ [1,M ]
with M ∈ {1000, 10, 000}, prizes pi ∈ [1, 100], and penalties γi ∈ [1, N ] with
N ∈ {100, 1000, 10, 000}. The value of minimum prize (pmin) has been generated
as with σ ∈ {0.2, 0.5, 0.8}. These test instances are available in http://www.lac.
inpe.br/~lorena/instancias.html.

The following parameters values for approach CS were adjusted through
several executions and are also based in [12]. The following parameters obtained
the best results:

– number of solutions generated at each analysis of the clusters NS = 200;
– maximum number of clusters NC = 20;
– density pressure PD = 2.5;
– percentage of the best elements in the RCL, α = 0.2.

The formulation presented in [10] was solved using the solver CPLEX 10.0.1,
and the results are presented in following Tables. The CPLEX solved the PCTSP
up to 100 nodes, founding the optimal solution in a reasonable execution time
for small instances. However, for the instances with 80 nodes, the CPLEX took
several hours execution to find the optimal solution, and, for any instances with
100 nodes the CPLEX did not get to close the gap between lower and upper
bounds in 100,000 seconds. Beside that, the CPLEX did not get to find a feasible
solution for the high instances in 100,000 seconds.

Tables 1-4 give the results for the PCTSP. The entries in the tables are:

– value of parameter σ;
– number of vertices (n) in the original graph;
– the best integer solutions (BI) found by the CPLEX, the Gap and running

time (RT) of CPLEX. The values of Gap equal zero define that the optimal
has been achieved;

– best solution (BS), average solution (AS), average running time (AT) to find
it in the CS and the Deviation (DE), that reflects the relative error of the
average solution for the CS, relative to the best found solution by CPLEX
or CS, and are calculated by (AS - BS or BI)/(BS or BI) ×100; and

– best solution (BS), average solution (AS), average running time (AT) to find
it in the GRASP/VNS and de Deviation (DE).

The best solutions found (BS), the averages of solutions (AS) and the running
times to find the averages solution (AT) were considered to compare the approaches.



The values in boldface show the best objective function values and execution
times for each instance.

Table 1 gives the results for all values of n, σ, cij ∈ [1, 1000] and γi ∈ [1, 100].
One can see that the approach CS has better results in 89% of the tests, has
found the optimal solutions for instances up to 60 nodes, and solutions better
than the CPLEX for instances with 100 nodes. The running times of CS were very
competitive related to the CPLEX. The GRASP/VNS, without the clustering
process, has worse results than CS in quality of solutions and deviation. The CS
was very robust producing small deviations. The same conclusions can be drawn
for instances with cij ∈ [1, 10, 000] and γi ∈ [1, 1000] presented in Table 2.

Table 1. PCTSP: Symmetric random instances, cij ∈ [1, 1000]; γi ∈ [1, 100]. Times in
seconds.

CPLEX CS GRASP/VNS

σ n BI Gap RT BS AS AT DE BS AS AT DE

20 903 0.00 0.80 903 903.0 0.03 0.00 903 903.0 0.07 0.00
40 996 0.00 20.46 996 996.0 2.28 0.00 996 996.0 4.41 0.00
60 1314 0.00 474.94 1314 1314.0 13.73 0.00 1314 1321.3 25.36 0.56
80 1384 0.00 26692.93 1386 1392.8 83.03 0.64 1531 1548.0 215.46 11.85

0.2 100 1514 1.85 100,000.00 1508 1526.4 196.10 1.22 1552 1562.3 122.38 3.60
200 - - - 1816 1834.4 502.94 1.01 1898 1922.3 464.14 5.86
300 - - - 2281 2313.0 1069.11 1.40 2439 2506.7 845.10 9.89
400 - - - 2504 2554.2 1212.85 2.00 2671 2691.3 1138.07 7.48
500 - - - 3233 3281.1 1355.62 1.48 3382 3401.3 1936.49 5.21

20 1123 0.00 14.45 1123 1123.0 0.30 0.00 1123 1140.0 0.35 1.51
40 996 0.00 21.84 996 996.0 2.34 0.00 996 1008.0 4.26 1.20
60 1314 0.00 468.51 1314 1314.0 11.42 0.00 1314 1339.0 18.00 1.90
80 1384 0.00 32121.21 1388 1396.6 72.74 0.91 1497 1519.7 296.15 9.80

0.5 100 1514 1.75 100,000.00 1513 1534.6 181.00 1.43 1562 1584.3 84.83 4.71
200 - - - 1816 1844.2 572.46 1.55 1902 1943.7 485.48 7.03
300 - - - 2171 2250.5 1213.63 3.66 2428 2452.1 1127.12 12.94
400 - - - 2489 2579.7 1490.49 3.64 2694 2744.3 1048.74 10.26
500 - - - 3159 3200.7 1784.58 1.32 3246 3298.4 2216.91 4.41

20 1354 0.00 8.79 1354 1354.0 0.15 0.00 1354 1354 0.40 0.00
40 1129 0.00 44.69 1129 1137.0 2.95 0.71 1156 1186.2 4.67 5.07
60 1319 0.00 474.80 1319 1344.2 17.46 1.91 1379 1387.7 9.28 5.21
80 1384 0.00 27498.29 1396 1400.2 63.86 1.17 1468 1485.3 218.82 7.32

0.8 100 1575 6.08 100,000.00 1519 1537.6 186.54 1.22 1563 1589.0 105.63 4.61
200 - - - 1768 1797.2 805.01 1.65 1908 1926.7 630.53 8.97
300 - - - 2148 2213.0 1528.29 3.03 2314 2444.0 1211.34 13.78
400 - - - 2455 2494.3 1668.90 1.60 2599 2669.3 1536.90 8.73
500 - - - 3214 3324.2 1708.36 3.42 3438 3471.6 1842.49 8.02



Table 2. PCTSP: Symmetric random instances, cij ∈ [1, 10, 000]; γi ∈ [1, 1000]. Times
in seconds.

CPLEX CS GRASP/VNS

σ n BI Gap RT BS AS AT DE BS AS AT DE

20 11677 0.00 2.65 11677 11677.0 0.04 0.00 11677 11667.0 0.09 0.00
40 10776 0.00 21.97 10776 10776.0 3.19 0.00 10776 10896.0 7.23 1.11
60 14236 0.00 1151.37 14243 14314.1 7.11 0.55 14684 15033.2 41.46 5.60
80 14484 0.00 68464.35 14609 14760.9 114.86 1.91 15022 15327.1 134.18 5.82

0.2 100 14841 10.79 100,000.00 13620 14015.0 104.17 2.90 14328 14510.9 79.97 6.54
200 - - - 15303 15628.2 528.53 2.13 16250 16560.3 412.80 8.22
300 - - - 21869 22158.0 662.13 1.32 22760 23898.2 653.38 9.28
400 - - - 24390 25099.6 1354.40 2.91 25685 26639.7 1215.72 9.22
500 - - - 31090 31558.7 1643.15 1.51 32965 33666.3 1323.48 8.29

20 12900 0.00 9.84 12900 12900.0 0.17 0.00 12900 12996.9 0.23 0.75
40 10776 0.00 21.95 10776 10776.0 5.58 0.00 10776 10861.1 8.03 0.79
60 14236 0.00 1152.99 14349 14421.9 13.73 1.31 15005 15065.3 51.12 5.82
80 14484 0.00 68464.35 14512 14830.0 111.92 2.39 15458 15744.9 208.18 8.71

0.5 100 14841 10.79 100,000.00 13900 14089.1 118.35 1.36 14447 14696.0 61.04 5.73
200 - - - 15190 15440.4 664.17 1.64 16132 16676.3 502.56 9.78
300 - - - 22731 23211.7 696.75 2.11 23855 24504.3 840.55 7.80
400 - - - 23898 24525.3 1755.43 2.63 25233 25494.1 1395.65 6.68
500 - - - 30275 30842.0 2173.11 1.87 32932 33669.3 1532.14 11.21

20 16559 0.00 6.28 16559 16559.0 0.07 0.00 12559 12559.0 0.12 0.00
40 10776 0.00 31.32 10776 10776.0 4.66 0.00 10776 10844.0 5.83 0.63
60 14864 0.00 18508.17 14864 15017.1 32.74 1.03 15215 15888.2 65.40 6.89
80 14484 0.00 70205.22 14740 14793.9 92.77 2.14 15195 15329.9 142.87 5.84

0.8 100 17316 23.54 100,000.00 13704 13971.9 95.31 1.96 14393 14483.1 104.33 5.68
200 - - - 15200 15376.2 716.94 1.16 15891 16249.3 515.52 6.90
300 - - - 22168 22467.7 1496.77 1.35 23616 24187.3 1135.30 9.11
400 - - - 22790 23688.3 1953.06 3.94 26059 26327.4 1493.63 15.52
500 - - - 30385 30707.0 2336.85 1.06 32608 33273.1 1527.11 9.50

The results of Table 3 refer to instances with cij ∈ [1, 10, 000] and γi ∈
[1, 100]. The results for these instances were worse than the results for other
instances, and, the CS did not get to find the optimal solutions for instances with
60, 80 and 100 nodes, but the solutions were closer to optimal. The deviations
were also larger than the others instances. The GRASP/VNS behavior is the
probably cause of bad results for these instances.

Table 4 reports the results of computational experiments with cij ∈ [1, 1000]
and γi ∈ [1, 10, 000]. In this case, the CS has better results in most tests, having
found the optimal solutions for instances up to 60 nodes. The running times of
the CS were very competitive related to the CPLEX and again the CS was very
better than the GRASP/VNS without the clustering process.



Table 3. PCTSP: Symmetric random instances, cij ∈ [1, 10, 000]; γi ∈ [1, 100]. Times
in seconds.

CPLEX CS GRASP/VNS

σ n BI Gap RT BS AS AT DE BS AS AT DE

20 3011 0.00 9.77 3011 3011.0 0.01 0.00 3011 3046.2 0.05 1.17
40 3506 0.00 26.06 3506 3531.6 0.67 0.73 3506 3544,4 2.21 1.10
60 4251 0.00 130.31 4277 4287.2 14.86 0.85 4617 4693.2 9.91 10.40
80 4903 0.00 2226.51 4903 5044.3 22.61 2.88 5347 5543.3 22.36 13.05

0.2 100 5635 0.00 10824.22 5702 5802.0 59.71 2.96 6095 6125.7 40.44 8.71
200 - - - 9035 9129.0 303.41 1.04 9669 9865.3 246.28 9.19
300 - - - 14592 14875.2 319.14 1.94 15380 15540.0 444.85 6.50
400 - - - 16651 16850.3 640.17 1.20 17297 17564.7 567.84 5.49
500 - - - 20612 21305.7 836.68 3.37 21986 22231.0 730.29 7.85

-
20 4313 0.00 7.97 4313 4313.0 0.17 0.00 4313 4652.1 0.28 7.86
40 4694 0.00 59.86 4694 4694.0 4.29 0.00 4694 4736.6 8.82 0.91
60 6120 0.00 700.35 6232 6361.7 14.05 3.95 6739 6937.1 10.57 13.35
80 6319 0.00 72518.87 6528 6628.1 63.69 4.89 7180 7303.7 88.78 15.58

0.5 100 6869 0.00 69562.82 7710 7833.7 119.52 14.04 8206 8655.0 120.07 26.00
200 - - - 10293 10578.0 438.80 2.76 11165 11337.0 231.34 0.51
300 - - - 15312 15698.3 549.65 2.52 16872 17646.1 664.34 15.24
400 - - - 17263 17535.7 841.70 1.58 18256 18552.3 744.61 7.47
500 - - - 20896 21623.7 1056.08 3.48 22136 22300.9 801.02 6.72

-
20 7797 0.00 14.47 7797 7797.0 0.11 0.00 7797 7958.6 0.22 2.07
40 9070 0.00 43.26 9070 9171.6 7.55 1.12 9224 9302.6 7.27 2.56
60 9459 0.00 10854.96 9664 9810.5 32.77 3.72 9934 10165.1 22.20 7.46
80 9699 0.00 98073.17 9991 10048.0 97.02 3.60 11118 11315.2 108.70 16.96

0.8 100 10002 0.31 100,000.00 10641 10724.1 157.96 7.22 11267 11470.0 131.20 14.68
200 - - - 12650 13024.0 616.84 2.96 13448 13853.1 406.51 9.51
300 - - - 18253 18740.8 1100.30 2.67 19532 20128.3 908.09 10.27
400 - - - 18501 18955.7 1574.56 2.46 19996 21119.3 1027.42 14.15
500 - - - 23234 23590.3 1920.92 1.53 24239 25364.9 1451.63 9.17

6 Conclusions

This paper presented the Clustering Search (CS) approach to solve the PCTSP.
The CS uses the concept of hybrid algorithms, combining metaheuristics with
a clustering process, detecting promising search areas (clusters). Whenever an
area is considered promising some aggressive search strategy is accomplished in
this area.

The CS is a generalization of the Evolutionary Clustering Search (ECS) [1].
The ECS is a new method that obtained success in unconstrained continuous
optimization and has been applied to some combinatorial optimization problems
found in the literature, such as pattern sequencing problems. The evolutionary
component can be substituted by other metaheuristics and this paper tested the
GRASP/VNS procedure to generate solutions to be clusterized.

The results obtained by CS for PCTSP were more competitive than the
CPLEX, getting to find the optimal solutions for instances up to 60 nodes.



Table 4. PCTSP: Symmetric random instances, cij ∈ [1, 1000]; γi ∈ [1, 10, 000]. Times
in seconds.

CPLEX CS GRASP/VNS

σ n BI Gap RT BS AS AT DE BS AS AT DE

20 1192 0.00 1.21 1192 1192.0 0.23 0.00 1192 1212.7 0.17 1.73
40 1449 0.00 180.33 1449 1449.0 6.52 0.00 1449 1506.2 5.93 3.95
60 1666 0.00 173.17 1666 1670.2 34.94 0.25 1687 1702.7 30.85 2.20
80 1794 0.00 41884.95 1807 1814.6 144.96 1.15 1842 1846.3 136.71 2.92

0.2 100 1601 0.00 22767.73 1628 1647.0 281.07 2.87 1680 1696.3 189.99 5.95
200 - - - 1898 1946.8 911.18 2.57 2060 2091.3 481.61 10.19
300 - - - 2246 2334.0 920.96 3.92 2462 2501.0 969.01 9.37
400 - - - 2880 2933.7 1370.23 1.86 3049 3105.3 1455.80 7.82
500 - - - 3385 3428.5 2455.34 1.29 3491 3688.1 2039.97 8.95

20 1192 0.00 1.22 1192 1192.0 0.24 0.00 1192 1218.7 0.20 2.24
40 1449 0.00 180.12 1449 1449.0 6.05 0.00 1449 1544.8 8.43 6.61
60 1666 0.00 172.99 1666 1670.8 36.33 0.29 1684 1690.0 33.03 1.44
80 1794 0.00 32442.24 1813 1821.6 131.57 1.54 1855 1876.1 112.92 4.57

0.5 100 1601 0.00 22730.51 1655 1665.3 220.50 4.02 1695 1711.3 141.33 6.89
200 - - - 1968 2012.0 529.79 2.24 2052 2087.7 516.25 6.08
300 - - - 2300 2382.3 1152.44 3.58 2447 2484.3 1118.08 8.01
400 - - - 2842 2935.3 1348.65 3.28 3063 3123.3 1496.11 9.90
500 - - - 3274 3332.6 2054.47 1.79 3500 3587.4 1878.52 9.57

20 1192 0.00 1.21 1192 1192.0 0.25 0.00 1192 1230.7 0.23 2.40
40 1449 0.00 180.55 1449 1449.0 14.07 0.00 1449 1534.8 9.80 5.92
60 1666 0.00 172.85 1666 1669.6 46.41 0.22 1687 1691.3 30.85 1.52
80 1794 0.00 27699.33 1801 1815.2 110.43 1.18 1863 1868.0 83.50 4.12

0.8 100 1601 0.00 22722.64 1626 1658.8 235.88 3.61 1700 1712.3 193.64 6.95
200 - - - 1978 1999.8 609.86 1.10 2050 2062.3 665.13 4.26
300 - - - 2319 2371.7 1100.99 2.27 2473 2536.2 969.01 9.37
400 - - - 2837 2849.0 1554.54 0.42 2876 2907.3 1864.01 2.48
500 - - - 3305 3333.2 2134.51 0.85 3491 3494.5 1985.14 5.73

Besides, the CS obtained better results than CPLEX for any instances with 100
nodes and was better than the GRASP/VNS alone. The running times of CS
were reasonably small considering the complexity of the PCTSP.

Further work can be proceeded testing the integration of new algorithms
on CS, like other metaheuristics such as Ant Colony System, Tabu Search, or
Simulated Annealing, and apply the CS in other generalizations of the TSP, such
as Profitable Tour Problem (PTP) and Quota TSP.
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