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1 Introduction

Genetic Algorithms (GAs) have been considered in recent years as powerful tools to solve optimization
problems ([7]; [8]). The underlying foundations for such algorithms are the controlled evolution of
a structured population. Holland [5] outlined GAs and their mechanisms (schemata formation and
propagation over generations).

The Constructive Genetic Algorithm (CGA) was proposed by Lorena and Furtado [6], as an alter-
native to the traditional GAs approach. Particularly the CGA directly evaluates schemata, works with
a dynamic population size, performs mutation in complete structures, and uses heuristics in schemata
and/or structure representation. The schemata are evaluated and can be added to the population if
they satisfy an evolution test. Structures can result from recombination of schemata or complementing
of good schemata. A mutation process is applied just to structures and the best structure generated is
kept in the process.

In this paper, we apply the CGA to the maximal covering location problem (MCLP)[3][4]. The
MCLP is the problem of locating p facilities on a network such that the maximal population is attended
(or covered) within a given service distance S ([2]). The MCLP has applications in the public and
private sectors. Chung [1] and Schilling et al. [9] review several applications of MCLP.

We report computational tests for real world data ranging from 324 to 500 vertices using geo-
referenced data of São José dos Campos city, Brazil and random generated scenarios for 100 and 150
vertices.

2 CGA modeling

In this section is described the CGA approach. Two fitness functions are defined on the space of all
schemata and structures representing the location problem. The evolution process considers the two
objectives on an adaptive rejection threshold, which gives ranks to individuals in population and yields
a dynamic population.

2.1 Structure and schema representations

The structure and schema representations for the MCLP use a binary alphabet.
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Suppose a given graph G=(V,E). A typical instance of the problem is composed of n demand
points (vertices) V = {1,...,n}, demands Di, a service distance S, and a distance (weight) matrix [µji],
indicating distances between pairs of vertices, such that µji ≥ 0, µjj = 0 and µji = µij for all j, i ∈ V .

To define the representation p vertices are elected as the seeds (located facilities), i. e., the initial
vertices in clusters that will cover the other vertices that participate in the representation and are
situated within the range S.

The representation of structures and schemata will be:

sk = (0,0,1,1,#,0,0,#,#,1), where

the numbers 1 indicate the seeds and their positions in the string (representing vertices). The
number 0 indicates that the corresponding vertex may be covered by a seed and # that the vertex was
considered temporarily out of the problem. A structure representation has no #s. For each schema or
structure sk, exactly p clusters C1(sk), C2(sk), ..., Cp(sk) are identified. If a vertex is within the range
of two or more seeds it is included on these clusters.

2.2 The bi-objective optimization problem

Let X be the set of all structures and schemata that can be generated by 0−1−# string representation
of the later section, and consider a double fitness evaluation (fg-fitness) f and g, defined as f : X → �+

and g : X → �+ such f(sk) ≤ g(sk), for all sk ∈ X .

The CGA optimization problem implements the fg-fitness with the following two objectives:

(interval minimization) Search for sk ∈ X of minimal {g(sk)− f(sk)}.
(g maximization) Search for sk ∈ X of maximal g(sk).

Considering the schema representation, the fg-fitness evaluation increases as the number of labels
# decreases, and therefore structures have higher fg-fitness evaluation than schemata. To attain these
purposes, a problem to be solved using CGA is modeled as the following Bi-objective Optimization
Problem (BOP):

v(BOP) = Min{g(sk)− f(sk)} (1)

Max{g(sk)} (2)

subject to g(sk) ≥ f(sk), sk ∈ X (3)

Functions f and g must be properly identified to represent the optimization objectives of the prob-
lems at issue. The fg-fitness process is particularized in the following for the MCLP.

In general terms, after the formation of clusters C1(sk), C2(sk), ..., Cp(sk) the function f and the
function g are computed as follows:

f(sk) =
∑
i∈ I

Diyj when yj = 1 if dij ≤ S, j ∈ {seed vertices}, yj = 0 , otherwise and g(sk) =
∑
i∈ I

Di ;

where Di is the population demand of area i, I={seed and non-seed vertices}, sk may be a structure or
schema and the seeds are the located facilities. The first objective in the BOP (interval minimization)
assures a maximal covering and the second guides the evolution process to transform schemata in
structures.
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2.3 The evolution process

The evolution process in CGA is conducted to accomplish the objectives (interval minimization and
g maximization) of the BOP. At the beginning of the process, the following two expected values are
given to these objectives: a non-negative real number gmax > Max {g(sk)} where sk ∈ X , that is an
upper bound to g(sk), for each sk ∈ X ; and the interval length dgmax, obtained from gmax using a real
number 0 < d ≤ 1.

The evolution process is then conducted considering an adaptive rejection threshold, which contem-
plates both objectives in the BOP. Given a parameter α ≥ 0,the expression

g(sk)− f(sk) ≥ dgmax − α.d[gmax − g(sk)] (4)

presents a condition for rejection from the current population of a schema sk. The right hand
side of (4) is the threshold, composed of the expected value to the interval minimization dgmax, and
the measure [gmax − g(sk)], that shows the difference of g(sk) and gmax evaluations. Parameter α is
related to time in the evolution process. Considering that the good schemata need to be preserved
for recombination, the evolution parameter α starts from 0, and then increases slowly, in small time
intervals, from generation to generation. The population at the evolution time α, denoted by Pα, is
dynamic in size according to the value of the adaptive parameter α, and can be emptied during the
process.

2.4 Selection, recombination and mutation

The population is kept ordered according to the ”completeness” of the schema, i.e., the number of
labels #s, and the schema fg-fitness.

The method used for selection takes the first schema from an initial (best) part of the population
(schema base) and the second one from the whole population (schema guide). Before recombination,
the first schema is complemented to generate a structure representing a feasible solution, i.e., all #’s
are replaced by 0’s. This structure undergoes mutation and is compared to the best one found so far.
Only the best one is kept along the process. The recombination merges information from both selected
schemata, but preserves the number of seeds of the new generated schema or structure. If it is a new
schema then it is inserted into the population, otherwise it undergoes mutation and is compared to the
best structure found so far.

The recombination is best described in the following. The assignment operations must be performed
in that order.

Recombination:

sj(base) = # and sj(guide) = # then sj(new) = #
sj(base) = 1 and sj(guide) = 1 then sj(new) = 1
sj(base) = 0 and sj(guide) = 0 then sj(new) = 0
sj(base) = 1 and sj(guide) = # then sj(new) = 1
sj(base) = 0 and sj(guide) = # then sj(new) = 0
sj(base) = # and sj(guide) = 0 then sj(new) = 0
sj(base) = # or 0 and sj(guide) = 1 then

sj(new) = 1 and sk(new) = 0 for some sk(new) = 1
sj(base) = 1 and sj(guide) = 0 then

sj(new) = 0 and sk(new) = 1 for some sk(new) = 0
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The mutation process (presented below) used is a local search technique that implements successive
changes in the seed position inside each cluster C1(sk), C2(sk), ..., Cp(sk) followed by cluster recon-
struction made by vertices covering, recalculates f(sk) and reiterates until no more improvement in
f(sk).

While[ f(sk) increases]

For j = 1, ..., p

Interchange seed and non-seed nodes in cluster Cj(sk);
Calculate the corresponding value f(s) of the best reallocation;
If f(s) > f(sk)

Update the seed node for cluster Cj(sk);
Set sk = s

End If

End For

End While

At each generation, after new schemata insertion, the population is scanned to remove all schemata
satisfying the condition (4).

3 Computational Tests

For the computational tests we used a real data collected at the central area of the São José dos Campos
city (Brazil) using the Geographical Information System (GIS ) ArcView, where three instances 324,
402, 500 are created. Each point is located on a block which presents a demand and is also a possible
place to locate seeds. We simulated the installation of radio antennas for Internet service, with short
range values (800 m). These instances are available at http://www.lac.inpe.br/∼lorena/instancias.html.
Moreover, we used the distance matrices of the 100 and 150 vertex network of Galvão and Revelle [4].
The demand values used were not identical, but generated in the same way: the population of each
node were sampled from a uniform distribution in the range [20,30] for the 100-vertex network (service
distance equal to 80 m) and from a normal distribution with mean equal to 80 and standard deviation
equal to 15 for the 150-vertex network (service distance equal to 95). The algorithm described is coded
in C and the tests made on a PC Pentium II 233 MHz. The CGA parameters in this case are:

1. For all computational tests, an initial population was randomly created with 20% of symbols 0
and exactly p (number of seeds) symbols 1;

2. The values for parameters d = 0.1 and the α increment = 0.01 are found after an initial set of
10 runs, observing the best results. The upper bound gmax = 2 ∗ g(sl), where sl is any structure.

The results for the best covers over 20 runs are presented in Table 1. The columns show the problems
size and number of seeds (3 and the number assuring complete covering for the real data and 12 and 7
seeds for the other instances), the total population covered, the covering percentage, parameters d and
the α increment and the computational times (seconds).

The computational times can be considered expensive but in accordance with GAs approaches. The
cover found in problem 8 is better than the one of Galvão et. al [3].
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Problem Size Pop.Attended Cov(%) α d Time(s)
1 324x3 11604.00 95.49 0.01 0.1 1871
2 324x5 12152.00 100.00 0.01 0.1 5485
3 402x3 14690.00 91.90 0.01 0.1 1851
4 402x6 15984.00 100.00 0.01 0.1 3502
5 500x3 15730.00 79.82 0.01 0.1 982
6 500x8 19707.00 100.00 0.01 0.1 7695
7 100x12 2515.00 100.00 0.01 0.1 362
8 150x7 11085.81 94.09 0.01 0.1 720

Table 1: Results for real data and Galvão and Revelle [4] instances

4 Comments and conclusion

In this work we applied the CGA to the MCLP. The MCLP was considered as a clustering problem
in graphs following the Lorena and Furtado approach [6]. The computational results showed that this
approach can be useful to the analysis of spatially distributed data. The utilization of a GIS database
permitted the evaluation with real word data on different scenarios, which can be helpful to decision
makers in public and private sectors.
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