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Abstract 
 

The Maximal Covering Location Problem (MCLP) 

maximizes the population that has a facility within a 

maximum travel distance or time. Numerous extensions 

have been proposed to enhance its applicability, like 

the probabilistic model for the maximum covering 

location-allocation with constraint in waiting time or 

queue length for congested systems, with one or more 

servers per service center. In this paper we present one 

solution procedure for that probabilistic model, 

considering one server per center, using the 

Constructive Genetic Algorithm. The results of tests on 

the solution procedure are presented.  

 

 

1. Introduction 
 

The Maximal Covering Location Problem (MCLP) 

has been extensively studied in the literature since its 

formularization made by Church and ReVelle (1974). 

The main objective of the MCLP is to choose the 

location of facilities to maximize the population that 

has a facility within a maximum travel distance (or 

time). Thus, a population is considered covered if it is 

within a predefined service distance (or time) from at 

least one of existing facilities. Considerable revision of 

this subject can be found in Hale and Moberg (2003), 

Serra and Marianov (2004) and Galvão (2004). The 

MCLP does not require that all demand areas be 

covered, but offers attendance to the maximum 

population, considering the available resources. Some 

useful applications are extensions of this 

formularization. 

In many works involving location problems, the 

distance (or time) between demand points and the 

facilities to which they are being located are the factor 

that represents the quality of the services that are given 

to the users. However, when service networks are 

projected, as health systems or banking, the location of 

service centers has a strong influence on the congestion 

of each of them, and, consequently, the quality of 

services must be better defined and not only 

considering the travel distance or time. The centers 

must be located to allow the users to arrive at the center 

in an acceptable time, is also desirable that the waiting 

time for attendance is no longer than a given time limit 

or nobody stands on line with more than a 

predetermined number of other clients. These are 

important parameters in the measure of the desired 

quality [11]. 

Congestion happens when a center is not capable to 

deal, simultaneously, to all the service requests that are 

made to it. Normally, the traditional models that deal 

with congestion include a capacity constraint, which 

forces the demand for service, normally constant in 

time and equal to an average, to be smaller than the 

maximum capacity of the center all the time. This is a 

deterministic approach to the problem, because does 

not consider the dynamic nature of the congestion. 

Depending on how the capacity constraint is 

developed, this makes that the solution model presents 

idle servers, or is a system that is not capable to attend 

all the demand [11][12]. 

Marianov and Serra (1998) proposed models based 

on the fact that the number of requests for services are 

not constant in time, but a stochastic process, whose 

stochasticity of demand is explicitly considered in the 

capacity constraints. Instead of being limited to a 

maximum value, the authors define a minimum limit 

for the quality of the service reflected in the waiting 

time or the number of people waiting for service. 

Those researchers address the formulation of several 

maximal coverage models, with one or more servers 



per service center, so that all the population is served 

within a standard distance (or time), and nobody stands 

on line more than a given time limit, or with more than 

a given number of other clients, with a probability of at 

least ϕ. 

The purpose of this paper is to examine the Queuing 

Maximal Covering Location-Allocation Model (QM-

CLAM) with one server per service center, proposed 

by Marianov and Serra (1998), and present a solution 

using the Constructive Genetic Algorithm (CGA). The 

QM-CLAM is briefly discussed in Section 2, the CGA 

is described in Section 3, computational results are 

reported in Section 4 and conclusions are presented in 

Section 5. 

 

2. QM-CLAM 
 

The traditional Maximum Covering Location 

Problem (MCLP) proposed by Church and ReVelle 

(1974) can not be used to deal with the congestion 

constraints, because there are no allocation variables. 

Then, it is impossible to compute the requests of 

services that arrive at a center, and, consequently, to 

determine when congestion occurs. 

Thus, the MCLP has been rewritten as p-median-like 

model, modified to accommodate the location and 

allocation variables. The objective is to maximize the 

covered population, considering a predefined number of 

service centers.  

An integer linear programming formulation for the 

QM_CLAM is obtained by introducing the following 

variables. Let yj = 1 if a center is located at a node j and 

yj = 0 otherwise; xij = 1 if the users located at demand 

node i is allocated to a center located at j, and xij = 0 

otherwise. We consider i ∈ I and j ∈ Ni, such as I is a 

set of demand nodes, and Ni is either a set of candidate 

locations that are within a standard distance from node 

i, or the set of candidate locations which can be 

reached from node i, within a certain standard time. Let 

ai be the total population at demand node i. The 

QM_CLAM can be formally stated as: 
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The objective (1) maximizes the population 

allocated to a center. Constraint (2) defines that a 

demand point i can be allocated to a node j only if there 

is a center in j. Constraint (3) forces each demand node 

i to be allocated to at most one service center j. 

Constraints (4) force to each center has no more than b 

people on a line, with a probability of at least ϕ. 

Constraints (4a), make the total time spent by a user at 

a center j shorter than or equal to τ, with a probability 

of at least ϕ. Constraint (5) sets the number of centers 

to be located. Constraints (6) define the integrality 

requirements. 

In order to write constraint (4), the authors made 

assumption that requests for service at each demand 

node i appear according to a Poisson process with 

intensity zi. The service requests at a center are the 

union of the requests for service of the demand nodes, 

and they can be described as another stochastic 

process, equal to the sum of several Poisson processes, 

with intensity λj: 

∑
∈

=
Ii

ijij xzλ               (7) 

Which means that, if the variable xij is one, node i is 

allocated to center j and the corresponding intensity zi 

will be included in computation of λj. They have 

considered the well known results for a M/M/1 queuing 

system for each center and its allocated users [8]. An 

exponentially distributed service time, with an average 

rate µj, has been considered in those models, where µj ≥ 

λj, otherwise the system does not reach the equilibrium. 

The QM-CLAM belongs to the NP-Complete class of 

problems [16]. Even using commercial solvers is not 

always possible to find the optimal solution in a 

reasonable computational time, due to its classification 

and to the problem size. Therefore, alternative methods 

are investigated. In the next chapter a solution based on 

the Constructive Genetic Algorithm will be presented. 

 

3. Constructive Genetic Algorithm 
 

Genetic algorithms have been developed by John 

Holland, his colleagues, and his students at the 

University of Michigan. Refinements of the method have 

been implemented in the following decades. Some of 

them and basic information can be achieved in Lacerda 

and Carvalho (1999) and Goldberg (1989). 



The Constructive Genetic Algorithm (CGA) 

[2][9][13][14] works with a population formed by 

schemata (incomplete solutions) and structures 

(complete solution). 

 In this work, structures and schemata can be 

generated by a string representation, using the symbols 1, 

2 and #. The schemata make an explicit reference to the 

symbol # (“do not care”) and represent a population of 

partial solutions, who is a base for the construction of a 

population with complete better solutions, throughout 

the evolutionary process. The symbol 1 represents a 

center; the symbol 2 represents a demand point to be 

allocated to a center and the “do not care” symbol 

represents a non defined point to the problem, which will 

become a center or a demand point during the 

evolutionary process. 

The Figure 1 shows an example of an individual S 

for a problem with 10 demand points and 2 centers. 

Constraints (2), (3) and (5) of QM_CLAM are 

implicitly considered in this representation. The 

capacity constraint (4) or (4a) is considered during a 

demand point allocation, when adding its intensity zi, 

the remaining capacity of the center is not exceeded. 

QM_CLAM is a clustering problem, and any clustering 

algorithm will attempt to determine some inherent or 

natural grouping in the data, using distance or 

similarity measures between individual data [9]. In this 

case, once a center is chosen, a cluster is determined by 

allocating demand points to it that are within a 

coverage distance, that satisfies its capacity and are not 

allocated to any other center. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. S = (2221#1222#) (Furtado (1998)).Figure 1. S = (2221#1222#) (Furtado (1998)).Figure 1. S = (2221#1222#) (Furtado (1998)).Figure 1. S = (2221#1222#) (Furtado (1998)).    
 

The CGA has the traditional operators: selection, 

recombination and mutation, and differs from a 

classical GA in the way to evaluate the schemata (fg-

fitness), in the possibility to use heuristics to define the 

fitness evaluation function and in the treatment of a 

dynamic population [14]. 

The fg-finess is a double fitness evaluation of an 

individual Sk ∈ Pα, where Pα is a population at 

evolutionary instant α. The f value represents the 

objective function, f: Pα�R
+
, expression (1), and the g 

value is calculated by a heuristic, g: Pα�R
+
,such that 

g(Sk) ≥ f(Sk), to all Sk ∈ Pα. The first evaluates the 

quality of individual and the second applies a problem-

specific heuristic (called training heuristic) to evaluate 

the neighborhood of individual, being the value of the 

best solution found attributed to g. 

In this work, the heuristic used for g calculation is 

based on the algorithm used to improve the primal 

solutions in Pereira and Lorena (2001). This heuristic 

searches for a new center in each cluster, swapping the 

current center with a non-center node in the same cluster, 

changing the allocation solution. This change may alter 

both allocation and covering configuration, so an 

algorithm for recalculating the coverage is needed and 

was implemented. The algorithm stops when swapping 

the current center do not improve the value of the best 

reallocation. 

The Constructive Genetic Algorithm works with a 

dynamic population, initially formed only by schemata, 

which is enlarged after the use of recombination 

operators, or made smaller along the generations, guided 

by an evolutionary parameter. That population is built, 

generation after generation, by directly searching for 

well-adapted structures (complete solution) and also for 

good schemata. 

The evolutionary process considers an adaptive 

rejection threshold, which defines the adaptation of an 

individual. This adaptation is proportional to its ranking 

δ, calculated by equation (8), 
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that is composed by: 

• A component concerning the adaptation of individual 

in relation to the training heuristic (g-f). 

• A component (Gmax – g(Sk)) that privileges the 

maximization of the function g, calculating the 

distance between the individual and an upper bound 

for all possible values for the f and g functions 

(Gmax). 

• A constant d, 0 ≤ d ≤ 1, to balance the components 

of the equation. 

Thus, better individuals have greater ranks. The initial 

population P0 is made by schemata and, when the 

individuals receive their correspondents ranking values. 

The individuals are sorted by decreasing values of δ. The 

population is then controlled in a dynamic way (see Figure 

2) by an adaptative rejection threshold α, calculated by 

equation (9), that uses the current population size |P|, the 

best (δ1) and the worst (δ|P|) rankings of individuals in 

current population, the estimated remaining number of 

generations, RG, the constant ε that controls the speed of 
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evolutionary process, and l that guarantee a minimum step 

in that process. 
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The initial α value is the worst ranking of individuals 

(δ|P|) in the initial population. At the end of each generation 

the individulas less adapted (δ(Sk) ≤ α) are eliminated 

from the population. The best individual for each 

generation is kept to define, at the end of the evolutionary 

process, the best solution found. 

Figure 2. Population at each generationFigure 2. Population at each generationFigure 2. Population at each generationFigure 2. Population at each generation    
 

Two structures or schemata are selected for 

recombination The first, called base, is obtained from the 

20% better individuals of the population (Sbase). The 

second, called guide, is randomly selected out from the 

whole population (Sguide). In the recombination operation, 

the current labels in corresponding positions are compared. 

Let Snew be the new offspring after recombination. The 

structure or schema Snew is obtained by applying the 

folowing operations, based on Furtado (1998) and Oliveira 

and Lorena (2005): 

• Sbase = # and Sguide = # then Snew = # 

• Sbase = 1 and Sguide = 1 then Snew = 1 

• Sbase = 2 and Sguide = 2 then Snew = 2 

• Sbase = 1 and Sguide = # then Snew = 1 

• Sbase = 2 and Sguide = # then Snew = 2 

• Sbase = # and Sguide = 2 then Snew = 2 

• Sbase = # or 2 and Sguide = 1 then Snew = 1 or 2, 

chosen randomly 

• Sbase = 1 and Sguide = 2 then Snew = 1 ou 2, chosen 

randomly 

After a recombination operation, more than p values 1 

can appear in the Snew. That condition is not relaxed and 

Snew must be validated to guarantee the constraint (5), by 

inserting or removing values 1 from that offspring.  

The mutation operator changes a center with a neighbor 

that it is not covered by any center. This increases the 

possibility of all the demand points to be centers. 

 

4. Computational results 
 

The CGA was tested in the 30-node network provided 

by Marianov and Serra (1998) and in a 324-node network 

gotten from a geographical data base of São José dos 

Campos-SP, Brasil, increased by fictitious population in 

each demand point. The last one is available at 

http://www.lac.inpe.br/~lorena/instancias.html. 

By varying the p, b, µ, ϕ e τ parameters, various 

problems have been created. The results from CGA 

have been compared to the results obtained using the 

commercial solver CPLEX, version 7.5 [7]. 

For the implementation of the QL_CLAM, the 

service centers are primary health care centers, with 

one physician at each center. Each demand point is also 

a potential center location, and the distances are 

Euclidean. To the 30-node network, it has been 

considered: covered distance equals to 1,5 miles; 

average service time (1/µ) was set at 20 minutes; call 

rates were set at 0.015 times the node population for 

the constrained queue length and 0,006 times the node 

population for the constrained waiting time, all defined 

on Marianov and Serra (1998). To the 324-node 

network, it has been considered: covered distance 

equals 250 meters, average service time (1/µ) was set at 

15 minutes; call rates were set at 0,01 times the node 

population for both constrained queue length and 

constrained waiting time. 

The problems have been codified in the following way: 

number of points, number of center, constraint type (0 for 

the constrained queue length and 1 for the constrained 

waiting time), number of people in line or waiting time, 

and probability. Example: 324_20_0_2_95, which means 

324 points, 20 centers, constrained queue length, 

maximum of two people in line, with the probability, at 

least, 95%. The CGA code has been written in Object 

Pascal. The times in tables are shown in seconds and have 

been determined in a Pentium IV 3 GHz computer, with 

1Gb of RAM memory, for the 324-node network, and in a 

Pentium III 800 MHz computer, with 384 Mb of RAM, 

for the 30-node network. The times for the attainment of 

the CPLEX solutions was limited in 2 hours (7200 

seconds), except for the instances marked with one *, that 

it defines a stop in the execution due to out of memory 

error. The results of the CGA have been gotten using the 

values of the parameters shown in Table 1. 

    

Table 1. Table 1. Table 1. Table 1. CGCGCGCGA parametersA parametersA parametersA parameters    

Parameters 30 and 324-node network 

GMax 1,1 times the sum of the population 

of all demand points 

d 0.1 

ε 0.001 

l 0.0001 

Problem  324_20_0_2_85
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Crossover / generation 30 

Mutation probability 0.20 

Initial population 300 

Maximal number of 

generations 

300 

 

The tables 2 and 3 show the results obtained for the 

324-node network and tables 4 and 5 show the results for 

the 30-node network. Tables 2 and 4 show the best integer 

solutions found and the Gap Cplex to the 324-node and 

30-node networks, respectively. The values of Gap Cplex 

equal zero define that the optimal has been achieved. 

Tables 3 and 5 show the results found by CGA to the 324-

node and 30-node networks, respectively. 

 

Table 2. CPLEX results for the 324Table 2. CPLEX results for the 324Table 2. CPLEX results for the 324Table 2. CPLEX results for the 324----node networknode networknode networknode network    

Problem CPLEX 
 CPLEX Solution Gap Cplex  (%) 

324_10_0_0_95 21365 0.47 

324_10_0_1_95 35050 * 0.90 

324_10_0_2_95 45232 0.36 

324_10_0_0_85 36802 1.03 

324_10_0_1_85 50037 1.25 

324_10_0_2_85 58516 2.10 

324_20_0_0_95 41676 3.01 

324_20_0_1_95 68443 3.35 

324_20_0_2_95 88269 2.86 

324_20_0_0_85 71119 4.56 

324_20_0_1_85 95917 6.36 

324_20_0_2_85 112691* 6.03 

324_10_1_40_85 27307 1.45 

324_10_1_41_85 28710 * 2.30 

324_10_1_42_85 30735 0.72 

324_10_1_48_90 26360 2.13 

324_10_1_49_90 28249 0.29 

324_10_1_50_90 29338 1.19 

324_20_1_40_85 53198 * 4.15 

324_20_1_41_85 55740 * 5.38 

324_20_1_42_85 60783 * 1.86 

324_20_1_48_90 52617 2.33 

324_20_1_49_90 54097 * 4.75 

324_20_1_50_90 57974 2.45 

    

The results for the CGA reflect fifty executions of 

each problem and are shown in four columns: the best 

value found (column Best solution), the average value 

(column Average solution), the average time (column 

Time) and the column “Deviation”, that reflects the 

relative error of the average solution for the CGA, 

relative to the best found primal solution, and are 

calculated by (CPLEX solution – Average 

solution)/(CPLEX solution). Therefore, the negative 

values of the deviations indicate that the average 

solution for the CGA was better than the CPLEX 

solution. The values in boldface show the best 

solutions found. 
 
Table 3. CGA results for the 324Table 3. CGA results for the 324Table 3. CGA results for the 324Table 3. CGA results for the 324----node networknode networknode networknode network    

Problem CGA 
 Best 

solution 

Average 

solution 

Time 

(s) 

Deviation 

(%) 

324_10_0_0_95 21431 21373 8.63 -0.04 

324_10_0_1_95 35342 35304 7.79 -0.03 

324_10_0_2_95 45347 45245 7.81 -0.03 

324_10_0_0_85 37145 37069 8.10 -0.38 

324_10_0_1_85 50880 50711 7.69 -0.29 

324_10_0_2_85 59624 59437 7.62 -0.27 

324_20_0_0_95 42577 42318 24.30 -0.76 

324_20_0_1_95 70471 70308 23.40 0.05 

324_20_0_2_95 89970 89355 24.15 0.15 

324_20_0_0_85 73407 73001 23.69 0.06 

324_20_0_1_85 99576 98353 24.69 1.22 

324_20_0_2_85 116639 115235 23.33 1.43 

324_10_1_40_85 27675 27602 8.54 -0.15 

324_10_1_41_85 29324 29260 8.27 -0.42 

324_10_1_42_85 30932 30895 8.34 -0.09 

324_10_1_48_90 26883 26835 8.35 -0.13 

324_10_1_49_90 28280 28221 8.28 0.10 

324_10_1_50_90 29641 29593 8.26 -0.03 

324_20_1_40_85 54804 54414 23.92 0.18 

324_20_1_41_85 58009 57571 24.70 0.47 

324_20_1_42_85 61545 61266 23.81 -0.79 

324_20_1_48_90 53300 52958 24.32 0.21 

324_20_1_49_90 56216 55813 24.15 -0.44 

324_20_1_50_90 58941 58577 26.03 0.39 

 

Table 4. CPLEX results for the 30Table 4. CPLEX results for the 30Table 4. CPLEX results for the 30Table 4. CPLEX results for the 30----node networknode networknode networknode network    

Problem CPLEX 

 CPLEX  Solution Gap Cplex (%) Time (s) 

30_2_0_0_85 3700 0.49 7200 

30_3_0_0_85 5390 0 2 

30_2_0_1_85 5100 0 38 

30_3_0_1_85 5390 0 2 

30_2_0_2_85 5210 0 0 

30_3_0_2_85 5390 0 1 

30_5_0_0_95 5330 0.69 7200 

30_6_0_0_95 5410 0 44 

30_3_0_1_95 5270 0 390 

30_4_0_1_95 5390 0 0 

30_2_0_2_95 4520 0.43 7200 

30_3_0_2_95 5390 0 0 

30_4_1_48_90 1920 1.47 7200 

30_5_1_48_90 2400 1.47 7200 

30_3_1_49_90 2160 0 2 

30_4_1_49_90 2880 0 0 

30_5_1_50_90 4700 0.81 7200 

30_6_1_50_90 5390 0 1 

30_5_1_40_85 3050 1.19 7200 

30_6_1_40_85 3600 2.88 7200 

30_7_1_40_85 4060 0 1 

30_6_1_41_85 5330 0.74 7200 

30_7_1_41_85 5410 0 27 

30_8_1_41_85 5470 0 0 

30_4_1_42_85 4600 0.81 7200 

30_5_1_42_85 5390 0 1 

Considering the 324-node network, the CGA has 

better results in 100% of the tests, in competitive times 

related to the CPLEX. For the 30-node network, the 

CGA supplied, in terms of average values, results equal 

or better than CPLEX in 58% of the tests, including 

optimal values. 

    

Table 5 Table 5 Table 5 Table 5 –––– CGA results for the 30 CGA results for the 30 CGA results for the 30 CGA results for the 30----node networknode networknode networknode network    

Problem CGA 

 Best 

solution 

Average 

solution 

Time 

(s) 

Deviation 

(%) 

30_2_0_0_85 3700 3700 0.31 0.00 

30_3_0_0_85 5390 5390 0.51 0.00 



30_2_0_1_85 5090 5090 0.36 0.20 

30_3_0_1_85 5390 5390 0.48 0.00 

30_2_0_2_85 5210 5210 0.38 0.00 

30_3_0_2_85 5390 5390 0.47 0.00 

30_5_0_0_95 5330 5323 0.80 0.00 

30_6_0_0_95 5410 5392 0.84 0.00 

30_3_0_1_95 5240 5240 0.48 0.57 

30_4_0_1_95 5390 5390 0.54 0.00 

30_2_0_2_95 4520 4513 0.30 0.15 

30_3_0_2_95 5390 5390 0.50 0.00 

30_4_1_48_90 1920 1920 0.66 0.00 

30_5_1_48_90 2390 2390 0.74 0.42 

30_3_1_49_90 2160 2160 0.53 0.00 

30_4_1_49_90 2880 2877 0.59 0.10 

30_5_1_50_90 4700 4700 0.73 0.00 

30_6_1_50_90 5390 5390 0.97 0.00 

30_5_1_40_85 3020 3001 0.74 1.61 

30_6_1_40_85 3610 3610 0.91 -0.28 

30_7_1_40_85 4060 4060 1.03 0.00 

30_6_1_41_85 5300 5274 1.00 1.05 

30_7_1_41_85 5390 5390 0.88 0.37 

30_8_1_41_85 5470 5470 0.95 0.00 

30_4_1_42_85 4600 4600 0.61 0.00 

30_5_1_42_85 5390 5390 0.77 0.00 

 

 

5. Conclusions 
 

This work presented a solution for the probabilistic 

maximal covering location-allocation problem using 

CGA. The results show that the CGA approach is 

competitive for the resolution of this problem in 

reasonable computational times. For some instances of 

30-node network, the optimal values have been found. 

Therefore, these results validate the CGA application 

to the QM-CLAM. 
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