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Abstract 

 

The Capacitated Centred Clustering Problem (CCCP) consists in partitioning a set of n points 

into p disjoint clusters with a known capacity. Each cluster is specified by a centroid. The 

objective is to minimize the total dissimilarity within each cluster, such that a given capacity 

limit of the cluster is not exceeded. This paper presents a solution procedure for the CCCP, 

using the hybrid metaheuristic Clustering Search (CS), whose main idea is to identify 

promising areas of the search space by generating solutions through a metaheuristic and 

clustering them into groups that are then further explored with local search heuristics. 

Computational results in test problems of the literature show that the CS found a significant 

number of new best known solutions in reasonable computational times. 
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1. Introduction 

The location of facilities is a central problem for strategic decisions. Many applications 

have been explored in areas such as telecommunication, industrial transportation and 

distribution, with applications on location of off-shore platforms for oil exploration, garbage 

collection zones, and others. One of the most well-known facility-location problems is the p-

Median Problem. This problem consists of locating p facilities in a given space (e.g., 

Euclidean space) which satisfy n demand points in such a way that the total sum of distances 

between each demand point and its nearest facility is minimized [5]. 

Another classical location problem is the Capacitated p-Median Problem (CPMP), which 

have various applications in many practical situations. It can be described as follows: given a 

set of n points (customers), each of them with a known demand, the problem consists of 

finding p medians and assign each point to exactly one median such that the total distance of 

assigned points to their corresponding medians is minimized, and the capacity limit on the 

medians may not be exceeded [16]. 

This paper presents a hybrid heuristic approach to solve the Capacitated Centred 

Clustering Problem (CCCP). The CCCP is a generalization of the CPMP, which can be 

viewed as the problem of defining a set of p clusters with limited capacity and minimum 

dissimilarity between the formed clusters, where each cluster has a centroid located at the 

geometric centre of its points and covers all the demands of a set of n points. The main 

difference to the CPMP, is that clusters are centred at the “average” of their points’ co-

ordinates, where for the CPMP, the clusters are centred by their medians. 

The following formulation is proposed by Negreiros and Palhano [10]: 
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Where, 

− I is the set of demand points; 

− J is the set of clusters, with |J| = p; 

− ai is the geometric position of the point i; 

− jx is the geometric position of the centroid of a cluster j; 

− yij = 1, if the point i is assigned to cluster j, and yij = 0 otherwise;  

− nj is the number of points in the cluster j; 

− qi is the demand of the point i; 

− Qj is the capacity of each cluster j; 

In the above model, the objective function (1) minimizes the total distance between each 

point and the centroid of the cluster that it is allocated. Notice that the geometric position of 

the centroid depends on the points that compose the cluster, so, the position of the centroid is 

an unknown parameter a priori. Constraints (2) impose that each point is allocated to exactly 

one cluster. Constraints (3) give the number of points in each cluster. Constraints (4) locate 

the centroid of each cluster at its geometric center. Constraint (5) imposes that a total cluster 



capacity must be respected. Constraint (6) defines the decision variables, and the upper limits 

to the number of individuals per group. 

The CCCP is known to be NP-hard [10]. Besides, the non-linearity of the objective 

function gets hard the application of exact methods to solve the CCCP. So, the problem is 

usually solved through heuristic approaches. 

In this paper, the CCCP is solved using a hybrid metaheuristic known as Clustering 

Search (CS). The CS, proposed by Oliveira and Lorena [14, 15], consists in detecting 

promising areas (clusters) of the search space using a metaheuristic that generates solutions to 

be clustered. These promising areas should be explored through local search methods as soon 

as they are discovered. The metaheuristic Simulated Annealing [11] is used to generate the 

solutions for the clustering process. 

The remainder of the paper is organized as follows. Section 2 reviews previous works 

about CCCP and similar problems. Section 3 describes the hybrid metaheuristic Clustering 

Search (CS) that was used in this paper and section 4 present the CS algorithm applied to 

CCCP. Section 5 presents the computational results and section 6 concludes the paper. 

 

2. Literature Review 

The CCCP was recently introduced by Negreiros e Palhano [10]. The authors presented a 

two-phase polynomial heuristic algorithm, where the first phase uses the Forgy algorithm [8] 

to build an initial solution oriented by a log-polynomial algorithm using structured geometric 

balanced q-trees. The second phase is a refinement of the Variable Neighborhood Search 

(VNS). 

The CCCP is not intensively studied like other classical location problems. The CPMP 

have various heuristics and metaheuristics proposed in the literature. Osman and Christofides 

[16] propose a Simulated Annealing and Tabu Search method. Lorena and Senne [13] explore 



local search heuristics based on location-allocation procedures and Lorena and Senne [12] use 

column generation to CPMP. Diaz and Fernández [6] examine a hybrid scatter search and 

path-relinking method and Scheuerer and Wendolsky [18] a scatter search method. Recently, 

Fleszar and Hindi [7] propose a variable neighborhood search heuristic and Chaves, Correa 

and Lorena [4] present a CS algorithm to solve the CPMP. 

Another similar problem is the capacitated multisource Weber problem, also referred to as 

the capacitated continuous location-allocation problem [19]. The continuous problem requires 

the generation of a given number m of capacitated facilities in the continuous space and the 

allocation of n customers or fixed points to each one. The facility can be located anywhere in 

the continuous space. The aim is to satisfy the demand of the customers and minimize the 

total transportation (or service) cost. Brimberg et al. [2] presents a survey on continuous 

location-allocation problem, giving an overview of exact solution methods and approximated 

methods (heuristics). Recently, Aras, Orbay and Altinel [1] propose three heuristic methods 

based on a new mixed integer linear programming formulation of the problem. 

 

3. Clustering Search algorithm 

The Clustering Search (CS) algorithm generalizes the Evolutionary Clustering Search 

(ECS), proposed by Oliveira and Lorena [14, 15], that employs clustering for detecting 

promising areas of the search space. It is particularly interesting to find out such areas as soon 

as possible to change the search strategy over them. An area can be seen as a search subspace 

defined by a neighborhood relationship in the metaheuristic coding space. In the ECS, a 

clustering process is executed simultaneously to an evolutionary algorithm, identifying groups 

of individuals that deserve special attention. In the CS, the evolutionary algorithm is 

substituted by distinct metaheuristics, such as Simulated Annealing, GRASP, Tabu Search 

and others. 



The CS attempts to locate promising search areas by framing them by clusters. A cluster 

can be defined as a tuple G = {c; r; β } where c, r, and β are, respectively, the center and the 

radius of the area, and a search strategy associated to the cluster. 

The center of the cluster c is a solution that represents the cluster, identifying its location 

inside the search space. Initially, the centers are obtained randomly, but progressively, they 

tend to fall along really promising points in the close subspace. The radius r establishes the 

maximum distance, starting from the center, for which a solution can be associated to the 

cluster. The search strategy β is a systematic search intensification, in which solutions of a 

cluster interact among themselves along the clustering process, generating new solutions. 

The CS consists of four conceptually independent components with different attributions:  

− a search metaheuristic (SM);  

− an iterative clustering (IC);  

− an analyzer module (AM);  

− a local search module (LS). 

Figure 1 shows the four components and the CS conceptual design. 

The search metaheuristic (SM) component works as a full-time solution generator. The 

algorithm is executed independently of the remaining components and must be able to provide 

a continuous generation of solutions to the clustering process. Clusters are simultaneously 

maintained to represent these solutions. This entire process works like an infinite loop, in 

which solutions are generated along the iterations. 

 



 

Fig. 1. Diagram for the CS algorithm. 

 

The iterative clustering (IC) component aims to gather similar solutions into groups, 

identifying a representative cluster center for them. To avoid extra computational effort, IC is 

designed as an online process, in which the clustering is progressively fed by solutions 

generated by SM. A maximum number of clusters NC is an upper bound value that prevents 

creation of an unlimited number of clusters. A distance metric must be defined, a priori, 

allowing a similarity measure for the clustering process. 

The analyzer module (AM) component provides an analysis of each cluster, at regular 

intervals, indicating a probable promising cluster. A cluster density, δ, is a measure that 

indicates the activity level inside the cluster. For simplicity, δi counts the number of solutions 

generated by SM and allocated to the cluster i. Whenever δi reaches a certain threshold, 



indicating that some information template has become predominantly generated by SM, that 

information cluster must be better investigated to accelerate the convergence process on it. 

Finally, the local search (LS) component is a local search module that provides the 

exploitation of a supposed promising search area framed by the cluster. This process is 

executed each time AM finds a promising cluster and the local search is applied on the center 

of the cluster. LS can be considered as the search strategy β associated with the cluster, i.e., a 

problem-specific local search to be applied into the cluster. 

 

4. CS algorithm for CCCP 

The CS approach for the CCCP uses the computational structure of the CPMP proposed 

by Chaves, Correa and Lorena [3], which is represented by two vectors: the first vector 

represents the chosen medians and the second vector represents the point/median allocation. 

The Figure 2 shows an example of one solution with 10 points and 3 medians. 

 

 

Fig. 2. An example of representation. 

 

The evaluation of the objective function for the CCCP has a high computational cost as 

the centroids are unknown a priori. The CS avoids calculating this objective function every 

time; otherwise the computational times will become impracticable. So, in this paper we used 

the same CS approach developed by CPMP [3] and only the LS component find the centroids 

and calculate the objective function of the CCCP with information collected from the CPMP 

solution. 



The SM component, responsible for generating solutions to clustering process, was the 

Simulated Annealing (SA) metaheuristic [11], which is capable to generate a large number of 

different solutions for this process. The application details of the SA and the other 

components of the CS are now described, clarifying this approach. 

 

4.1  Simulated Annealing 

The component SM generates solutions to clustering process with a Simulated Annealing 

(SA) algorithm [11]. The SA needs to evaluate the objective function of all generated 

neighbor and has a high computational cost for direct application to CCCP. We then use in 

this paper the SA to solve the corresponding CPMP and the LS components to solve the 

CCCP. 

The SA algorithm starts from a random initial solution which is obtained choosing 

randomly the medians and assigning the points to the closer median that not exceed the cluster 

capacity. The next step follows the traditional SA algorithm schema. Given a temperature T, 

the algorithm randomly selects one of the moves to a neighborhood and computes the 

variation of the objective function. If it improves the current solution the move is accepted, 

otherwise there is a probability of acceptance that is lower in low temperatures. 

Four different moves have been defined to compose distinct neighborhoods from a 

solution s, named N
1
, N

2
, N

3
 and N

4
. N

1
 is obtained swapping the allocation of two points of 

different medians. N
2
 is obtained swapping a median with an assigned point to it. N

3
 is 

obtained dropping a point allocated to a median and allocating it to another median. Finally 

N
4
 is obtained swapping a median with any other non median point. 

The control parameters of the procedure are the rate of cooling or decrement factor α, the 

number of iterations for a fixed temperature (SAmax) and the initial temperature To. In this 

paper, we use α = 0.95, SAmax = 1000 and To = 1000000. 



 

4.2  The Clustering Process 

The IC is the CS’s core, working as a classifier, keeping in the system only relevant 

information, and guiding search intensification in the promising search areas. A maximum 

number of clusters (NC = 20) is defined a priori. The i
th
 cluster has its own center ci and a 

radius r, like the other clusters. 

Solutions generated by SA are passed to IC that attempts to group these solutions as 

known information in a cluster, chosen according to a distance metric. The solution activates 

the closest center ci (cluster center that minimizes the distance metric), causing some kind of 

disturbance on it. In this paper, the metric distance was the number of points assigned to 

different medians between the SA and the center of the cluster solutions. The dissimilarity 

increases when there are a large number of different medians between the SA and the cluster 

solution center. 

The disturbance is an assimilation process, in which the center of the cluster is updated by 

the newly generated solution. In this paper, this process is done by the path-relinking method 

[9] that generates several points (solutions) along the path that connects the solution generated 

by the SA and the one in the cluster center. The assimilation process is useful to apply 

intensification and diversification strategies inside the clusters. Again, in path-relinking we 

preferred to solve the CPMP because of the high computational cost for calculate the 

objective function of the CCCP. The new center ci is the best-evaluated solution obtained in 

the path. 

Path-relinking starts from two solutions. The first is the closest cluster center ci (sinitial). 

The second is the solution that comes from the SM component (sguide). The procedure starts by 

computing the symmetric difference between the two solutions ∆(sinitial, sguide), i.e. the set of 

moves needed to reach sguide from sinitial. A path of solutions is generated, linking sinitial and 



sguide. At each step, the procedure examines all moves m ∈ ∆(sinitial, sguide) from the current 

solution s and selects the one which results in the best cost solution, applying the best move 

(m*) to solution s (s⊕m*). The set of available moves is updated. The procedure terminates 

when sguide is reached, i.e. when ∆(sinitial, sguide) = ∅. The best solution s* in this path is 

returned by the algorithm. In this paper, one move is to swap a median of the sinitial by a 

median of the sguide, and to change the allocation of the points regarding the new median. 

Figure 3 illustrates the pseudo-code of the path-relinking and Figure 4 shows an example for a 

CCCP instance. 

 

procedure Path-relinking(sinitial , sguide) 

1. compute symmetric difference ∆(sinitial , sguide) 

2. f
 ∗
= ∞ 

3. s = sinitial 

4. while (∆(sinitial , sguide) ≠∅) 

5. analyze all moves m ∈ ∆(sinitial , sguide) 

6. find the best move m
∗
 

7. s = s ⊕ m
∗
 

8. update the available moves ∆(s⊕m∗
, sguide) = ∆(s, sguide)\{m

∗
} 

9. if f (s) < f 
∗
 

10. f 
∗
= f (s) 

11. s
∗
= s 

12. end-if 

13. end-while 

14. return s
∗
 

end procedure 

Fig. 3. Path-relinking algorithm 

 

The AM component is executed whenever a solution is assigned to a cluster, verifying if 

the cluster can be considered promising. A cluster becomes promising when it reaches a 

certain density δi, 

||
.
Clus

NS
PDi ≥δ  (6) 



where, NS is the number of solutions generated in the interval of analysis of the clusters, 

|Clus| is the number of clusters, and PD is the desirable cluster density beyond the normal 

density, obtained if NS were equally divided to all clusters. The center of a promising cluster 

is improved through the LS. 

 

 

Fig. 4. Path-relinking moves 

 

The LS component is activated when the AM discover a promising cluster. The LS 

implementation uses the Location-Allocation heuristic [13], which seeks to improve the 

center of the promising cluster. This heuristic is applied in the solution for the CPMP and for 

each new generated solution is calculated the coordinates of the centroids and the value of the 

objective function of CCCP. The choice of the Location-Allocation heuristic was based on the 

observation that the solution in the cluster center of CS have p medians and their allocated 

points, and, this solution can be improved by searching for a new median, swapping the 

current median by a non-median point assigned to it, and reallocating the points. We consider 

two steps for reallocating the points. The first one is to examine the points that were allocated 



to the current median and reallocate to the closest one. The second step is to examine the 

points assigned to the others medians and calculates the saving of moving of them to the new 

one, and if it improves the solution the point is reallocated to the new median. If the solution 

is improved, the process can be repeated until no more improvements occur. 

The whole CS algorithm pseudo-code is presented in Figure 5. 

 

procedure CS 

1. Create initial clusters of the CS randomly 

2. Create initial solution(sol) 

3. { SM component } 

4. IterT = 0; α = 0,95;   T = T0 

5. while (T > 0.0001) 

6. while (IterT < SAmax) 

7. IterT = IterT + 1 

8. Generate at random sol’ ∈ N
k
(sol) 

9. ∆ = f (sol’) – f (sol) 

10. if (∆ < 0) 
11. sol = sol’ 

12. else 

13. let x ∈ [0,1] 

14. if (x < e
-∆ /T 

) 

15. sol = sol’ 

16. end-while 

17. T = T * α 
18. IterT = 0 

19. { IC component } 

20. calculate the distance of the solution SA (sol) and the clusters of the CS 

21. insert the solution in the most similar cluster (ci) 

22. apply the assimilation process – path-relinking(sol, ci) 

23. { AM component } 

24. verify if the cluster can be considered promising. If so, the LS component 

is applied to it 

25. { LS component } 

26. apply the local heuristic to the promising cluster 

27. end-while 

end-procedure 

Fig. 5. Clustering Search (CS) algorithm 

 



5. Computational Results 

The CS was coded in C++ and the computational tests executed on a 3 GHz Pentium 4. 

Four problem sets are used in this tests: two sets composed of real data collected at the São 

José dos Campos city introduced by Lorena and Senne [12], that contains 6 problem instances 

named “SJC” and 5 problem instances named “p3038”, and two sets of instances introduced 

by Negreiros and Palhano [10], that contains 7 problem instances named “TA” and 7 problem 

instances named “Doni”, which are based in customers of a food distributor that operates in 

the metropolitan area of the Fortaleza city. Those instances and the best results of the CS for 

the CCCP are available at http://www.lac.inpe.br/~lorena/instancias.html.  

The parameters’ values for the CS approach were adjusted through several executions. 

The following parameters obtained the best results: 

– number of solutions generated at each analysis of the clusters NS = 200; 

– maximum number of clusters NC = 20; 

– density pressure PD = 2.5; 

Tables 1-4 give the results for the CCCP. The entries in the tables are: 

– number of demand points (n); 

– number of clusters (p); 

– the best solutions (best_sol) found by the VNS in Negreiros e Palhano [10]; 

– the best solution (best_sol), the Deviation (dev), that reflects the relative error 

of the average solution and the best solution found by the CS algorithm, and it 

is calculated by (average solution of CS – best solution of CS) / (best solution 

of CS) * 100, the average running time to find the best solution during the CS 

execution (best_time) in seconds and the average total running time of the CS 

execution (Time) in seconds; and 



– the best solution (best_sol), the Deviation (dev), calculated by (average 

solution of SA – best solution of SA) / ( best solution of SA) * 100, and the 

average total running time of the SA execution (Time). 

The best solutions found (best_sol), the deviations (dev) and the averages running times 

were considered to compare the approaches. The values in boldface show the best objective 

function values for each instance,  the best CS results are followed by an asterisk (*) and the 

best VNS [10] results are followed by two asterisks (**). Each instance has been run for 10 

replications. The comparison of computation times between CS and Negreiros and Palhano’s 

algorithm was not possible as they were tested on different machines and also to the fact that 

this information is not completely clear in [10].  

Table 1 gives the results for the TA instances. One can see that the CS approach finds the 

best-known solutions for all instances. For instances with 50, 70, 90 and 100 points, it finds a 

solution better than the previously best known. The CS algorithm achieves very good 

solutions within much shorter computation times. The SA, without the clustering process, has 

worse results than CS in quality of solutions. The CS algorithm was very robust producing 

zero deviations. 

Table 1 

CCCP: TA instances. Times in seconds 

  VNS [10]                      CS                SA 

n p    best_sol  best_sol dev best_time Time  best_sol dev Time 

25 5 1251.44 1251.44 0.00 0.30   2.86   1273.46 0.00 2.43 

50 5 4476.12 4474.52* 0.00 1.06   5.12 4478.15 0.84 3.62 

60 5 5356.58 5356.58 0.00 0.64   6.13 5370.05 0.17 3.98 

70 5 6241.55 6240.67* 0.00 0.57   7.38 6267.89 0.00 4.73 

80 7 5730.28 5730.28 0.00 4.00 10.04 5780.55 0.07 5.88 

90 4 9103.21 9069.85* 0.00 0.67   9.61 9069.85 0.00 5.33 

100 6 8122.67 8102.04* 0.00 3.81 12.68 8153.64 0.03 6.75 

 



Table 2 reports the results of computational experiments with the SJC instances. In this 

case, the CS algorithm again has better results in all tests, with new best known solutions for 

all instances. The running times of the CS algorithm were very competitive and the results of 

the CS were better than the SA without the clustering process. 

Table 2 

CCCP: SJC instances. Times in seconds 

  VNS [10]                        CS               SA 

n p    best_sol best_sol dev best_time   Time  best_sol dev Time 

100 10 17696.53 17359.75* 0.02     7.10   14.66 17363.47 0.31   7.99 

200 15 33423.84 33181.65* 0.00   15.70   49.51 33458.40 0.39 17.05 

300 25 47985.29 45366.35* 0.06   78.17 144.40 46847.61 1.14 35.62 

300 30       - 40695.46* 0.07 100.79 184.24 41450.63 1.57 39.99 

402 30 66689.96 61944.85* 0.13 106.23 262.59 64981.66 1.69 54.21 

402 40      - 52214.55* 0.14 229.84 441.13 53735.96 2.06 67.66 

 

The results of Table 3 refer to p3038 instances. The results for these instances were much 

better than the solutions found in [10], albeit the large processing times. The large number of 

clusters (p ≥ 600) is the probable cause of the high computational cost, as for those instances 

the path-relinking is responsible for more than 40% of the running time of CS. The results of 

the SA were worse than the CS, but they are close of the results found in [10]. 

Table 3 

CCCP: p3038 instances. Times in seconds 

  VNS [10]                       CS              SA 

n p     best_sol      best_sol dev best_time Time     best_sol dev Time 

3038 600 192024.83 129194.11* 0.59 27634.66 38116.25 194541.04 1.37 1263.08 

3038 700 176731.07 117295.47* 0.87 18607.20 43231.23 177148.48 2.24 4055.09 

3038 800 184502.38 109532.61* 1.25 20256.49 52908.44 169045.19 1.31 1676.25 

3038 900 176781.51 102458.93* 1.87 30307.64 61171.45 163751.56 0.45 1869.50 

3038 1000 159139.89   97771.67* 2.97 36588.77 68466.73 153564.41 2.94 1946.65 

 



Table 4 shows the results obtained for the Doni instances. In this case, the CS algorithm 

fails to find the best-known solution for 2 instances, but the CS found 5 new best known 

solutions. The running times of the CS algorithm were very competitive and the results of the 

CS were better than the SA. 

Table 4 

CCCP: Doni instances. Times in seconds 

  VNS [10]                        CS                 SA 

n p      best_sol   best_sol dev best_time Time   best_sol dev Time 

1000 6   3021.41**   3022.26 0.03   133.26     468.22   3138.67   2.75   38.00 

2000 6   6080.70**   6372.81 0.01   461.47     879.80   6985.30   4.22   98.95 

3000 8   8769.05   8446.08* 0.12   890.94   2176.12   9653.27   7.02 167.65 

4000 10 11516.14 10854.48* 0.81 3547.81   8367.95 13328.16   3.72 253.97 

5000 12 11635.18 11134.94* 0.26 4209.36 11486.72 13920.49   3.01 366.65 

10000 23 18443.50 15928.38* 1.80 5122.72 17851.72 29102.49   1.56 505.57 

13221 30 23478.79 20291.52* 0.64 7929.99 19511.34 29484.66 10.46 861.44 

 

6. Conclusions 

This paper has presented a solution for the Capacitated Centred Clustering Problem 

(CCCP) using the Clustering Search (CS) algorithm that uses the concept of hybrid 

metaheuristics, combining metaheuristics with a local search in a clustering process. The CS 

has been applied with success in some combinatorial optimization problems, such as the 

pattern sequencing problem [14], the prize collecting traveling salesman problem [3], the 

capacitated p-median problem [4], flowshop scheduling [17], and others. 

The idea of the CS is to avoid applying a local search heuristic to all solutions generated 

by a metaheuristic, which can make the search process impracticable because of time 

consumption, mainly when the heuristic has a high computational cost. The CS detects the 

promising regions in the search space during the solution generation process and applies the 



local search heuristics only in these regions, i.e., to detect promising regions becomes an 

interesting alternative preventing the indiscriminate application of such heuristics. 

This paper reports results of different classes of instances to the CCCP found by the CS, 

Simulated Annealing (SA) without the clustering process and the VNS proposed by [10]. The 

CS got better results than SA and VNS [10] in nearly all instances producing several new best 

solutions for those instances. The results also show that the CS approach is competitive for 

solving the CCCP in reasonable computational times. 

One important difference between the CS and the VNS [10] is the fact of the VNS directly 

solves the CCCP whilst the CS solves the CPMP and calculates the objective function of the 

CCCP only when the LS component is applied, which decreased the CS computational times. 

Further studies can be done analyzing others metaheuristics to generate solutions for the 

clustering process of the CS, such as the Ant Colony System, Tabu Search and Genetic 

Algorithm, and by implementing new local search heuristics for the CCCP. 
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