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Abstract

The Prize Collecting Travelling Salesman Problem
(PCTSP) is a generalization of the Travelling Salesman
Problem. It can be associated to a salesman that collects
a prize in each city visited and pays a penalty for each
city not visited, with travel costs among the cities. The
objective is to minimize the sum of the costs of the trip
and penalties, including in the tour an enough number
of cities that allow collecting a minimum prize. This
paper approaches new heuristics to solve the PCTSP,
using a hybrid evolutionary algorithm, called Evolutionary
Clustering Search (ECS) and an adaptation of this, called
∗CS, where the evolutionary component will be substituted
by the metaheuristics GRASP and VNS. The validation of
the obtained solutions will be through the comparison with
the results found by a commercial solver that was able to
solve only small size problems.

1 Introduction

This paper presents a new hybrid heuristic to solve the
Prize Collecting Travelling Salesman Problem (PCTSP).
The PCTSP is a generalization of the Travelling Salesman
Problem, where a salesman collects a prize pi in each city
visited and pays a penalty γi for each city not visited,
considering travel costs cij between the cities. The problem
intend to minimize the sum of travel costs and penalties
paid, while including in the tour an enough number of cities
that allow collecting a minimum prize (pmin), defined a
priori.

The PCTSP is of difficult solution due the large number
of possible solutions. Admitting that the travel costs
between the cities are symmetrical, the total number of
possible solutions is (n − 1)!/2, being classified in the
literature as NP-hard.

The PCTSP was introduced by Balas [2] as a model for

scheduling the daily operations of a steel rolling mill. The
author presented some structural properties of the problem
and two mathematical formulations. Bounding procedures,
based on different relaxations, were developed by Fischetti
and Toth [7] and Dell’Amico et al. [5].

Goemans and Williamson [9] provide a 2-aproximation
procedure to a version of the PCTSP, in which the minimum
prize to be collected is removed.

Gomes et al. [10] and Melo and Martinhon [12]
present hybrid metaheuristics to solve the PCTSP. The
first combines GRASP and VND and the second combines
GRASP and VNS as a local search.

Torres and Brito [17] present a new mathematical
formulation for PCTSP based on the formulation presented
in [2]. In this formulation a new group of constraints is
proposed to prevent sub-tours.

Chaves et al. [3] explored two approaches. A
mathematical model to PCTSP solved for small instances,
and a heuristic procedure, combining the metaheuristics
GRASP and VNS/VND.

In this paper, the PCTSP is solved using hybrid
heuristics, proposed by Oliveira and Lorena [14], and
called Evolutionary Clustering Search (ECS). The ECS
consists in detecting promising areas of the search space
using an evolutionary algorithm that generates solutions
to be clustered. These promising areas should be
explored through local search methods as soon as they are
discovered. An alternative combination for the clustering
search is to substitute the evolutionary algorithm by distinct
metaheuristics, such as Greedy Randomized Adaptive
Search Procedure (GRASP) [6] and Variable Neighborhood
Search (VNS) [13], creating a new hybrid approach that
will be called ∗CS.

The paper also explores a mathematical formulation for
the PCTSP, based in Balas [2] and Torres and Brito [17],
to validate the computational results of ECS and ∗CS. The
software CPLEX [1] is used to solve this formulation for
small size problems.

The remainder of the paper is organized as follows.



Section 2 presents a mathematical model for PCTSP.
Section 3 describes the basic ideas and conceptual
components of ECS, and sections 4 and 5 present the
ECS and ∗CS applied to PCTSP. Section 6 presents
the computational results and section 7 describe some
conclusions of this paper.

2 Mathematical model

More formally, the PCTSP can be defined as follows.
A weighted graph G = (V,A) is given, where V is the
set of nodes of size n and A is the set of arcs of size m.
Let us suppose that node 0 is the depot or home city of the
salesman. A cost cij is associated with each arc (i, j) ∈ A,
and a prize pi and a penalty γi are associated with each node
i ∈ V . Node 0 is then such that p0 = 0 e γ0 = ∞.

The mathematical model presented in this paper is based
in the formulations proposed by Balas [2] and Torres and
Brito [17]. Introducing the binary variables xij = 1 if arc
(i, j) belongs to solution and 0 otherwise, xii = 0 if node i
is visited and 1 otherwise. The PCTSP can be formulated
as an integer linear programming problem as follows.

min
∑
i∈V

∑
j∈V

bijxij (1)
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 xij ≥ fij ∀i ∈ V \{0}, ∀j ∈ V (9)

xij ∈ {0, 1} ∀i, j ∈ V (10)

fij ≥ 0 ∀i, j ∈ V (11)

where bij =
{

cij , if i �= j
γi, if i = j

The objective function (1) minimizes the travel costs of
arcs included in the tour and penalties to be paid for not
visited nodes. Constraints (2) and (3) are the well-known
assignment constraints. Constraint (4) is a knapsack-like
constraint and ensures that the total collected prize is greater
than the minimum prize. Constraints (5) - (9) forces every
node visited to be connected to the depot, and give the so-
called sub-tour elimination constraints. The flow variables
fij are used to prevent sub-tours assigning the price of the
visited node to the edge leaving this node. Finally (10) and
(11) are the constraints on the variables of the problem. For
resolution of this model, the software CPLEX [1], version
7.5, was used looking for optimal solutions to PCTSP. The
CPLEX was successful only for instances up to 51 nodes.

3 Evolutionary Clustering Search

The Evolutionary Clustering Search (ECS) is an
evolutionary technique proposed by Oliveira and Lorena
[14] that employs clustering to detect promising areas of
the search space. It is particularly interesting to find out
such areas as soon as possible to change the search strategy
over them. In the ECS, a clustering process is executed
simultaneously to an evolutionary algorithm, identifying
groups of individuals that deserve special interest.

The ECS tries to locate promising areas through the
framing of these for clusters. A cluster is defined by a
tuple G = {c; r; s} where c, r and s are, respectively, the
center and the radius of the area, and a search strategy to be
associated to the cluster.

The center is an individual that represents the cluster,
identifying the location of the cluster inside of the search
space. The radius establishes the maximum distance,
starting from the center, that an individual can be associated
to the cluster. The search strategy is a systematic search
intensification, in which individuals of a cluster interact
among themselves, along the clustering process, generating
new individuals.

The ECS consists of four conceptually independent
components with different attributions:

• an evolutionary algorithm (EA);

• an iterative clustering (IC);

• an analyzer module (AM);

• a local searcher (LS);

Figure 1 shows the four components, the population and
the clusters of interacting individuals.

The EA component works as a full-time solution
generator. The population evolves independently of the
remaining components. Individuals are selected, crossed
over, and updated for the next generations. Simultaneously,
clusters are maintained to represent these individuals.
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Figure 1. ECS components.

The IC component is the kernel of ECS, working
as a classifier of information (solutions represented by
individuals) into groups, maintaining in the system just
information that is relevant for the process of search
intensification. IC is designed as an iterative process that
forms groups by reading the individuals being selected or
updated by EA.

The AM component provides an analysis of each cluster,
in regular intervals of generations, indicating a probable
promising cluster. Typically, the density of the cluster is
used in this analysis, that is, the number of selections or
updating that happened recently in the cluster. A cluster
with high density should have a promising center. AM is
also responsible for the elimination of clusters with lower
densities.

Finally, the component LS is a local search module that
provides the exploration of a supposed promising search
area. This process happens after the component AM has
discovered a promising cluster. The local search is applied
on center of the cluster.

4 ECS for PCTSP

We describe in the following the ECS application to
PCTSP.

The component EA, responsible for generating solutions
to clustering process, will be the Population Training
Algorithm (PTA) [15] employing well-known genetic
operators as the base-guide selection [11], the crossover
BOX [16] and the mutation 2-Opt.

An individual will be represented through a vector that
contains the nodes of the problem in the order in that they
are visited. Observe that negative signs indicate not visited
nodes. The individual representation is shown in the Figure

2, where the sequence of visits is {1, 3, 0, 4} and the nodes
5 and 2 were not visited.

-240-531

Figure 2. Individual representation.

The implementation details are now described. The
PTA works with a dynamic population of individuals,
and, initially the population is randomly generated. All
individuals are evaluated by two functions, f and g.
The first evaluates the quality of individual and the
second applies a problem-specific heuristic (called training
heuristic) to evaluate the neighborhood of individual, being
the value of the best solution found attributed to g.

In this paper, the training heuristics used to determine the
characteristics wanted in the training along the evolutionary
process of PTA is the method SeqDrop-SeqAdd [10], that
consists of applying a sequence of node removal while the
objective function value is being decreased and a sequence
of node additions while some improvement is attained (see
Figure 3).

In each generation a constant number of individuals
(NS) are selected. Two individuals are selected for each
crossover, which produces only one new offspring. This
offspring can, eventually, suffer mutation.

The adaptation of an individual is proportional to its
ranking δ,

δ = d. [Gmax − g] − |f − g| (12)

that is composed by:

• a component concerning the adaptation of individual in
relation to the training heuristic: minimizing (f − g);

• a component that privileges the minimization of the
function g, thought the minimization of a distance
between the individual and an estimate of an upper
bound for all the possible values that the functions f
and g can assume: the constant Gmax;

• and a constant d, 0 ≤ d ≤ 1, to balance the two
components of equation 12;

So, better individuals have greater ranks.
The population is then controlled in a dynamic way by

an adaptive rejection threshold, τ ,

τi+1 = τi + ξ. |P | .
(
δ1 − δ|P |

)
RG

(13)

that is updated during the evolutionary process. Expression
13 uses the current population size, |P |, the best (δ1) and
worst (δ|P |) rankings of individuals in current population,
the estimated remaining number of generations, RG, and
the ξ constant that controls the speed of the evolutionary
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process. At the end of each generation the individuals less
adapted (δ ≤ τ) are eliminated from the population.

The ECS component IC executes an iterative clustering
of each selected individual. Initially, a maximum number of
clusters (MC) is defined. The ith cluster has its own center
ci and a radius r that was identical to the other clusters.

Whenever a selected individual is far away from all
centers, a new cluster must be created. Otherwise, the
individual should cause a disturbance (assimilation) in the
most similar center. In this paper, the metric 2-change
was used to calculate the distance among two solutions.
This metric computes the amount of necessary changes of
two nodes in PTA representation, to transform the selected
individual in the center of the cluster.

In the assimilation process uses path-relinking method
[8], which accomplishes exploratory movements in the path
that connects the selected individual and the center of the
cluster. Therefore, the assimilation process is already a
method of local search inside of the cluster.

The ECS component AM is executed whenever an
individual is assigned to a cluster, verifying if the cluster
can be considered promising. A cluster becomes promising
when reaches a certain density λ,

λt ≥ PD.
NS

|Ct| (14)

where, PD is the desirable cluster density beyond the
normal density, obtained if NS was equally divided to all
clusters, and |Ct| is the cardinality of cluster t. The center
of a promising cluster is refined through the component LS.

The component AM also has as function of cooling all
clusters that were activated in each generation, decreasing
the density of the clusters. It is also used to eliminate
clusters with low density.

The ECS component LS was implemented by the 2-Opt
heuristic [4]. This method works trying to find better
centers (solutions), through changes of two arcs.

5 ∗CS for PCTSP

Another approach proposed to solve PCTSP is the ∗CS,
that intends to substitute the component EA for alternative
metaheuristics capable to generate a large number of
different solutions for the clustering process. In this paper
we propose to use a hybrid metaheuristic that combines
GRASP [6] and VNS [13].

The GRASP, Feo and Resende [6], is basically
composed by two different phases: a construction phase,
in which a feasible solution is produced and a local search
phase, in which a local minimum is obtained using the
feasible solution generated in the first phase.

The construction phase of GRASP used the insertion rule
of the procedure Adding-Nodes [5] to build the candidate

list (C). Each element is selected in a random way starting
from a part of the list C, containing the best candidates,
called Restricted Candidate List (RCL). This element is
added to the solution and the candidate list is updated at
each iteration.

In the local search phase of GRASP uses the VNS,
Mladenovic and Hansen [13], which is a metaheuristic
going on a systematic change of neighborhood within a
local search algorithm.

Initially a set of neighborhood structures is defined
through random movements. The VNS proposed
implement six neighborhood structures, through the
following movements:

• m1: inserts 2 nodes in the tour;

• m2: removes 2 nodes of the tour;

• m3: changes 4 nodes of the tour;

• m4: inserts and removes 1 node of the tour;

• m5: removes 3 nodes of the tour;

• m6: removes 1 node and changes 4 nodes of the tour;

Starting from the current solution, at each iteration, a
randomly neighbor is selected in the kth neighborhood of
the incumbent solution. That neighbor is then submitted to
some local search method. If the solution obtained is better
than the incumbent, update the incumbent and continue the
search of the first neighborhood structure. Otherwise, the
search continues to the next neighborhood. This procedure
stops when the time without improvements goes larger than
100 seconds.

The local optimum within a given neighborhood is not
necessarily an optimum within other neighborhoods, and a
change of neighborhoods can also be performed during the
local search phase. This local search is then called Variable
Neighborhood Descent (VND) [13].

The implemented VND is composed by three different
improvement methods: (1) SeqDrop-SeqAdd [10] (see
Figure 3); (2) 2-Opt [4] and (3) Add-Drop [10] (see Figure
4). Whenever some improvement method obtains a better
solution, the VND returns to the first improvement method.

The ∗CS approach has the same components that ECS:
iterative clustering (IC), analyzer module (AM) and local
searcher (LS). These were implemented in identical way of
ECS and are not described again.

6 Computational Results

The ECS and ∗CS were coded in C++ and were run
on AMD Athlon XP 1.53 GHz with 256 of RAM Memory.
The experiments were accomplished with objective of
evidencing the flexibility of the method in relation to the
algorithm used to feed the clustering process, and also
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procedure SeqDrop-SeqAdd 

for (each k R) do

minand0)(such that 

,)(

pppkh

ccckhL

k

Ri

i

kspkskp kkkk

repeat 

  Select }eachfor)(max{ Lkkhk

  Remove k of route R

  Update L

until L

for (each k R) do

0)(such that 

},{max)(
)(),(

kv
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  Update L

until L

end procedure 

Figure 3. SeqDrop-SeqAdd method.

procedure Add-Drop

for (each k R) do

}{max)(
)(),(

kjikkij
RAji

ccckvL

 Select }eachfor)(max{ Lkkvk

 Insert k to route R

for (each k R) do

kspkskp kkkk
ccckhL )(

 Select }eachfor)(max{ Lkkhk

 Remove k of route R

end procedure 

Figure 4. Add-Drop method.

to validate the proposed approaches, showing that the
clustering search algorithms can be competitive for PCTSP
resolution.

There are no available instances for PCTSP in
literature. Consequently a set of problems, with n ∈
{11, 21, 31, 51, 101, 251, 501}, were randomly generated
in the following intervals: travel cost between the
nodes: cij ∈ [50, 1000]; prize associated to each
node: pi ∈ [1, 100]; penalty associated to each
node: γi ∈ [1, 750]. The minimum prize, pmin, to
be collected represents 75% of the sum of the prizes
of all nodes. These test problems are available in
http://www.lac.inpe.br/∼lorena/instancias.html.

The following parameters’ values for approaches ECS
and ∗CS were adjusted through several executions and are
also based in Oliveira and Lorena [14]:

• number of individuals selected at each generation
NS = 200;

• maximum number of clusters MC = 20;

• density pressure PD = 2.5;

• upper bound Gmax is the worst value of an individual
in the initial PTA population;

• increment of the rejection threshold ξ = 0.001;

The mathematical model presented in section 2 was
solved using the software CPLEX 7.5, and the results are
presented in the Table 1. The CPLEX solved the PCTSP
up to 31 nodes in a reasonable execution time. However,
for the larger problems, the CPLEX took several days
execution to find the optimal solution. A problem with
101 nodes (v100a) was executed giving to CPLEX the
feasible solution found in [3] as an upper bound, allowing
accelerating the search. Even so, it was executed by three
days and did not get to close the gap between lower and
upper bounds.

The Table 1 also shows the ECS and ∗CS results for
all test problems. The best solutions found (BS) and the
execution time in seconds (ET) were considered to compare
the approach performances. The values in bold indicate
which approach have better objective function values and
execution times for each problem. Note that ∗CS has found
better solutions in all test problems, finding the optimal
solution for problems up to 51 nodes.

Table 1. Results of the experiments.
CPLEX ECS ∗CS

Problem |V | BS ET(s) gap BS ET(s) BS ET(s)
v10 11 1765 0.06 0 1765 0.1 1765 0.05
v20 21 2302 3.73 0 2302 7.75 2302 0.97
v30a 31 3582 34.06 0 3582 26.95 3582 1.05
v30b 31 2515 45.59 0 2515 10.04 2515 1.14
v30c 31 3236 164.58 0 3236 14.68 3236 1.20
v50a 51 4328 433439.97 0 4368 210.98 4328 38.40
v50b 51 3872 241307.43 0 3928 236.30 3872 37.28

v100a 101 6879 153059.09 2.46 7200 2067.98 6832 719.27
v250a 251 - - - 15935 2958.06 15162 1162.11
v500a 501 - - - 29274 6653.01 28213 2058.37

Table 2. Average solutions found.
ECS ∗CS

Problem BS AS Rt BS AS Rt
v10 1765 1765 0 1765 1765 0
v20 2302 2302 0 2302 2302 0

v30a 3582 3582 0 3582 3591 0.24
v30b 2515 2515 0 2515 2515 0
v30c 3236 3236 0 3236 3241 0.14
v50a 4368 4453 1.92 4328 4346 0.42
v50b 3928 3988 1.52 3872 3881 0.24
v100a 7200 7495 3.94 6832 6906 1.07
v250a 15935 16155 1.36 15162 15284 0.80
v500a 29274 30401 3.71 28213 28462 0.87
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For each test problem, the ECS and ∗CS were run 10
times. The Table 2 shows the best solutions found (BS), the
averages of solutions found (AS) and the ratio (Rt) between
the difference of both and the average solution.

In Table 3, the ECS and ∗CS are compared against
another hybrid metaheuristic, that also combines GRASP
and VNS/VND, but do not use clustering search [3]. Once
again the ∗CS seems to better than Chaves et al. [3] in all
test problems shown in Table 2.

Table 3. Comparison with another approach.
Problem Chaves et al. ET(s) ECS ET(s) ∗CS ET(s)

v10 1765 0.1 1765 0.1 1765 0.05
v20 2302 1.04 2302 7.75 2302 0.97

v30a 3582 5.43 3582 26.95 3582 1.05
v30b 2515 3.83 2515 10.04 2515 1.14
v30c 3236 7.83 3236 14.68 3236 1.20
v50a 4328 132.45 4368 210.98 4328 38.40
v50b 3872 43.76 3928 236.30 3872 37.28

v100a 6892 692.09 7200 2067.98 6832 719.27
v250a 15310 918.33 15935 2958.06 15162 1162.11
v500a 28563 2145.79 29274 6653.01 28213 2058.37

7 Conclusions

This paper proposes two approaches for the resolution of
PCTSP, the ECS and ∗CS. They use the concept of hybrid
algorithms, combining metaheuristics with a clustering
process, detecting promising search areas. Whenever
an area is considered promising some aggressive search
strategy is accomplished in this area.

The results obtained by ECS and ∗CS are competitive for
resolution of PCTSP, getting to find the optimal solutions
for instances up to 51 nodes. Besides, the ∗CS approach
obtained better results than one taken from the literature that
used GRASP and VNS/VND, for the same test problems.
These results validate the use of these approaches for the
resolution of the PCTSP.
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