

CAP 254

Otimização Combinatória

Professor: Dr. L.A.N. Lorena

Assunto: Metaheurísticas

Antonio Augusto Chaves

Conteúdo

C01 – Simulated Annealing (20/11/07).

C02 – Busca Tabu (22/11/07).

C03 – Colônia de Formigas (27/11/07).

C04 - GRASP e VNS (29/11/07).

C05 – Metaheurísticas Híbridas – CS (04/12/07).

Material baseado nas notas de aula do Prof. Dr. Marcone Jamilson Freitas Souza (UFOP) http://www.decom.ufop.br/prof/marcone/

Métodos de Otimização

Métodos de Otimização

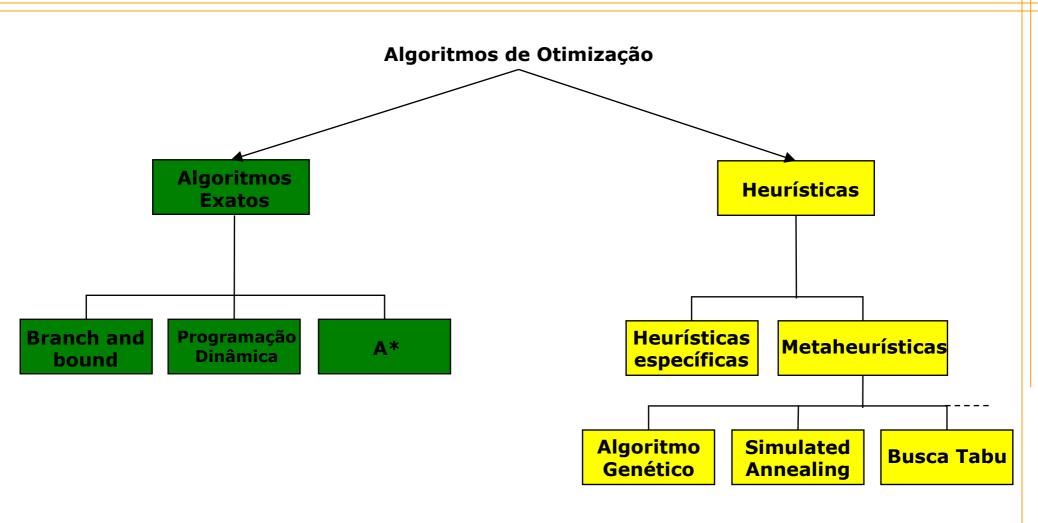
Algoritmos Exatos

- Fundamentação: na matemática
- Vantagem: garantem a solução ótima (menor custo)
- Desvantagens:
 - Modelagem mais complexa
 - Podem gastar um tempo proibitivo para gerar a solução ótima
 - Nem sempre conseguem produzir uma (boa) solução viável rapidamente

Heurísticas

- Fundamentação: na Inteligência Artificial
- Vantagens:
 - De fácil implementação
 - Produzem boas soluções rapidamente
- Desvantagem:
 - Não garantem a otimalidade da solução obtida

Métodos de Otimização



Heurísticas

- Processo de otimização busca encontrar a melhor solução viável, considerando o objetivo do problema e o conjunto de restrições.
- Os problemas podem ser modelados como problemas de maximizar ou minimizar uma função cujas variáveis estão sujeitas a certas restrições.
- Encontrar soluções ótimas ou mesmo aproximadas para problemas NPdifíceis é um desafio nem sempre fácil de ser alcançado.
- A partir deste cenário, as heurísticas surgem como uma ferramenta eficiente (rápida) para resolver problemas reais.

Heurísticas

- Em otimização, heurísticas são definidas como sendo uma técnica que procura boas soluções (próximas da otimalidade) a um custo computacional razoável, sem, no entanto, estar capacitada a garantir a otimalidade, bem como garantir quão próxima uma determinada solução está da solução ótima.
- A grande desvantagem das heurísticas reside na dificuldade de escapar de ótimos locais, o que deu origem à outra metodologia, chamada de metaheurística, que possui ferramentas que possibilitam sair destes ótimos locais, permitindo a busca em regiões mais promissoras.
- O grande desafio da Otimização Combinatória é produzir, em tempo competitivo, soluções tão próximas quanto possíveis da solução ótima.

Como representar uma solução de um problema?

Problema da Mochila:

Representação de uma solução

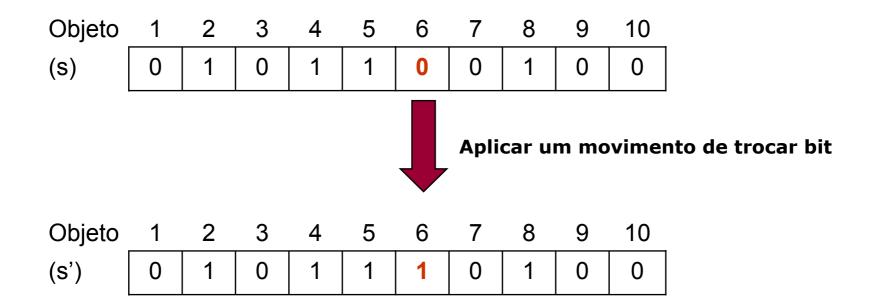
Problema do Caixeiro Viajante:

Representação de uma solução

Cidades	1	6	3	5	9	7	2	10	8	4
---------	---	---	---	---	---	---	---	----	---	---

O que é Vizinhança?

 Um vizinho s' de uma solução s é uma solução na qual foi aplicado um movimento (definido a priori) modificando a solução corrente



Metaheurísticas

Metaheurísticas:

- Solução única: Simulated Annealing, Busca Tabu (Tabu Search), GRASP, VNS...
- População: Algoritmos Evolutivos, Scartter Search, Colônia de Formigas

Simulated Annealing (SA)

- Simulated Annealing (Recozimento Simulado)
- Proposto por Scoot Kirkpatrick et al. (1983)
 S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi
 Optimization by Simulated Annealing, Science,
 Vol 220, Number 4598, p. 671-680, 1983.

 http://citeseer.ist.psu.edu/kirkpatrick83optimization.html.

- Simular o processo de recozimento de metais;
- Resfriamento rápido conduz a produtos meta-estáveis, de maior energia interna;
- Resfriamento lento conduz a produtos mais estáveis, estruturalmente fortes, de menor energia;
- Durante o recozimento o material passa por vários estados possíveis
- Num tempo suficientemente longo um elemento qualquer do ensemble passa por todos os seus estados acessíveis

Annealing Físico:

- Sólido aquecido alem do seu ponto de fusão e resfriado lentamente
- Se o resfriamento e suficientemente lento obtêm-se uma estrutura cristalina livre de imperfeições (estado de baixa energia)

Annealing Simulado:

- Algoritmo de Metropolis (Gibbs, 1953) empregado numa seqüência de temperaturas decrescentes para gerar soluções de um problema de otimização
- O processo começa com um valor T elevado e a cada T geram-se soluções ate que o equilíbrio àquela temperatura seja alcançado
- A temperatura é então rebaixada e o processo prossegue ate o congelamento (ou seja, não se obtêm mais uma diminuição de custo)
- A seqüência de temperaturas empregada, juntamente com o numero de iterações a cada temperatura, constitui uma prescrição de annealing que deve ser definida empiricamente

- Analogia com um problema combinatório:
 - Os estados possíveis de um metal correspondem a soluções do espaço de busca;
 - A energia em cada estado corresponde ao valor da função objetivo;
 - A energia mínima (se o problema for de minimização ou máxima, se de maximização) corresponde ao valor de uma solução ótima local, possivelmente global.

Fundamentação do método (problema de minimização)

- A cada iteração do método, um novo estado é gerado a partir do estado corrente por uma modificação aleatória neste;
- Se o novo estado é de energia menor que o estado corrente, esse novo estado passa a ser o estado corrente;
- Se o novo estado tem uma energia maior que o estado corrente em Δ unidades, a probabilidade de se mudar do estado corrente para o novo estado é:

 $e^{-\Delta/(kT)}$, onde k = constante de Boltzmann

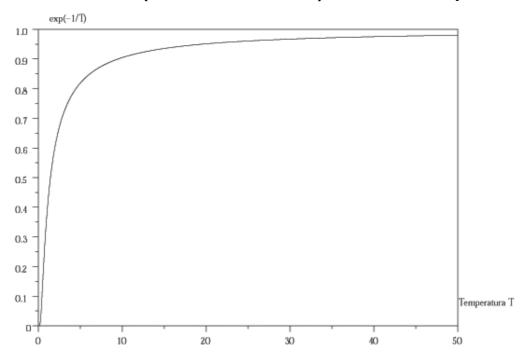
é a constante física que relaciona temperatura e energia de moléculas

 Este procedimento é repetido até se atingir o equilíbrio térmico (algoritmo de Metropolis)

INPE

Probabilidade de aceitação de um movimento de piora (problema de minimização)

- Baseada na fórmula: P(aceitação) = e⁻∆ / T
- Δ = variação de custo (valor da FO); T = temperatura



- Temperatura ↑ ⇒ Probabilidade de aceitação ↑
- Temperatura ↓ ⇒ Probabilidade de aceitação ↓

- A probabilidade de um dado estado com energia f_i ser o estado corrente é:
 - $e^{-fi/(kT)} / \Sigma_j e^{-fj/(kT)}$ (Densidade de Boltzmann)
- A altas temperaturas, cada estado tem (praticamente) a mesma chance de ser o estado corrente;
- A baixas temperaturas, somente estados com baixa energia têm alta probabilidade de se tornar o estado corrente;
- Atingido o equilíbrio térmico em uma dada temperatura, esta é diminuída e aplica-se novamente o passo de Metropolis.
- O método termina quando a temperatura se aproxima de zero.

- No início do processo, a temperatura é elevada e a probabilidade de se aceitar soluções de piora é maior;
- As soluções de piora são aceitas para escapar de ótimos locais;
- A probabilidade de se aceitar uma solução de piora depende de um parâmetro, chamado temperatura;
- Quanto menor a temperatura, menor a probabilidade de se aceitar soluções de piora;

- Atingido o equilíbrio térmico, a temperatura é diminuída;
- A taxa de aceitação de movimentos de piora é, portanto, diminuída com o decorrer das iterações;
- No final do processo, praticamente não se aceita movimentos de piora e o método se comporta como o método da descida/subida;
- O final do processo se dá quando a temperatura se aproxima de zero e nenhuma solução de piora é mais aceita, evidenciando o encontro de um ótimo local.

Algoritmo Simulated Annealing

```
procedimento SA (f(.), N(.), \alpha, SAmax, T_0, s)
  s^* \leftarrow s {Melhor solução obtida até então}
  IterT \leftarrow 0 {Número de iterações na temperatura T}
  T \leftarrow T_0 {temperatura corrente}
  enquanto (T > 0.0001)
     enquanto (IterT < SAmax) faça
       IterT \leftarrow IterT + 1
       Gerar um vizinho (s') aleatoriamente na vizinhança N^k(s)
       \Delta = f(s') - f(s)
       se (\Delta < 0) então
          s \leftarrow s'
          se (f(s') \le f(s^*)) então s^* \leftarrow s'
       senão
          Tome x \in [0,1]
          se (x < e^{-\Delta/T}) então
            s = s
       fim-se
     fim-enquanto
     T = T \times \alpha
     IterT = 0
  fim-enquanto
  retorne s*
fim-procedimento
```


Prescrições para o resfriamento

Geométrico:

$$T_k = \alpha T_{k-1}, \ \forall k \ge 1$$

onde T_k representa a temperatura na iteração k do método, isto é, na késima vez em que há alteração no valor da temperatura e α uma constante tal que $0 < \alpha < 1$

- SA normalmente incluem reaquecimento, seguido de novo resfriamento, quando a quantidade de movimentos consecutivamente rejeitados é alta
- É comum trabalhar nas temperaturas mais altas com uma taxa de resfriamento menor e aumenta-lá quando a temperatura reduzir-se

Prescrições para determinar a temperatura inicial

- Pela média dos custos das soluções vizinhas:
 - Gerar uma solução inicial qualquer
 - Gerar um certo número de vizinhos
 - Para cada vizinho, calcular o respectivo custo
 - Retornar como temperatura inicial o maior custo das soluções vizinhas

Por simulação

- Gerar uma solução inicial qualquer
- Partir de uma temperatura inicial baixa
- Contar quantos vizinhos são aceitos em SAmax iterações nessa temperatura
- Se o número de vizinhos aceitos for alto (por exemplo, 95%) retornar a temperatura corrente como a temperatura inicial do SA
- Caso contrário, aumentar a temperatura (por exemplo, em 10%) e repetir o processo

Considerações Finais

- Número máximo de iterações em uma dada temperatura deve ser calculado com base na dimensão do problema;
- Temperatura de congelamento do sistema: quando se atingir, p.ex., T = 0,001 ou quando a taxa de aceitação de movimentos cair abaixo de um valor predeterminado;
- Os parâmetros mais adequados para uma dada aplicação só podem ser obtidos por EXPERIMENTAÇÃO.

Implementação do Simulated Annealing

- Decisões Genéricas: Prescrição de Annealing
 - Temperatura Inicial, Temperatura Final, Taxa de Resfriamento e a Condições de Parada
- Temperatura Inicial: Deve ser alta o bastante para permitir movimentos livres entre soluções vizinhas
 - Pode ser escolhida a partir do conhecimento da variação media de custo entre soluções vizinhas
 - Alternativamente pode ser obtida por simulação, eg., fixando-se uma taxa de aceitação mínima de movimentos
- Taxa de Resfriamento: O equilíbrio térmico deve ser aproximado a cada temperatura (em teoria o número de iterações requerido cresce exponencialmente com o tamanho do problema)
 - a) Resfriamento Geométrico T = α T, α < 1
 - Resfriamento lento (0.8 < α < 0.99)
 - O numero de iterações a cada T pode ser variável, eg., ligado a uma taxa fixa de aceitação de movimentos: alta T → poucas iterações

Implementação do Simulated Annealing

- b) $T = T / (1+\beta T)$, com β pequeno
 - Resfriamento rápido uma só iteração por temperatura
- c) Prescrição de Hajek: T = c / [log (1+k)], k ≡ iteração
 - Resfriamento muito lento
 - Para c da ordem da profundidade do mínimo local mais profundo, a convergência do algoritmo esta garantida se k → ∞
- Temperatura Final: Em teoria a temperatura final deve ser zero. Na prática é suficiente chegar a uma temperatura próxima a zero devido a precisão limitada da implementação computacional
 - Especifica-se um numero máximo de iterações do algoritmo garantindo que ele atinja baixas temperaturas
 - Alternativamente identifica-se o congelamento do processo quando a taxa de aceitação de movimentos cai abaixo de um valor predeterminado
- Regra Geral: Os parâmetros mais adequados para uma dada aplicação do algoritmo só podem ser estabelecidos por experimentação

Implementação do Simulated Annealing

Decisões Específicas do Problema

Espaço de Soluções, Estrutura de Vizinhança, Função Custo

- Do resultado de Hajek: Espaço de soluções com topografia acidentada deve ser evitado, espaço com grandes áreas planas também, já que prejudica a evolução do algoritmo
- Estrutura de vizinhança deve garantir que qualquer solução seja alcançável a partir de qualquer outra, para garantir convergência
- Soluções não-plausíveis devem ser preferencialmente penalizadas ao invés de mantidas fora do espaço de soluções, para garantir a condição acima e também para facilitar o cálculo da função objetivo

Conteúdo do Curso

C01 – Simulated Annealing (20/11/07).

C02 – Busca Tabu (22/11/07).

C03 – Colônia de Formigas (27/11/07).

C04 - GRASP e VNS (29/11/07).

C05 – Metaheurísticas Híbridas – CS (04/12/07).