
Clustering Search Algorithm for the

Capacitated Centred Clustering Problem

Antonio Augusto Chaves, Luiz Antonio Nogueira Lorena
*

LAC – Laboratory of Computing and Applied Mathematics, INPE – National Institute for Space Research

12227-010 São José dos Campos – SP, Brazil.

Abstract

The Capacitated Centred Clustering Problem (CCCP) consists in partitioning a set of n points

into p disjoint clusters with a known capacity. Each cluster is specified by a centroid. The

objective is to minimize the total dissimilarity within each cluster, such that a given capacity

limit of the cluster is not exceeded. This paper presents a solution procedure for the CCCP,

using the hybrid metaheuristic Clustering Search (CS), whose main idea is to identify

promising areas of the search space by generating solutions through a metaheuristic and

clustering them into groups that are then further explored with local search heuristics.

Computational results in test problems of the literature show that the CS found a significant

number of new best known solutions in reasonable computational times.

Keywords: Clustering Problems, Clustering Search Algorithm, Hybrid Metaheuristics.

*
 Corresponding author.

 e-mail address: lorena@lac.inpe.br fax number: +55-012-39456375 (L.A.N. Lorena).

1. Introduction

The location of facilities is a central problem for strategic decisions. Many applications

have been explored in areas such as telecommunication, industrial transportation and

distribution, with applications on location of off-shore platforms for oil exploration, garbage

collection zones, and others. One of the most well-known facility-location problems is the p-

Median Problem. This problem consists of locating p facilities in a given space (e.g.,

Euclidean space) which satisfy n demand points in such a way that the total sum of distances

between each demand point and its nearest facility is minimized [5].

Another classical location problem is the Capacitated p-Median Problem (CPMP), which

have various applications in many practical situations. It can be described as follows: given a

set of n points (customers), each of them with a known demand, the problem consists of

finding p medians and assign each point to exactly one median such that the total distance of

assigned points to their corresponding medians is minimized, and the capacity limit on the

medians may not be exceeded [16].

This paper presents a hybrid heuristic approach to solve the Capacitated Centred

Clustering Problem (CCCP). The CCCP is a generalization of the CPMP, which can be

viewed as the problem of defining a set of p clusters with limited capacity and minimum

dissimilarity between the formed clusters, where each cluster has a centroid located at the

geometric centre of its points and covers all the demands of a set of n points. The main

difference to the CPMP, is that clusters are centred at the “average” of their points’ co-

ordinates, where for the CPMP, the clusters are centred by their medians.

The following formulation is proposed by Negreiros and Palhano [10]:

2

() min i j ij

i I j J

CCCP a x y
∈ ∈

−∑∑ (1)

Subject to,

Iiy
Jj

ij ∈∀=∑
∈

1 (2)

∑
∈

∈∀=
Ii

jij Jjny (3)

∑
∈

∈∀≤
Ii

jjiji Jjxnya (4)

∑
∈

≤
Ii

jiji Qyq (5)

JjIiyNnx ijj

l

j ∈∀∈∀∈∈ℜ∈ ,}1,0{,, (6)

Where,

− I is the set of demand points;

− J is the set of clusters, with |J| = p;

− ai is the geometric position of the point i;

− jx is the geometric position of the centroid of a cluster j;

− yij = 1, if the point i is assigned to cluster j, and yij = 0 otherwise;

− nj is the number of points in the cluster j;

− qi is the demand of the point i;

− Qj is the capacity of each cluster j;

In the above model, the objective function (1) minimizes the total distance between each

point and the centroid of the cluster that it is allocated. Notice that the geometric position of

the centroid depends on the points that compose the cluster, so, the position of the centroid is

an unknown parameter a priori. Constraints (2) impose that each point is allocated to exactly

one cluster. Constraints (3) give the number of points in each cluster. Constraints (4) locate

the centroid of each cluster at its geometric center. Constraint (5) imposes that a total cluster

capacity must be respected. Constraint (6) defines the decision variables, and the upper limits

to the number of individuals per group.

The CCCP is known to be NP-hard [10]. Besides, the non-linearity of the objective

function gets hard the application of exact methods to solve the CCCP. So, the problem is

usually solved through heuristic approaches.

In this paper, the CCCP is solved using a hybrid metaheuristic known as Clustering

Search (CS). The CS, proposed by Oliveira and Lorena [14, 15], consists in detecting

promising areas (clusters) of the search space using a metaheuristic that generates solutions to

be clustered. These promising areas should be explored through local search methods as soon

as they are discovered. The metaheuristic Simulated Annealing [11] is used to generate the

solutions for the clustering process.

The remainder of the paper is organized as follows. Section 2 reviews previous works

about CCCP and similar problems. Section 3 describes the hybrid metaheuristic Clustering

Search (CS) that was used in this paper and section 4 present the CS algorithm applied to

CCCP. Section 5 presents the computational results and section 6 concludes the paper.

2. Literature Review

The CCCP was recently introduced by Negreiros e Palhano [10]. The authors presented a

two-phase polynomial heuristic algorithm, where the first phase uses the Forgy algorithm [8]

to build an initial solution oriented by a log-polynomial algorithm using structured geometric

balanced q-trees. The second phase is a refinement of the Variable Neighborhood Search

(VNS).

The CCCP is not intensively studied like other classical location problems. The CPMP

have various heuristics and metaheuristics proposed in the literature. Osman and Christofides

[16] propose a Simulated Annealing and Tabu Search method. Lorena and Senne [13] explore

local search heuristics based on location-allocation procedures and Lorena and Senne [12] use

column generation to CPMP. Diaz and Fernández [6] examine a hybrid scatter search and

path-relinking method and Scheuerer and Wendolsky [18] a scatter search method. Recently,

Fleszar and Hindi [7] propose a variable neighborhood search heuristic and Chaves, Correa

and Lorena [4] present a CS algorithm to solve the CPMP.

Another similar problem is the capacitated multisource Weber problem, also referred to as

the capacitated continuous location-allocation problem [19]. The continuous problem requires

the generation of a given number m of capacitated facilities in the continuous space and the

allocation of n customers or fixed points to each one. The facility can be located anywhere in

the continuous space. The aim is to satisfy the demand of the customers and minimize the

total transportation (or service) cost. Brimberg et al. [2] presents a survey on continuous

location-allocation problem, giving an overview of exact solution methods and approximated

methods (heuristics). Recently, Aras, Orbay and Altinel [1] propose three heuristic methods

based on a new mixed integer linear programming formulation of the problem.

3. Clustering Search algorithm

The Clustering Search (CS) algorithm generalizes the Evolutionary Clustering Search

(ECS), proposed by Oliveira and Lorena [14, 15], that employs clustering for detecting

promising areas of the search space. It is particularly interesting to find out such areas as soon

as possible to change the search strategy over them. An area can be seen as a search subspace

defined by a neighborhood relationship in the metaheuristic coding space. In the ECS, a

clustering process is executed simultaneously to an evolutionary algorithm, identifying groups

of individuals that deserve special attention. In the CS, the evolutionary algorithm is

substituted by distinct metaheuristics, such as Simulated Annealing, GRASP, Tabu Search

and others.

The CS attempts to locate promising search areas by framing them by clusters. A cluster

can be defined as a tuple G = {c; r; β } where c, r, and β are, respectively, the center and the

radius of the area, and a search strategy associated to the cluster.

The center of the cluster c is a solution that represents the cluster, identifying its location

inside the search space. Initially, the centers are obtained randomly, but progressively, they

tend to fall along really promising points in the close subspace. The radius r establishes the

maximum distance, starting from the center, for which a solution can be associated to the

cluster. The search strategy β is a systematic search intensification, in which solutions of a

cluster interact among themselves along the clustering process, generating new solutions.

The CS consists of four conceptually independent components with different attributions:

− a search metaheuristic (SM);

− an iterative clustering (IC);

− an analyzer module (AM);

− a local search module (LS).

Figure 1 shows the four components and the CS conceptual design.

The search metaheuristic (SM) component works as a full-time solution generator. The

algorithm is executed independently of the remaining components and must be able to provide

a continuous generation of solutions to the clustering process. Clusters are simultaneously

maintained to represent these solutions. This entire process works like an infinite loop, in

which solutions are generated along the iterations.

Fig. 1. Diagram for the CS algorithm.

The iterative clustering (IC) component aims to gather similar solutions into groups,

identifying a representative cluster center for them. To avoid extra computational effort, IC is

designed as an online process, in which the clustering is progressively fed by solutions

generated by SM. A maximum number of clusters NC is an upper bound value that prevents

creation of an unlimited number of clusters. A distance metric must be defined, a priori,

allowing a similarity measure for the clustering process.

The analyzer module (AM) component provides an analysis of each cluster, at regular

intervals, indicating a probable promising cluster. A cluster density, δ, is a measure that

indicates the activity level inside the cluster. For simplicity, δi counts the number of solutions

generated by SM and allocated to the cluster i. Whenever δi reaches a certain threshold,

indicating that some information template has become predominantly generated by SM, that

information cluster must be better investigated to accelerate the convergence process on it.

Finally, the local search (LS) component is a local search module that provides the

exploitation of a supposed promising search area framed by the cluster. This process is

executed each time AM finds a promising cluster and the local search is applied on the center

of the cluster. LS can be considered as the search strategy β associated with the cluster, i.e., a

problem-specific local search to be applied into the cluster.

4. CS algorithm for CCCP

The CS approach for the CCCP uses the computational structure of the CPMP proposed

by Chaves, Correa and Lorena [3], which is represented by two vectors: the first vector

represents the chosen medians and the second vector represents the point/median allocation.

The Figure 2 shows an example of one solution with 10 points and 3 medians.

Fig. 2. An example of representation.

The evaluation of the objective function for the CCCP has a high computational cost as

the centroids are unknown a priori. The CS avoids calculating this objective function every

time; otherwise the computational times will become impracticable. So, in this paper we used

the same CS approach developed by CPMP [3] and only the LS component find the centroids

and calculate the objective function of the CCCP with information collected from the CPMP

solution.

The SM component, responsible for generating solutions to clustering process, was the

Simulated Annealing (SA) metaheuristic [11], which is capable to generate a large number of

different solutions for this process. The application details of the SA and the other

components of the CS are now described, clarifying this approach.

4.1 Simulated Annealing

The component SM generates solutions to clustering process with a Simulated Annealing

(SA) algorithm [11]. The SA needs to evaluate the objective function of all generated

neighbor and has a high computational cost for direct application to CCCP. We then use in

this paper the SA to solve the corresponding CPMP and the LS components to solve the

CCCP.

The SA algorithm starts from a random initial solution which is obtained choosing

randomly the medians and assigning the points to the closer median that not exceed the cluster

capacity. The next step follows the traditional SA algorithm schema. Given a temperature T,

the algorithm randomly selects one of the moves to a neighborhood and computes the

variation of the objective function. If it improves the current solution the move is accepted,

otherwise there is a probability of acceptance that is lower in low temperatures.

Four different moves have been defined to compose distinct neighborhoods from a

solution s, named N
1
, N

2
, N

3
 and N

4
. N

1
 is obtained swapping the allocation of two points of

different medians. N
2
 is obtained swapping a median with an assigned point to it. N

3
 is

obtained dropping a point allocated to a median and allocating it to another median. Finally

N
4
 is obtained swapping a median with any other non median point.

The control parameters of the procedure are the rate of cooling or decrement factor α, the

number of iterations for a fixed temperature (SAmax) and the initial temperature To. In this

paper, we use α = 0.95, SAmax = 1000 and To = 1000000.

4.2 The Clustering Process

The IC is the CS’s core, working as a classifier, keeping in the system only relevant

information, and guiding search intensification in the promising search areas. A maximum

number of clusters (NC = 20) is defined a priori. The i
th
 cluster has its own center ci and a

radius r, like the other clusters.

Solutions generated by SA are passed to IC that attempts to group these solutions as

known information in a cluster, chosen according to a distance metric. The solution activates

the closest center ci (cluster center that minimizes the distance metric), causing some kind of

disturbance on it. In this paper, the metric distance was the number of points assigned to

different medians between the SA and the center of the cluster solutions. The dissimilarity

increases when there are a large number of different medians between the SA and the cluster

solution center.

The disturbance is an assimilation process, in which the center of the cluster is updated by

the newly generated solution. In this paper, this process is done by the path-relinking method

[9] that generates several points (solutions) along the path that connects the solution generated

by the SA and the one in the cluster center. The assimilation process is useful to apply

intensification and diversification strategies inside the clusters. Again, in path-relinking we

preferred to solve the CPMP because of the high computational cost for calculate the

objective function of the CCCP. The new center ci is the best-evaluated solution obtained in

the path.

Path-relinking starts from two solutions. The first is the closest cluster center ci (sinitial).

The second is the solution that comes from the SM component (sguide). The procedure starts by

computing the symmetric difference between the two solutions ∆(sinitial, sguide), i.e. the set of

moves needed to reach sguide from sinitial. A path of solutions is generated, linking sinitial and

sguide. At each step, the procedure examines all moves m ∈ ∆(sinitial, sguide) from the current

solution s and selects the one which results in the best cost solution, applying the best move

(m*) to solution s (s⊕m*). The set of available moves is updated. The procedure terminates

when sguide is reached, i.e. when ∆(sinitial, sguide) = ∅. The best solution s* in this path is

returned by the algorithm. In this paper, one move is to swap a median of the sinitial by a

median of the sguide, and to change the allocation of the points regarding the new median.

Figure 3 illustrates the pseudo-code of the path-relinking and Figure 4 shows an example for a

CCCP instance.

procedure Path-relinking(sinitial , sguide)

1. compute symmetric difference ∆(sinitial , sguide)

2. f
 ∗
= ∞

3. s = sinitial

4. while (∆(sinitial , sguide) ≠∅)

5. analyze all moves m ∈ ∆(sinitial , sguide)

6. find the best move m
∗

7. s = s ⊕ m
∗

8. update the available moves ∆(s⊕m∗
, sguide) = ∆(s, sguide)\{m

∗
}

9. if f (s) < f
∗

10. f
∗
= f (s)

11. s
∗
= s

12. end-if

13. end-while

14. return s
∗

end procedure

Fig. 3. Path-relinking algorithm

The AM component is executed whenever a solution is assigned to a cluster, verifying if

the cluster can be considered promising. A cluster becomes promising when it reaches a

certain density δi,

||
.
Clus

NS
PDi ≥δ (6)

where, NS is the number of solutions generated in the interval of analysis of the clusters,

|Clus| is the number of clusters, and PD is the desirable cluster density beyond the normal

density, obtained if NS were equally divided to all clusters. The center of a promising cluster

is improved through the LS.

Fig. 4. Path-relinking moves

The LS component is activated when the AM discover a promising cluster. The LS

implementation uses the Location-Allocation heuristic [13], which seeks to improve the

center of the promising cluster. This heuristic is applied in the solution for the CPMP and for

each new generated solution is calculated the coordinates of the centroids and the value of the

objective function of CCCP. The choice of the Location-Allocation heuristic was based on the

observation that the solution in the cluster center of CS have p medians and their allocated

points, and, this solution can be improved by searching for a new median, swapping the

current median by a non-median point assigned to it, and reallocating the points. We consider

two steps for reallocating the points. The first one is to examine the points that were allocated

to the current median and reallocate to the closest one. The second step is to examine the

points assigned to the others medians and calculates the saving of moving of them to the new

one, and if it improves the solution the point is reallocated to the new median. If the solution

is improved, the process can be repeated until no more improvements occur.

The whole CS algorithm pseudo-code is presented in Figure 5.

procedure CS

1. Create initial clusters of the CS randomly

2. Create initial solution(sol)

3. { SM component }

4. IterT = 0; α = 0,95; T = T0

5. while (T > 0.0001)

6. while (IterT < SAmax)

7. IterT = IterT + 1

8. Generate at random sol’ ∈ N
k
(sol)

9. ∆ = f (sol’) – f (sol)

10. if (∆ < 0)
11. sol = sol’

12. else

13. let x ∈ [0,1]

14. if (x < e
-∆ /T

)

15. sol = sol’

16. end-while

17. T = T * α
18. IterT = 0

19. { IC component }

20. calculate the distance of the solution SA (sol) and the clusters of the CS

21. insert the solution in the most similar cluster (ci)

22. apply the assimilation process – path-relinking(sol, ci)

23. { AM component }

24. verify if the cluster can be considered promising. If so, the LS component

is applied to it

25. { LS component }

26. apply the local heuristic to the promising cluster

27. end-while

end-procedure

Fig. 5. Clustering Search (CS) algorithm

5. Computational Results

The CS was coded in C++ and the computational tests executed on a 3 GHz Pentium 4.

Four problem sets are used in this tests: two sets composed of real data collected at the São

José dos Campos city introduced by Lorena and Senne [12], that contains 6 problem instances

named “SJC” and 5 problem instances named “p3038”, and two sets of instances introduced

by Negreiros and Palhano [10], that contains 7 problem instances named “TA” and 7 problem

instances named “Doni”, which are based in customers of a food distributor that operates in

the metropolitan area of the Fortaleza city. Those instances and the best results of the CS for

the CCCP are available at http://www.lac.inpe.br/~lorena/instancias.html.

The parameters’ values for the CS approach were adjusted through several executions.

The following parameters obtained the best results:

– number of solutions generated at each analysis of the clusters NS = 200;

– maximum number of clusters NC = 20;

– density pressure PD = 2.5;

Tables 1-4 give the results for the CCCP. The entries in the tables are:

– number of demand points (n);

– number of clusters (p);

– the best solutions (best_sol) found by the VNS in Negreiros e Palhano [10];

– the best solution (best_sol), the Deviation (dev), that reflects the relative error

of the average solution and the best solution found by the CS algorithm, and it

is calculated by (average solution of CS – best solution of CS) / (best solution

of CS) * 100, the average running time to find the best solution during the CS

execution (best_time) in seconds and the average total running time of the CS

execution (Time) in seconds; and

– the best solution (best_sol), the Deviation (dev), calculated by (average

solution of SA – best solution of SA) / (best solution of SA) * 100, and the

average total running time of the SA execution (Time).

The best solutions found (best_sol), the deviations (dev) and the averages running times

were considered to compare the approaches. The values in boldface show the best objective

function values for each instance, the best CS results are followed by an asterisk (*) and the

best VNS [10] results are followed by two asterisks (**). Each instance has been run for 10

replications. The comparison of computation times between CS and Negreiros and Palhano’s

algorithm was not possible as they were tested on different machines and also to the fact that

this information is not completely clear in [10].

Table 1 gives the results for the TA instances. One can see that the CS approach finds the

best-known solutions for all instances. For instances with 50, 70, 90 and 100 points, it finds a

solution better than the previously best known. The CS algorithm achieves very good

solutions within much shorter computation times. The SA, without the clustering process, has

worse results than CS in quality of solutions. The CS algorithm was very robust producing

zero deviations.

Table 1

CCCP: TA instances. Times in seconds

 VNS [10] CS SA

n p best_sol best_sol dev best_time Time best_sol dev Time

25 5 1251.44 1251.44 0.00 0.30 2.86 1273.46 0.00 2.43

50 5 4476.12 4474.52* 0.00 1.06 5.12 4478.15 0.84 3.62

60 5 5356.58 5356.58 0.00 0.64 6.13 5370.05 0.17 3.98

70 5 6241.55 6240.67* 0.00 0.57 7.38 6267.89 0.00 4.73

80 7 5730.28 5730.28 0.00 4.00 10.04 5780.55 0.07 5.88

90 4 9103.21 9069.85* 0.00 0.67 9.61 9069.85 0.00 5.33

100 6 8122.67 8102.04* 0.00 3.81 12.68 8153.64 0.03 6.75

Table 2 reports the results of computational experiments with the SJC instances. In this

case, the CS algorithm again has better results in all tests, with new best known solutions for

all instances. The running times of the CS algorithm were very competitive and the results of

the CS were better than the SA without the clustering process.

Table 2

CCCP: SJC instances. Times in seconds

 VNS [10] CS SA

n p best_sol best_sol dev best_time Time best_sol dev Time

100 10 17696.53 17359.75* 0.02 7.10 14.66 17363.47 0.31 7.99

200 15 33423.84 33181.65* 0.00 15.70 49.51 33458.40 0.39 17.05

300 25 47985.29 45366.35* 0.06 78.17 144.40 46847.61 1.14 35.62

300 30 - 40695.46* 0.07 100.79 184.24 41450.63 1.57 39.99

402 30 66689.96 61944.85* 0.13 106.23 262.59 64981.66 1.69 54.21

402 40 - 52214.55* 0.14 229.84 441.13 53735.96 2.06 67.66

The results of Table 3 refer to p3038 instances. The results for these instances were much

better than the solutions found in [10], albeit the large processing times. The large number of

clusters (p ≥ 600) is the probable cause of the high computational cost, as for those instances

the path-relinking is responsible for more than 40% of the running time of CS. The results of

the SA were worse than the CS, but they are close of the results found in [10].

Table 3

CCCP: p3038 instances. Times in seconds

 VNS [10] CS SA

n p best_sol best_sol dev best_time Time best_sol dev Time

3038 600 192024.83 129194.11* 0.59 27634.66 38116.25 194541.04 1.37 1263.08

3038 700 176731.07 117295.47* 0.87 18607.20 43231.23 177148.48 2.24 4055.09

3038 800 184502.38 109532.61* 1.25 20256.49 52908.44 169045.19 1.31 1676.25

3038 900 176781.51 102458.93* 1.87 30307.64 61171.45 163751.56 0.45 1869.50

3038 1000 159139.89 97771.67* 2.97 36588.77 68466.73 153564.41 2.94 1946.65

Table 4 shows the results obtained for the Doni instances. In this case, the CS algorithm

fails to find the best-known solution for 2 instances, but the CS found 5 new best known

solutions. The running times of the CS algorithm were very competitive and the results of the

CS were better than the SA.

Table 4

CCCP: Doni instances. Times in seconds

 VNS [10] CS SA

n p best_sol best_sol dev best_time Time best_sol dev Time

1000 6 3021.41** 3022.26 0.03 133.26 468.22 3138.67 2.75 38.00

2000 6 6080.70** 6372.81 0.01 461.47 879.80 6985.30 4.22 98.95

3000 8 8769.05 8446.08* 0.12 890.94 2176.12 9653.27 7.02 167.65

4000 10 11516.14 10854.48* 0.81 3547.81 8367.95 13328.16 3.72 253.97

5000 12 11635.18 11134.94* 0.26 4209.36 11486.72 13920.49 3.01 366.65

10000 23 18443.50 15928.38* 1.80 5122.72 17851.72 29102.49 1.56 505.57

13221 30 23478.79 20291.52* 0.64 7929.99 19511.34 29484.66 10.46 861.44

6. Conclusions

This paper has presented a solution for the Capacitated Centred Clustering Problem

(CCCP) using the Clustering Search (CS) algorithm that uses the concept of hybrid

metaheuristics, combining metaheuristics with a local search in a clustering process. The CS

has been applied with success in some combinatorial optimization problems, such as the

pattern sequencing problem [14], the prize collecting traveling salesman problem [3], the

capacitated p-median problem [4], flowshop scheduling [17], and others.

The idea of the CS is to avoid applying a local search heuristic to all solutions generated

by a metaheuristic, which can make the search process impracticable because of time

consumption, mainly when the heuristic has a high computational cost. The CS detects the

promising regions in the search space during the solution generation process and applies the

local search heuristics only in these regions, i.e., to detect promising regions becomes an

interesting alternative preventing the indiscriminate application of such heuristics.

This paper reports results of different classes of instances to the CCCP found by the CS,

Simulated Annealing (SA) without the clustering process and the VNS proposed by [10]. The

CS got better results than SA and VNS [10] in nearly all instances producing several new best

solutions for those instances. The results also show that the CS approach is competitive for

solving the CCCP in reasonable computational times.

One important difference between the CS and the VNS [10] is the fact of the VNS directly

solves the CCCP whilst the CS solves the CPMP and calculates the objective function of the

CCCP only when the LS component is applied, which decreased the CS computational times.

Further studies can be done analyzing others metaheuristics to generate solutions for the

clustering process of the CS, such as the Ant Colony System, Tabu Search and Genetic

Algorithm, and by implementing new local search heuristics for the CCCP.

Acknowledgments

The authors acknowledge the useful comments and suggestions of an anonymous referee

and the CNPq by a partial research support.

References

1. Aras N, Orbay M, Altinel IK. Efficient heuristics for the rectilinear distance capacitated

multi-facilityWeber problem. Journal of the Operational Research Society, 2008; 59: 64

– 79.

2. Brimberg J, Hansen P, Mladenovic N, Salhi S. A Survey of Solution Methods for the

Continuous Location-Allocation Problem. International Journal of Operations Research,

to appear

3. Chaves AA, Lorena LAN. Hybrid algorithms with detection of promising areas for the

prize collecting traveling salesman problem. International Conference on Hybrid

Intelligent Systems, IEEE Computer Society, 2005; 49 – 54.

4. Chaves AA, Correa FA, Lorena LAN. Clustering Search Heuristic for the Capacitated p-

median Problem Springer Advances in Software Computing Series, 2007; 44: 136 – 143.

5. Christofides N, Beasley JE. A tree search algorithm for the p-median problem, European

Journal of Operational Research, 1981; 10: 196 – 204.

6. Diaz JA, Fernandez E. Hybrid scatter search and path relinking for the capacitated p-

median problem. European Journal of Operational Research, 2006; 169: 570 – 585.

7. Fleszar K, Hindi DS. An effective VNS for the capacitated p-median problem. European

Journal of Operational Research, 2007, doi:10.1016/j.ejor.2006.12.055.

8. Forgy EW. Cluster analysis of multivariate data: efficiency versus interpretability of

classifications. Biometrics, 1965; 21(3): 768.

9. Glover F. Tabu search and adaptive memory programming: Advances, applications and

challenges. Interfaces in Computer Science and Operations Research , 1996; 1–75.

10. Negreiros MJN, Palhano AWC. The Capacitated Centred Clustering Problem. Computers

and Operations Research, 2006; 33 (6): 1639 – 1663.

11. Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by Simulated Annealing, Science,

1983; 220 (4598): 671 – 680.

12. Lorena LAN, Senne ELF. A column generation approach to capacitated p-median

problems. Computers and Operational Research, 1994; 31: 863 – 876.

13. Lorena LAN, Senne ELF. Local search heuristics for capacitated p-median problems,

Networks and Spatial Economics, 2003; 3 (4): 407 – 419.

14. Oliveira ACM, Lorena LAN. Detecting promising areas by evolutionary clustering

search.. Advances in Artificial Intelligence. Springer Lecture Notes in Artificial

Intelligence Series, 2004; 385 – 394.

15. Oliveira ACM, Lorena LAN. Hybrid evolutionary algorithms and clustering search. In

Grosan, C., Abraham, A., Ishibuchi, H., eds.: Hybrid Evolutionary Systems - Studies in

Computational Intelligence. Springer SCI Series, 2007; 81 – 102.

16. Osman IH, Christofides N. Capacitated clustering problems by hybrid simulated

annealing and tabu search. International Transactions in Operational Research, 1994; 1

(3): 317 – 336.

17. Ribeiro G, Nagano MS, Lorena LAN. Hybrid Evolutionary Algorithm for Flowtime

Minimisation in No-Wait Flowshop Scheduling. Springer-Verlag Berlin Heidelberg,

2007; 1099 – 1109.

18. Scheuerer S, Wendolsky R. A scatter search heuristic for the capacitated clustering

problem. European Journal of Operational Research, 2006; 169: 533 – 547.

19. Wesolowsky G. The Weber problem: history and perspectives. Location Science, 1993;

1: 5 – 23.

