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Abstract 
The Maximal Covering Location Problem (MCLP) maximizes the population that has a facility 

within a maximum travel distance or time. Numerous extensions have been proposed to 

enhance its applicability, like the probabilistic model for the maximum covering location-

allocation with constraint in waiting time or queue length for congested systems, with one or 

more servers per service center. This paper presents one solution procedure for that 

probabilistic model, considering one server per center, using a Hybrid Heuristic known as 

Clustering Search (CS), that consists of detecting promising search areas based on clustering. 

The computational tests provide results for network instances with up to 818 vertices. 

 
Keywords: Location problems, covering problems, congested systems, clustering search. 
 

1. Introduction 

The Maximal Covering Location Problem (MCLP) has been extensively studied in 

the literature since its formularization by [Church and ReVelle (1974)]. The main 

objective of the MCLP is to choose the location of facilities to maximize the 

population that has a facility within a maximum travel distance (or time). Thus, a 

population is considered covered if it is within a predefined service distance (or time) 

of at least one of the existing facilities. The MCLP does not require that all demand 

areas be covered, but offers service to the maximum population, considering the 

available resources.  

Since its proposal, numerous extensions of the MCLP have been proposed to enhance 

its applicability, both in public and private sectors. Applications range from 

emergency services [Eaton et. al. (1986)] [Current and O’Kelly (1992)], hierarchical 

health [Moore and ReVelle (1982)], air pollution control [Hougland and Stephens 

(1976)], to congested systems [Marianov and Serra (1998)] [Marianov and Serra 

(2001)]. Solutions methods for the MCLP include linear programming relaxation 



[Church and ReVelle (1974)], greedy heuristics [Daskin (1995)], Lagrangean 

Relaxation [Galvão and ReVelle (1996)], the Lagrangean/Surrogate heuristic [Lorena 

and Pereira (2002)], column generation [Pereira, Lorena and Senne (2007)]. 

Considerable revision of this subject can be found in [Chung (1986)], [Hale and 

Moberg (2003)], [Serra and Marianov (2004)] and [Galvão (2004)]. 

In many studies involving location problems, the distance (or time) between demand 

points and the facilities to which they have been allocated is the factor that represents 

the quality of the services that are given to the users. However, when service 

networks are projected, as in health systems or banking, the location of service 

centers has a strong influence on the congestion of each of them, and, consequently, 

the quality of services must be better defined and not only considering the travel 

distance or time. The centers must be located to allow the users to arrive at the center 

in an acceptable time, but it is desirable that the waiting time for service be no longer 

than a given time limit or that nobody stands in line with more than a predetermined 

number of other clients. These are important parameters in the measure of the desired 

quality [Marianov and Serra (1998)]. 

Congestion happens when a service center is not able to deal, simultaneously, with 

all the service requests that are made to it. Normally, the traditional models that deal 

with congestion include a capacity constraint, which forces the demand for service, 

normally constant in time and equal to an average, to be smaller than the maximum 

capacity of the center all the time. This is a deterministic approach to the problem, 

not considering the dynamic nature of the congestion. Depending on how the 

capacity constraint is developed, this means that the solution model produces idle 

servers, or results in a system that is not able to deal with all the demand [Marianov 

and Serra (1998) (2001)]. 

[Marianov and Serra (1998)] have proposed models based on the fact that the number 

of requests for services are not constant in time, but a stochastic process whose 

stochasticity of demand is explicitly considered in the capacity constraints. Instead of 

being limited to a maximum value, the authors define a minimum limit for the quality 

of the service reflected in the waiting time or the number of people waiting for 

service. The authors have developed the Queuing Maximal Covering Location-

Allocation Model (QM-CLAM). Good reviews of the probabilistic models can be 

found in [Galvão (2004)] and [Brotcorne, Laporte and Semet (2003)]. 

[Correa and Lorena (2006)] have applied the Constructive Genetic Algorithm (CGA) 

in the QM-CLAM. The CGA works with a population formed by schemata 

(incomplete solutions) and structures (the complete solution), with the traditional 

operators: selection, recombination and mutation. The CGA differs from a classical 

GA in the way it evaluates the schemata, in its capacity to use heuristics to define the 

fitness evaluation function, and in its treatment of a dynamic population. A dynamic 



population is initially formed only by schemata, but may be enlarged after the use of 

recombination operators, or made smaller along the generations, guided by an 

evolutionary parameter. The dynamic population is built, generation after generation, 

by directly searching for well-adapted structures (a complete solution) and also for 

good schemata [(Lorena and Furtado (2001)] [Oliveira and Lorena (2004)] [Oliveira and 

Lorena (2005)]. 

The purpose of this paper is to examine the QM-CLAM with one server per service 

center and present a solution using a hybrid heuristic called Clustering Search (CS), 

which was proposed by [Oliveira and Lorena (2004) (2007)]. The CS consists of 

detecting promising areas of the search space, using an algorithm that generates 

solutions to be clustered. These promising areas may then be explored through local 

search methods as soon as they are discovered. The CS results are compared with 

those obtained by CGA and by the heuristic proposed by [Marianov and Serra 

(1998)]. 

The commercial solver CPLEX [ILOG (2006)] has been used to approximately solve 

the formulation for all problems, in order to validate the computational results of CS. 

The remainder of the paper is organized as follows. Section 2 presents a 

mathematical formulation for QM-CLAM. Section 3 describes the heuristic that was 

used in this paper, and section 4 present the CS applied to QM-CLAM. Section 5 

presents the computational results and section 6 concludes the paper. 

2. QM-CLAM 

The traditional Maximum Covering Location Problem (MCLP) proposed by [Church 

and ReVelle (1974)] cannot be used to deal with the congestion constraints, because 

there are no allocation variables. So, it is impossible to compute the requests for 

services that arrive at a center, and, consequently, to determine when congestion 

occurs. Thus, the MCLP has been rewritten as a p-median-like model, modified to 

accommodate the location and allocation variables. The objective is to maximize the 

covered population, considering a predefined number of service centers (p). 

An integer linear programming formulation for the QM-CLAM is obtained by 

introducing the following variables. Let yj = 1 if a center is located at a node j and yj 

= 0 otherwise; xij = 1 if the users located at demand node i are allocated to a center 

located at j, and xij = 0 otherwise. We consider i ∈ I and j ∈ Ni, such that I is a set of 

demand nodes, and Ni is either a set of candidate locations that are within a standard 

distance from node i, or the set of candidate locations which can be reached from 

node i within a certain standard time. Let ai be the total population at demand node i. 

The formulation of the model is [Marianov and Serra (1998)]: 



v(QM-CLAM) = Max ∑
ji

iji xa
,

 (1) 

Subject to  

ijij NjIiyx ∈∈≤ ,  (2) 

Iix
iNj

ij ∈≤∑
∈

1  (3) 

P(center j has ≤ b people in queue) ≥ ϕ (4) 

P(waiting time at center j≤ τ) ≥ ϕ (4a) 

∑
∈

=
Ii

i py  (5) 

{ } iijj NjIixy ∈∈∈ ,,1,0,  (6) 

 

The objective (1) maximizes the population allocated to a center. Constraint (2) 

defines that a demand point i can be allocated to a node j only if there is a center in j. 

Constraint (3) forces each demand node i to be allocated to at most one service center 

j. Constraints (4) ensure that each center has no more than b people on a line, with a 

probability of at least ϕ. Constraints (4a), make the total time spent by a user at a 
center j be shorter than, or equal to τ, with a probability of at least ϕ. Constraint (5) 
sets the number of centers to be located. Constraints (6) define the integrality 

requirements. 

In order to write constraint (4), there is an assumption that requests for service at 

each demand node i appear according to a Poisson process with intensity fi. The 

service requests at a center are the union of the requests for service of the demand 

nodes, and they can be described as another stochastic process, equal to the sum of 

several Poisson processes, with intensity ωj: 

∑
∈

=
Ii

ijij xfω  (7) 

which means that, if the variable xij is one, node i is allocated to center j and the 

corresponding intensity fi will be included in the computation of ωj. The well-known 

results for a M/M/1 queuing system have been considered for each center and its 

allocated users [Larson and Odoni (1981)]. An exponentially distributed service time, 

with an average rate µj, has been considered in those models, where µj ≥ ωj; 

otherwise, the system does not reach the equilibrium. 

or 



The QM-CLAM can be formally stated as: 

v(QM-CLAM) = Max ∑
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The complete calculations can be found in Marianov and Serra (1998). The QM-

CLAM belongs to the NP-Complete class of problem [Pirkul and Schilling (1991)]. 

Even when using commercial solvers, it is not always possible to find the optimal 

solution in a reasonable computational time, due to its classification and to the problem 

size. Therefore, alternative methods are investigated. In the next Section a solution 

based on the Clustering Search will be presented. 

3. Clustering Search Method 

The Clustering Search (CS), proposed by [Oliveira and Lorena (2004) (2007)], 

employs clustering for detecting promising areas of the search space. The sooner these 

strategic areas can be identified, the sooner a more accurate search strategy can be 

applied. An area can be seen as a search subspace defined by a neighborhood 

relationship in metaheuristic coding space. In the CS, a clustering process is executed 

simultaneously to a metaheuristic, identifying groups of solutions that deserve special 

attention. 

The CS attempts to locate promising search areas by framing them by clusters. A 

cluster can be defined as a tuple G = {c; r; s} where c, r and s are, respectively, the 

center and the radius of the area, and a search strategy associated to the cluster. 

or 



The center of the cluster is a solution that represents the cluster, identifying its location 

inside the search space. Initially, the centers of the clusters are obtained randomly; but 

progressively, they tend to fall along really promising points in the close subspace. The 

radius r establishes the maximum distance, starting from the center, for which a 

solution can be associated to the cluster. For example, in combinatorial optimization, r 

can be defined as the number of movements needed to change a solution into another 

one. The search strategy is a systematic search intensification, in which solutions of a 

cluster interact among themselves along the clustering process, generating new 

solutions. 

The CS consists of four conceptually independent components with different 

attributions: 

• search metaheuristc (SM); 

• iterative clustering (IC); 

• analyzer module (AM); 

• local searcher (LS); 

Figure 1 shows the four components and the CS conceptual design. 

Figure 1.  CS Components 
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The SM works as a full-time solution generator. The algorithm is executed 

independently of the remaining components and must be able to provide a continuous 

generation of solutions to the clustering process. Clusters are maintained, 

simultaneously, to represent these solutions. 

The IC aims to gather similar solutions into groups, identifying a representative 

cluster center for them. To avoid extra computational effort, IC is designed as an 

online process, in which the clustering is progressively fed by solutions generated in 

each iteration of SM. A maximum number of clusters NC is an upper bound value 

that prevents an unlimited cluster creation. A distance metric must be defined, a 

priori, allowing a similarity measure for the clustering process. 

The AM provides an analysis of each cluster, at regular intervals, indicating a 

probable promising cluster. A cluster density, δi, is a measure that indicates the 
activity level inside the cluster. For simplicity, δi counts the number of solutions 
generated by SM and allocated to the cluster i. Whenever δi reaches a certain 
threshold, indicating that some information template has become predominantly 

generated by SM, that information cluster must be better investigated to accelerate 

the convergence process on it. 

Finally, the LS is a local search module that provides the exploitation of a supposed 

promising search area framed by a cluster. This process is executed each time AM finds 

a promising cluster. LS can be considered as the particular search strategy associated 

with the cluster, i.e., a problem-specific local search to be applied to the cluster. 

4. CS for QM-CLAM 

A version of CS for the QM-CLAM is presented in this section. A solution was 

represented through a computational structure that contains the located centers, the 

allocation of the demand points and the objective value. The allocation procedure 

tests all the service centers defined by the solution and chooses one to allocate each 

demand point that satisfies: a) the coverage; b) its capacity; c) the service center that 

will have the minimum accumulated demand. 

The whole CS pseudo-code for the QM-CLAM is presented in Figure 2. The pseudo-

code shows where the different components of the procedure fit. 

The component SM, responsible for generating solutions to the clustering process, 

was the metaheuristic Greedy Randomized Adaptive Search Procedure (GRASP) 

[Feo and Resende (1995)]. The GRASP is basically composed of two phases: a 

construction phase, in which a feasible solution is generated, and a local search 

phase, in which the constructed solution is improved. 

 



procedure CS 

// component SM 

while (number of iterations is not satisfied) do 

// construction phase of GRASP 

s = ∅ 

while (solution not built) do 

compute candidate list (C) 

RCL = C * α  
e = select at random a value of RCL 

s = s ∪ {e} 

end-while 

// local search phase of GRASP 

s = Location-Allocation heuristic(s); 

// component IC 

calculate the distance of the solution GRASP (s) and the clusters 

insert the solution in the most similar cluster (ci) 

apply the assimilation process – path-relinking(s, ci) 

// component AM 

verify if the cluster can be considered promising. If so, the LS component 

is applied to it 

// component LS  

apply the location-allocation heuristic to the promising cluster 

end-while 

end procedure 

Figure 2. CS pseudo-code 

The construction phase of GRASP uses the steps 1 to 5 of the greedy heuristic 

reported in [Marianov and Serra (1998)], but changes the way to locate a server in 

step 5. A candidate list (C) is built in step 1 with all candidate locations. A restrict 

candidate list (RCL) is built in step 5 with a percentage α of C (RCL = C*α), with 
the highest current total incoming call rate. One node is chosen randomly in the RCL. 

Steps 1 to 5 used in this phase are shown in Figure 3. 

The local search phase of GRASP uses the location-allocation heuristic, proposed by 

[Lorena and Pereira (2002)]. The solutions obtained from the construction phase can 

be improved by searching for a new center in each covered area, swapping the 

current center by a allocated node of the same covered area, and changing the 

allocation solution, as shown in Figure 4. The algorithm is shown in Figure 5. That 

change may alter both allocation and the coverage of the QM-CLAM solution; so it is 

necessary to recalculate allocation. 



The IC is the CS’s core, working as a classifier, keeping in the system only relevant 

information, and guiding search intensification in the promising search areas. A 

maximum number of clusters (NC) is defined a priori. The i
th
 cluster has its own 

center ci and a radius r, like the other clusters. 

 

Heuristic 

Step 1: 

Make a list of the candidate locations j (candidate list C), ordered by a decreasing call 

rate (each demand node is a potential center location). Call this list Dj. 

For each candidate location, compute the right-hand side of equation (4) or (4a), 

depending on the model being utilized. For both equations, the right-hand side is 

initially computed using all previously known values of µ, b and ϕ (equation 4) or 

µ, b and τ (equation 4a). 
For each candidate location j, make a list of all demand nodes i within the standard 

distance, ordered by increasing distance to the candidate location. Call this list Dji. 

Step 2: 

For each candidate location, make the current total incoming call rate equal zero 

(ωinc, j). 

Step 3: 

Starting with the first candidate location j on the list Dj, add to its incoming call 

rate ωinc, j, the call rate fi of the first node on the list Dji. Then, add the call rate fi of 

the second node on the list Dji, then the third, and so on, until the point where 

adding any extra demand node would exceed the limit value of calls ωinc, . 

Temporarily allocate all these demand nodes to a hypothetical service center at 

node j. 

Step 4: 

Repeat step 3 for all nodes in list Dj. Note that the same demand node could be 

temporarily allocated to several candidate locations. 

Step 5: 

Locate a service center on the node chosen randomly within a percentage α of the 
highest current total incoming call rates. Take all demand nodes allocated to it out of all 

the lists Dji of all potential centers. Allocate them definitively to the located center. 

Step 6:  

Repeat steps 2 to 5 until all available centers are located. 

End-Heuristic 

Figure 3. Heuristic used in the construction phase of GRASP 



 

 

 

 

 

 

 

 

Figure 4. Reallocation of nodes. 

// Algorithm for primal solutions improvement (Location-Allocation heuristic) 

// Let vc be the best current objective value. 

procedure Location-Allocation; 

while (vc increases) 

for k = 1…p 

interchange center and allocated non-center nodes in the coverage area 

k; 

calculate the correspondent value of v of the best reallocation; 

if v > vc  

update the center node for the coverage area k; 

vc = v; 

end-if; 

end-for; 

end-while; 

end procedure 

Figure 5. Primal solutions improvement 

Solutions generated by GRASP (SM) are passed to IC that attempts to group these 

solutions as known information in a cluster, chosen according to a distance metric. 

The solution activates the closest center ci (cluster center that minimizes the distance 

metric), and a disturbance is applied to it. In this paper, the metric distance is the 

number of different located centers between the GRASP and the center of the cluster 

(a) Initial Solution (b) After reallocation 



solutions. When there are a larger number of different located centers between the 

GRASP and the cluster solution center it increases the dissimilarity. The disturbance 

is an assimilation process, in which the center of the cluster is updated by the new 

generated solution. In this paper, this process is the path-relinking method [Glover 

(1996)], that generates several points (solutions) along the path that connects the 

solution generated by GRASP and the one in the center of the cluster. Since each 

point is evaluated by the objective function, the assimilation process itself is an 

intensification mechanism inside the clusters. The new center ci is the best-evaluated 

solution obtained in the path.  

Path-relinking starts from two elite solutions. The first is the solution that comes 

from the SM component (sinitial). The second is the closest cluster center ci (sguide). The 

procedure starts by computing the symmetric difference between the two solutions 

∆(sinitial , sguide), i.e. the set of moves needed to reach sguide from sinitial. A path of 
solutions is generated, linking sinitial and sguide. At each step, the procedure examines 

all moves m ∈ ∆(sinitial , sguide) from the current solution s and selects the one which 

results in the best cost solution, applying the best move (m
∗
) to solution s (s⊕m∗

). 

The set of available moves is updated. The procedure terminates when sguide is 

reached, i.e. when ∆(sinitial , sguide) = ∅. The best solution s
∗
 in this path is returned by 

the algorithm. In this paper, one move is to swap a median of the sinitial by a median of 

the sguide, changing the allocation solution. Figure 6 illustrates the pseudo-code of the 

path-relinking and Figure 7 shows an example for a 30-node network with five 

service centers. 

procedure Path-relinking(sinitial , sguide) 

compute symmetric difference ∆(sinitial , sguide) 

f
 ∗
= min {f (sinitial), f (sguide)} 

s
∗
= argmin { f (sinitial), f (sguide)} 

s = sinitial 

while (∆(sinitial , sguide) ≠∅) 

m
∗
= argmin{ f (s⊕m): m ∈ ∆(sinitial , sguide)} 

∆(s⊕m∗
, sguide) = ∆(s, sguide)\{ m

∗
} 

s = s⊕m∗
 

if f (s) < f 
∗
 

f 
∗
= f (s) 

s
∗
= s 

end-if 

end-while 

return s
∗
 

end procedure 



Figure 6. Path-relinking algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Path-relinking moves 

The AM component is executed whenever a solution is assigned to a cluster, 

verifying if the cluster can be considered promising. A cluster becomes promising 

when it reaches a density λi, 

||
.

t

i
C

NS
PD≥λ  (8) 

where, NS is the number of solutions generated in the interval of analysis of the 

clusters, |Ct| is the number of clusters in the iteration t, and PD is the desirable cluster 

density beyond the normal density, obtained if NS were equally divided to all 

clusters. The center of a promising cluster is improved through the LS. The AM also 

performs the cooling of all clusters, halving the λi value. 

The component LS is activated when the AM discovers a promising cluster. The LS 

implementation uses the idea behind the local search phase of GRASP, the location-

allocation heuristic [Lorena and Pereira (2002)], changing the way of searching for a 

new service center. Rather than swapping the current center by an allocated node of 

the same covered area, it swaps the current center by all node in the same covered 

area, changing the allocation solution, recalculating the coverage, and taking the best 

Initial Solution ( Sinitial )

Cluster center ci (Sguide )

30721153

251912153 25192183 2571283 30191283

25712153 2572183 3071283

30712153 3072183

25191283



solution found as the new one. It permits searching for good solutions in different 

search spaces. After all, the LS applies the Swap2 heuristic (SW2) to all located 

centers, examining all possible swaps of two allocated and two non allocated demand 

points. The best one is performed and the process is repeated until no improvements 

occur. Therefore, the location-allocation heuristic searches for the best center 

location, and the Swap2 searches for the best allocation inside the best location 

found. After applying both heuristics, the cluster center is updated if the new solution 

is better than the previous one. 

5. Computational Results 

The CS was tested in the 30-node network provided by [Marianov and Serra (1998)] and 

in 324-node and 818- node networks obtained from a geographical data base of São José 

dos Campos, Brazil. These two networks were increased by fictitious population for each 

demand point and they are available at http://www.lac.inpe.br/~lorena/instancias.html. 

The 30-node network is shown in Table 1. 

By varying the p, b, µ, ϕ e τ parameters, various problems have been created. The 
results from CS have been compared to the results obtained using the commercial 

solver CPLEX, version 10.0 [ILOG (2006)], from the CGA [Correa and Lorena 

(2006)] and from the heuristic proposed by Marianov and Serra (1998). 

For the implementation of the QM-CLAM, the service centers are primary health 

care centers, with one physician at each center. Each demand point is also a potential 

center location (candidate location), and the distances are Euclidean. For the 30-node 

network, the following parameters were adopted: covered distance equaled to 1.5 

miles; average service time (1/µ) was set at 20 minutes; call rates were set at 0.015 
times the node population for the constrained queue length and 0.006 times the node 

population for the constrained waiting time, all defined in [Marianov and Serra 

(1998)]. 

For the 324-node and 818-node networks, the following parameters were used: 

average service time (1/µ) was set at 15 minutes; call rates were set at 0.01 times the 
node population for both constrained queue length and constrained waiting time. For 

the 324-node network, covered distance equaled 250 meters, and for the 818-node, 

equaled 750 meters. 

The problems were codified in the following way: number of points, number of 

centers, constraint type (0 for the constrained queue length and 1 for the constrained 

waiting time), number of people in line or waiting time, and probability. For 

example: 324_20_0_2_95, means there are 324 points, 20 centers, a constrained 

queue length, with a maximum of two people in line, with the probability of at least 

95%. The CS code was written in Object Pascal. The times in tables are shown in 



seconds and were determined in a Pentium IV 3 GHz computer, with 1Gb of RAM 

memory. The times for the attainment of the CPLEX solutions were limited to 3 

hours (10800 seconds). The instances marked with one * define a stop in the 

execution due to an out of memory error. 

Table 2 shows the results obtained for the 30-node network; Table 3 shows the 

results for the 324-node network and Table 4, for the 818-node network. The values 

of Gap CPLEX equal to zero mean that the optimum was reached. 

The results for the heuristic defined in [Marianov and Serra (1998)] (MS_Heuristic) 

are shown in three columns: Solution, Time, and Deviation. The Dev column 

(Deviation) shows, in percentage, the relative error between the heuristic and CPLEX 

solutions. Its values are calculated by (CPLEX solution – MS_Heuristic 

solution)/(CPLEX solution). 

The results for the CGA and CS reflect fifty executions of each problem and are 

shown in four columns: the best value found (Best column), the average value 

(Average column), the average time (Time column) and the deviation (Dev column), 

that reflects, in percentage, the relative error between the best solution for the CGA 

or CS and the CPLEX, and is calculated by (CPLEX solution – Best 

solution)/(CPLEX solution). Therefore, the negative values of the deviations indicate 

that the best solution for the CS was better than the CPLEX solution. The values in 

boldface show the best solutions found. 

The following values of parameters for CS were adjusted through several executions 

and are also based in [Oliveira and Lorena (2004)]. The following parameters 

produced good results: 

• number of solutions generated at each analysis of the clusters NS = 15; 

• maximum number of clusters NC = 5; 
• density pressure PD = 2; 

In 75% of the cases, the full CS procedure found objective values that were better 

than those found by the GRASP alone (SM component of CS) for the 324-node 

network and in about 92% for the 818-node network. It shows that the other 

components of CS contribute substantially to improve the solution values. 

As shown in Table 2, for the 30-node network, CS found the optimal value in about 

65% of the problems, considering the average results, and in about 81%, considering 

the best values, with better average time than CGA and CPLEX. 

For the 324-node network, CPLEX found better results in 100% of the tests. 

However, it had found serious problems in two instances due to out of memory error, 

and it did not find the optimal value for three problems in three hours of execution. 

The running times of the CS were very competitive compared to CPLEX, with good 



solution values. CS found better results than the heuristic by Marianov and Serra 

(1998) and CGA. 

For the 818-node network, the running times of the CS were very competitive as 

compared to the CPLEX, with better solution values in about 30% of the problems. 

CPLEX did not find the optimal value in about 46% of the instances tested in three 

hours of execution, and in some of them there were gaps above 100%. CS found the 

same optimal values as CPLEX with better computational times. CS also obtained 

better results than the heuristic by Marianov and Serra (1998) and CGA. 

Table 1. 30-node network 

Node X Y Population  Node X Y Population 

1 3.2 3.1 710  16 3.0 5.1 110 

2 2.9 3.2 620  17 1.9 4.7 100 

3 2.7 3.6 560  18 1.7 3.3 100 

4 2.9 2.9 390  19 2.2 4.0 90 

5 3.2 2.9 350  20 2.5 1.4 90 

6 2.6 2.5 210  21 2.9 1.2 90 

7 2.4 3.3 200  22 2.4 4.8 80 

8 3.0 3.5 190  23 1.7 4.2 80 

9 2.9 2.7 170  24 6.0 2.6 80 

10 2.9 2.1 170  25 1.9 2.1 80 

11 3.3 2.8 160  26 1.0 3.2 70 

12 1.7 5.3 150  27 3.4 5.6 60 

13 3.4 3.0 140  28 1.2 4.7 60 

14 2.5 6.0 120  29 1.9 3.8 60 

15 2.1 2.8 120  30 2.7 4.1 60 

6. Conclusions 

This paper has presented a solution for the Probabilistic Maximal Covering Location-

Allocation Problem using Clustering Search (CS). The CS is a new method that has 

been applied with success in some combinatorial optimization problems, such as the 

pattern sequencing problem [(Oliveira and Lorena (2004)] and prize collecting 

traveling salesman problem [Chaves and Lorena (2005].  

The idea of the CS is to avoid applying a local search heuristic to all solutions 

generated by a metaheuristic, which can make the search process impracticable since 

it is time consuming, mainly when the heuristic has a high computational cost. The 

CS detects the promising regions in the search space during solution generation 

process, i.e., to detect promising regions becomes an interesting alternative in order 

to prevent the indiscriminate application of such heuristics. 



This paper reports results of different methods applied to QM-CLAM. CS got better 

results than others heuristics (CGA and the heuristic by Marianov and Serra) and it 

founds good values comparing to CPLEX. CS has two advantages over CPLEX: 

execution time, and the cost of a commercial solver. 

The results show that the CS approach is competitive for the resolution of this 

problem in reasonable computational times. For some instances of 30-node and 818-

node networks, the optimal values were found. Therefore, these results validate the 

CS application to the QM-CLAM. 

Further studies can be done which analyze others metaheuristics to generate solutions 

for the clustering process of CS, such as the Ant Colony System, Tabu Search and 

Genetic Algorithm, and which implement new local search heuristics for the QM-

CLAM. Moreover, larger instances of this model can be generated and solved.



Table 2. Results for the 30-node network 

Problem CPLEX CGA MS_Heuristic GRASP CS 

 Sol. Gap Time  Best Average Time  Dev. Sol. Time Dev. Best Average Time Best Average Time Dev. 

30_2_0_0_85 3700 0 0.22 3700 3700 0.31 0.00 3700 0.00 0.00 3700 3700.0 0.007 3700 3700.0 0.009 0.00 

30_3_0_0_85 5390 0 0.12 5390 5390 0.51 0.00 5210 0.00 3.34 5390 5390.0 0.019 5390 5390.0 0.025 0.00 

30_2_0_1_85 5100 0 3.31 5090 5090 0.36 0.20 4630 0.00 9.22 5090 5090.0 0.016 5090 5090.0 0.018 0.20 

30_3_0_1_85 5390 0 0.08 5390 5390 0.48 0.00 5210 0.00 3.34 5390 5390.0 0.021 5390 5390.0 0.024 0.00 

30_2_0_2_85 5210 0 0.20 5210 5210 0.38 0.00 4780 0.00 8.25 5210 5210.0 0.015 5210 5210.0 0.016 0.00 

30_3_0_2_85 5390 0 0.12 5390 5390 0.47 0.00 5210 0.00 3.34 5390 5390.0 0.022 5390 5390.0 0.023 0.00 

30_5_0_0_95 5330 0.38 10800 5330 5323 0.80 0.00 5210 0.00 2.25 5330 5312.8 0.032 5330 5317.6 0.041 0.00 

30_6_0_0_95 5410 1.11 10800 5410 5392 0.84 0.00 5390 0.00 0.37 5390 5390.0 0.029 5410 5391.0 0.037 0.00 

30_3_0_1_95 5270 0 116.00 5240 5240 0.48 0.57 5080 0.00 3.61 5240 5239.8 0.022 5240 5240.0 0.024 0.57 

30_4_0_1_95 5390 0 3.77 5390 5390 0.54 0.00 5260 0.00 2.41 5390 5390.0 0.022 5390 5390.0 0.026 0.00 

30_2_0_2_95 4520 0 2.11 4520 4513 0.30 0.00 4470 0.00 1.11 4520 4520.0 0.013 4520 4520.0 0.015 0.00 

30_3_0_2_95 5390 0 0.12 5390 5390 0.50 0.00 5230 0.00 2.97 5390 5390.0 0.023 5390 5390.0 0.027 0.00 

30_4_1_48_90 1920 0 0.41 1920 1920 0.66 0.00 1890 0.00 1.56 1920 1920.0 0.011 1920 1920.0 0.014 0.00 

30_5_1_48_90 2400 0 0.41 2390 2390 0.74 0.42 2280 0.00 5.00 2400 2398.8 0.013 2400 2398.8 0.019 0.00 

30_3_1_49_90 2160 0 0.31 2160 2160 0.53 0.00 2160 0.00 0.00 2160 2160.0 0.007 2160 2160.0 0.009 0.00 

30_4_1_49_90 2880 0 0.41 2880 2877 0.59 0.00 2870 0.00 0.35 2880 2880.0 0.008 2880 2880.0 0.013 0.00 

30_5_1_50_90 4700 0 4.09 4700 4700 0.73 0.00 4670 0.00 0.64 4700 4700.0 0.018 4700 4700.0 0.028 0.00 

30_6_1_50_90 5390 0 350.52 5390 5390 0.97 0.00 5060 0.00 6.12 5390 5390.0 0.027 5390 5390.0 0.038 0.00 

30_5_1_40_85 3050 0 3.66 3020 3001 0.74 0.98 2910 0.00 4.59 3050 3033.2 0.016 3050 3033.2 0.021 0.00 

30_6_1_40_85 3610 0 31.62 3610 3610 0.91 0.00 3480 0.00 3.60 3610 3606.8 0.021 3610 3608.8 0.031 0.00 

30_7_1_40_85 4060 0 16.89 4060 4060 1.03 0.00 3860 0.00 4.93 4060 4060.0 0.028 4060 4060.0 0.039 0.00 

30_6_1_41_85 5330 0.19 10800 5300 5274 1.00 0.56 5120 0.00 3.94 5270 5270.0 0.028 5330 5286.4 0.038 0.00 

30_7_1_41_85 5410 0 43.56 5390 5390 0.88 0.37 5300 0.00 2.03 5390 5390.0 0.023 5390 5390.0 0.035 0.37 

30_8_1_41_85 5470 0 0.05 5470 5470 0.95 0.00 5390 0.00 1.46 5470 5470.0 0.019 5470 5470.0 0.032 0.00 

30_4_1_42_85 4600 0 0.75 4600 4600 0.61 0.00 4550 0.00 1.09 4600 4600.0 0.016 4600 4600.0 0.022 0.00 

30_5_1_42_85 5390 0 6.50 5390 5390 0.77 0.00 5210 0.00 3.34 5390 5390.0 0.027 5390 5390.0 0.035 0.00 



Table 3. Results for the 324-node network 

Problem CPLEX CGA MS_Heuristic GRASP CS 

  Solution Gap Time  Best Average Time  Dev. Solution Time Dev. Best Average Time Best Average Time Dev. 

324_10_0_0_95 21460 0 67.4 21431 21373.0 8.63 0.14 21386 0.14 0.34 21446 21441.2  2.05 21455 21447.2 3.16 0.023 

324_10_0_1_95 35360 0 242.1 35342 35304.0 7.79 0.05 35250 0.16 0.31 35339 35336.5 2.06 35359 35354.6 3.17 0.003 

324_10_0_2_95 45390 0 305.3 45347 45245.0 7.81 0.09 45300 0.20 0.20 45341 45334.6 2.01 45374 45354.6 3.10 0.035 

324_10_0_0_85 37180 0 481.0 37145 37069.0 8.10 0.09 37081 0.22 0.27 37157 37155.8 2.24 37173 37163.2 3.46 0.019 

324_10_0_1_85 51000 0 297.3 50880 50711.0 7.69 0.24 50750 0.20 0.49 50948 50946.3 2.30 50948 50946.3 3.41 0.102 

324_10_0_2_85 59740 0 961.1 59624 59437.0 7.62 0.19 59598 0.20 0.24 59693 59688.5 2.24 59693 59688.5 3.33 0.079 

324_10_1_40_85 27700 0 292.1 27675 27602.0 8.54 0.09 27583 0.17 0.42 27670 27666.6 2.18 27698 27692.1 3.37 0.007 

324_10_1_41_85 29360 0 216.5 29324 29260.0 8.27 0.12 29288 0.14 0.25 29335 29330.9  2.23 29351 29341.9 3.52 0.031 

324_10_1_42_85 30950 0 1074.1 30932 30895.0 8.34 0.06 30902 0.17 0.16 30928 30920.8 2.21 30948 30943.3 3.33 0.006 

324_10_1_48_90 26920 0 421.6 26883 26835.0 8.35 0.14 26855 0.14 0.24 26899 26896.6 2.18 26917 26910.6 3.50 0.011 

324_10_1_49_90 28330 0 359.1 28280 28221.0 8.28 0.18 28206 0.25 0.44 28295 28285.0 2.24 28318 28310.3 3.43 0.042 

324_10_1_50_90 29680 0 529.9 29641 29593.0 8.26 0.13 29638 0.22 0.14 29658 29656.1 2.24 29672 29665.5 3.36 0.027 

324_20_0_0_95 42920 0.021* 9672.3 42577 42318.0 24.30 0.80 42714 0.73 0.48 42813 42792.2  4.24 42840 42804.9 9.37 0.186 

324_20_0_1_95 70720 0 9911.9 70471 70308.0 23.40 0.35 70368 0.74 0.50 70561 70529.8 4.43 70656 70628.2 9.06 0.090 

324_20_0_2_95 90778 0.003 10800.0 89970 89355.0 24.15 0.89 90424 0.81 0.39 90550  90518.9 4.64 90556 90521.2 9.40 0.245 

324_20_0_0_85 74315 0.061* 4791.9 73407 73001.0 23.69 1.22 73981 0.83 0.45 74165 74106.0  4.80 74165 74106.7 9.71 0.202 

324_20_0_1_85 101928 0.071 10800.0 99576 98353.0 24.69 2.31 100628 1.02 1.28 101374 101177.4  4.88 101374 101177.4 9.07 0.544 

324_20_0_2_85 119445 0.030 10800.0 116639 115235.0 23.33 2.35 118451 0.77 0.83 118771 118613.6 4.86 118771 118613.6 8.99 0.564 

324_20_1_40_85 55397 0.005 10800.0 54804 54414.0 23.92 1.07 55006 0.84 0.71 55193 55147.4 4.63 55306 55226.7 9.65 0.164 

324_20_1_41_85 58720 0 828.9 58009 57571.0 24.70 1.21 58577 1.02 0.24 58602 58582.6 4.72 58604 58583.4 10.33 0.198 

324_20_1_42_85 61900 0.002 10800.0 61545 61266.0 23.81 0.57 61637 0.88 0.42 61746 61715.1 4.68 61847 61822.6 9.74 0.086 

324_20_1_48_90 53839 0.002 10800.0 53300 52958.0 24.32 1.00 53377 0.63 0.86 53647 53607.5 4.54 53793 53689.5 9.82 0.085 

324_20_1_49_90 56651 0.016 10800.0 56216 55813.0 24.15 0.77 56180 1.34 0.83 56321 56254.3 4.59 56532 56429.9 9.55 0.210 

324_20_1_50_90 59357 0.005 10800.0 58941 58577.0 26.03 0.70 59119 0.94 0.40 59253 59237.0  4.74 59285 59242.6 10.08 0.121 

 



Table 4. Results  for the 818-node network 

Problem CPLEX CGA MS_Heuristic GRASP CS 

  Solution Gap Time Best Average Time Dev. Solution Time Dev. Best Average Time Best Average Time Dev. 

818_10_0_0_95 21460 0 2957.7 21455 21449.32 43.65 0.02 21429 4.94 0.14 21459 21458.3 6.30 21460 21459.9 11.23 0.000 

818_10_0_1_95 35360 0 3404.1 35356 35346.02 50.45 0.01 35339 13.05 0.06 35360 35360.0 6.65 35360 35360.0 11.54 0.000 

818_10_0_2_95 45390 0 3320.1 45387 45377.4 49.37 0.01 45375 12.09 0.03 45389 45388.2 6.97 45390 45390.0 12.17 0.000 

818_10_1_48_90 26920 0 3004.2 26915 26901 48.35 0.02 26907 11.38 0.05 26918 26918.0 6.10 26920 26920.0 11.32 0.000 

818_10_1_49_90 28330 0 3303.5 28320 28297.98 47.78 0.04 28309 8.63 0.07 28329 28328.6 6.67 28330 28330.0 12.23 0.000 

818_10_1_50_90 29680 0 2780.8 29678 29673.76 47.81 0.01 29661 18.28 0.06 29680 29679.4 6.42 29680 29680.0 11.33 0.000 

818_20_0_0_95 42920 0 4579.9 42870 42817.66 76.20 0.12 42793 25.67 0.30 42903 42900.0 14.51 42920 42918.9  54.84 0.000 

818_20_0_1_95 70720 0 6392.9 70653 70557.06 80.42 0.09 70644 37.03 0.11 70717 70715.1 16.90 70720 70719.2 62.91 0.000 

818_20_0_2_95 90780 0 7098.1 90747 90672.9 84.99 0.04 90730 75.19 0.06 90772 90769.5 19.18 90780 90779.6 66.80 0.000 

818_20_0_0_85 74360 0 6993.7 74341 74279.42 90.04 0.03 74313 75.05 0.06 74353 74352.1 16.27 74360 74359.8 66.81 0.000 

818_20_0_1_85 100989 435.00 10800.0 101955 101898.82 89.19 -0.96 101933 76.06 -0.93 101996 101991.9 19.24 102000 101998.9  67.36 -1.001 

818_20_0_2_85 119405 352.48 10800.0 119445 119306.4 89.18 -0.03 119397 105.48 0.01 119468 119466.0 21.26 119480 119477.6 74.36 -0.063 

818_20_1_40_85 55398 0.004 10800.0 55341 55235.68 88.33 0.10 55325 66.11 0.13 55396 55395.3 15.93 55400 55399.0 61.04 -0.004 

818_20_1_41_85 58719 0.002 10800.0 58706 58677.58 87.62 0.02 58637 69.63 0.14 58711 58709.2 15.24 58720 58719.9 57.31 -0.002 

818_20_1_42_85 61818 774.00 10800.0 61839 61719.7 90.43 -0.03 61814 71.81 0.01 61894 61892.2 16.16 61900 61898.8 58.71 -0.133 

818_20_1_48_90 53840 0 5565.0 53814 53762.18 87.87 0.05 53728 22.41 0.21 53827 53825.7 15.35 53840 53839.6 59.56 0.000 

818_20_1_49_90 56660 0 5254.6 56605 56465.32 88.71 0.10 56602 34.34 0.10 56653 56651.6 16.11 56660 56660.0 67.42 0.000 

818_20_1_50_90 59360 0 4919.3 59336 59279.8 87.04 0.04 59269 39.84 0.15 59352 59350.2 15.02 59360 59359.9 58.48 0.000 

818_50_0_0_85 185876 0.013 10800.0 184428 184153.6 177.34 0.78 185426 756.72 0.24 185779 185755.8 50.62 185880 185775.6 364.20 -0.002 

818_50_0_1_85 251029 115.23 10800.0 253438 252884.6 171.86 -0.96 254509 730.20 -1.39 254860 254836.6 58.37 254985 254905.0 387.37 -1.576 

818_50_0_2_85 292912 84.45 10800.0 296763 296182.8 171.74 -1.31 298217 757.73 -1.81 298547 298511.2 63.58 298582 298517.6 392.29 -1.936 

818_50_1_48_90 134598 0.001 10800.0 134079 133999.4 177.67 0.39 134088 596.11 0.38 134474 134444.5 43.99 134598 134561.6 335.00 0.000 

818_50_1_49_90 141648 0.001 10800.0 140439 140143.4 174.96 0.85 141281 571.17 0.26 141548 141527.5 46.32 141586 141532.8 356.80 0.044 

818_50_1_50_90 148398 0.001 10800.0 147202 147123.8 173.96 0.81 147931 667.67 0.31 148280 148253.1 46.62 148383 148321.9 337.4 0.010 
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