The problems are generated with:

- n = (20, 40, 60, 80, 100, 200, 300, 400, 500) vertices;
- prizes p_i in [1, 100];
- penalties γ_i in [1, N] with N \in {100, 1000, 10,000}; and,
- travel costs c_{ij} in [1, M] with M \in {1000, 10,000}.

The value of minimum prize (p_{min}) has been generated as $\left[\sigma \sum_{i=1}^{n} p_{i}\right]$ with $\sigma \in \{0.2, 0.5, 0.8\}$

The name of the problems have these information: problem_N_Prize_Penalty_TravelCost.pctsp

One example of these instance is: problem 5 100 100 1000.pctsp

THE PROBLEM HAS 5 NODES PRIZE ASSOCIATED TO EACH NODES p_i -> [1,100] 0 10 17 4 13 PENALTY ASSOCIATED TO EACH NODES gama_i -> [1,100] 1000000 57 70 43 55 TRAVEL COST BETWEEN THE NODES c_ij -> [1,1000] 0 274 163 189 282 274 0 978 857 422 163 978 0 102 441 189 857 102 0 382 282 422 441 382 0