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Abstract

This paper presents a constructive evolutionary approach to the machine-part cell formation (MPCF)
problem, generally considered in manufacturing cell design, where a zero-one machine-part matrix
must have its rows and columns moved to form machines and parts clusters. The Constructive Genetic
Algorithm (CGA) was proposed recently to solve clustering problems, and is applied here to the
MPCF. The MPCF is modeled as a bi-objective problem that guides the construction of feasible
assignments of machines and parts to specify clusters, and provides evaluation of schemata and
structures in a common basis. A particularly derived structure and schema representation considers
Jaccard distances for binary strings. A variable size population is formed only by schemata,
considered as building blocks for feasible solutions construction along the generations.
Recombination gives population diversification, and local search mutation is applied to structures.
Experimental results are shown for instances specially generated and others taken from the literature.
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1. Introduction

The international competition and its consequent needs for quick answers to the market demands have
lead several companies to consider non-traditional approaches to control and design the
manufacturing systems. One of these approaches is the application of the “group technology”
(Burbidge,1969) to decompose manufacturing systems into manageable sub-systems, or groups, by
aggregating similar parts into part families and machines into cells. The ideal cell is independent and
completely manufactures its part family(s). Automation and control are simplified through the
creation of independent cells. The production flow analysis of Burbidge (1963) is one of the first and
well-known methodologies associated with group technology.

There are many methods that works over a machine-part matrix with elements being zeros or ones,
indicating which machines are used to produce each part. Given a matrix A (figure 1), where the rows
corresponds to parts and columns to machines and aij = 1, if the part i needs the machine j to be



produced. Basically, the algorithms change rows and columns positions to produce blocks of ones,
forming parts families and machine cells simultaneously (figure 2).

Chandrasekharan and Rajagopalan (1989) and Venugopal and Narendran (1993) present some
analysis over the zero-one matrix to extract properties and to advise for cell formation algorithms.
Other algorithms following these lines can be viewed in the papers of McCormick (1972), King (
1980, 1982) and Chu and Tsai (1990).

Many other techniques have been proposed in literature. Hierarchical clustering methods (Stanfel,
1985 and McAuley, 1972), non-hierarchical clustering (Chandrasekharan and Rajagopalan, 1986),
graph based techniques (Rajagopalan and Batra, 1975), neural networks (Malave and Ramchandran,
1991), fuzzy logic (Xu and Wang, 1989) and metaheuristics like Simulated Annealing (Boctor, 1991
and Venugopal, and Narendran, 1992) and Genetic Algorithms (Joines, 1993).

Genetic Algorithms (GAs) are very well known, having several applications to general optimization
and combinatorial optimization problems (Davis,1991; De Jong, 1975; Goldberg, 1989; Holland,
1975; Michalewicz, 1996). A typical GA is based on the controlled evolution of a structured
population, recombination operators and the schema formation and propagation over generations.

This paper presents an application of a Constructive Genetic Algorithm (CGA) to solve the MPCF
problem. The application is made through an analogy with the p-median problem, since both are
clustering problems. The search for p median vertices on a network (graph) is a classical location
problem. The objective is to locate p facilities (medians) minimizing the sum of the distances from
each demand point to its nearest facility. Very good results were obtained by Lorena and Furtado
(1998) using the CGA.

The MPCF is modeled as a bi-objective p-median problem that is used as a basis to construct feasible
assignments of machines and parts to specified clusters, and considers evaluation of schemata and
structures in a common basis. A particularly derived structure and schema representation considers
Jaccard distances for binary strings. A variable size population is formed only by schemata,
considered as building blocks for feasible solutions construction along the generations.
Recombination gives population diversification, and a kind of local search mutation is applied to the
generated structures representing feasible solutions.

A CGA review is presented in section two, detailing the schemata representation, the fg-fitness and the
selection, recombination and mutation processes. Section three presents computational tests
considering two instances from the literature and specially generated instances, providing insights
about the CGA performance on instances of increasing difficulty.

2. CGA review

The CGA is proposed to address the problem of evaluating schemata and structures in a common
basis. While in the other evolutionary algorithms, the evaluation of individuals is based on a single
function (the fitness function), in CGA this process relies on two functions, mapping the space of
structures and schemata onto ℜ + .
We resume the CGA in this section (for a complete description see the paper of Lorena and Furtado
(1998, available on  http://www.lac.inpe.br/~lorena/cga/cga_clus.PDF)).

2.1 Representation

For schema representation, it was used a string of n+m symbols, where n is the number of parts (or
rows in the original matrix) and m is the number of machines (or columns in the matrix). Each of the
two portions of the schema evolves independently from each other. This application considers only



one part family for each machine cell. The number k of clusters (part families or machine cells) to be
formed must be defined a priori.
The schemata have in each position one of the following three possible symbols:

1, to indicate a median part;
0, to indicate a non-median part assigned to its nearest median; and
#, to indicate a non-median part not yet assigned to a median.

Then, both portions of the schemata (parts and machines) must have exactly k positions with the
symbol 1 and the rest with 0’s or #’s. A schema with no #’s is an structure that represents a feasible
solution, where every non-median part is assigned to its nearest median, and the same for the
columns.

For instance, if we need to form three manufacturing cells, a schema for a problem with 10 parts and
15 machines could be represented by

si = (0,1,#,1,0,#,1,0,#,0 / 0,0,1,#,#,0,1,#,1,#,0,0,0,#,0).

Where the first 10 symbols represent parts and the last 15 symbols represent machines. Let
pV1 (si)={2,4,7}  be the median part set, pV2 (si)={1,5,8,10} the assigned non-median part set, and for

machines, mV1 (si)={3,7,9},  mV2 (si)={1,2,6,11,12,13,15}.
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made based on the Jaccard distance among them (represented here by  qjζµ ).

The Jaccard similarity coefficient for two binary strings is defined as the number of positions with
value 1 in both sequences divided by number of positions with value 1 in both or one of the
sequences. This coefficient is used as a "distance" measure subtracting it from one.
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2.2. The fg-fitness
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A common upper bound to  f  and  g  will be necessary at the evolution process. To compute this
upper bound gmax, in the very beginning of the process, a structure srandom representing a feasible
solution (no #’s) is randomly generated and g(srandom) is taken as the gmax value.



2.3. Selection and recombination

The population is kept ordered according to "completeness" of the schema, i.e., the number of labels
#s, and the schema fg-fitness. The schemata in population are non-decreasing ordered using the key
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The method used for selection takes the first schema from the best part of the population (base) and
the second one from the whole population (guide). Before recombination, the first schema is
complemented to generate a structure representing a feasible solution, i.e., all #’s are replaced by 0’s.
This complete structure suffers mutation and is compared to the best one found so far. Only the best
one is kept along the process. The recombination merges information from both selected schemata,
but preserves the number of medians in both portions (parts and machines) of the new generated
schema or structure. If it is a new schema then it is inserted into the population, otherwise it suffers
mutation and is compared to the best one found so far.

The recombination is best described in the following. The assignment operations must be performed
in that order.

RECOMBINATION

Sbase(j) = #  and  Sguide(j)=#  then  Snew(j) ←  #
Sbase(j) = 1  and  Sguide(j)=1  then  Snew(j) ←  1
Sbase(j) = 0  and  Sguide(j)=0  then  Snew(j) ←  0
Sbase(j) = 1  and  Sguide(j)=#  then  Snew(j) ←  1
Sbase(j) = 0  and  Sguide(j)=#  then  Snew(j) ←  0
Sbase(j) = #  and  Sguide(j)=0  then  Snew(j) ←  0
Sbase(j) = # or 0  and  Sguide(j)=1  then

Snew(j) ←  1 and Snew(k) ←  0 for some Snew(k)=1
Sbase(j) = 1  and  Sguide(j)=0  then

Snew(j) ←  0 and Snew(k) ←  1 for some Snew(k)=0

The mutation process used was a technique that implements successive changes in the median
position inside each cluster followed by cluster reconstruction made by vertex reallocation. The
following pseudo-code is more illustrative.

MUTATION
Begin:
  S’ ←  S;
  For each part cluster in S’

Move the median to the cluster vertex which gives the minimum distance sum in the cluster;
  For each machine cluster in S’

Move the median to the cluster vertex which gives the minimum distance sum in the cluster;
  If  S is better than S’

return S;
  else

S’’ ←   S’ with non-median vertex realocation;
If S’’  is better than  S’

S ←  S’’;



Goto Begin;
else

return S’;
End:

At each generation, after new schemata insertion, the population is scanned to remove all schemata

satisfying the condition ( )i
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0 < d ≤ 1 The evolution parameter α  is initially set to zero and slowly increased at each generation.
For all computational tests, an initial population was randomly created with 20% of the rows and
columns in each schema with symbols 0 and exactly k (number of part families or machine cells) with
symbols 1.

2.4. The algorithm

The Constructive Genetic Algorithm can be summed up by the pseudo-code (see
http://www.lac.inpe.br/~lorena/cga/cga_clus.PDF for details):

CGA
Given  gmax and  d ;
α := 0 ;
ε := 0.05; { time interval }
Initialize Pα ; { initial population }
Evaluate Pα ; { fg-fitness }
For all  si ∈  Pα  compute )( isδ { rank computation }
end_for
While (not stop condition) do

For all  si ∈  Pα  satisfying  α < )( isδ do { evolution test }
α := α + ε ;
Select Pα from Pα-ε ; { reproduction operator }
Recombine Pα ;       { recombination operators }
Evaluate Pα ;  { fg-fitness }

end_for
For all new si ∈  Pα  compute )( isδ { rank computation }
end_for

end_while

3. Experimental Results

Most of the problem instances were randomly generated for the computational tests. From the
literature were taken two instances, one of them with a 20x35-part/machine matrix (Burbidge, 1969)
and the other one with a 40x100 matrix (Chandrasekharan and Rajagopalan, 1989).

For performance measure was considered a coefficient that takes into account the number of zeros
inside the clusters and the number of ones outside the clusters, respectively representing the cluster
compactness and intercellular movement:
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where: e  = number of  1's in the matrix
e0  = number of  0's inside the clusters
e1  = number of  1's outside the clusters

The ideal coefficient value is 1 (no zeros inside and no ones outside the clusters), and better clustering
has greater coefficient value.

To generate the instances, the number of parts, number of machines, within-cellular density (WCD)
and inter-cellular density (ICD) were specified. The WCD is the ratio between the number of 1’s
inside the cluster and its size. The ICD is the ratio between the number of 1’s outside the clusters and
the number of matrix elements outside any cluster. Initially the matrix is generated with the clusters as
specified, and then the matrix is perturbed randomly changing the rows and columns positions. The
final form of the matrix can be used for the algorithm test.

Table 1 shows the results obtained with the instances taken from the literature, with three runs for
each instance. The performance coefficient values obtained were the same best values found in the
literature (Joines, 1993). Table 2 shows the results obtained on randomly generated instances that
differ from each other by the inter-cellular density. The purpose was basically verifying the algorithm
sensibility under different inter-cellular densities. The performance coefficient values obtained can be
compared to the values for the original cluster formation, computed previously by the instance
generation program. Table 3 shows the results obtained with randomly generated instances with
different within-cellular density. Also, the purpose was verifying the algorithm sensibility. In both
cases, it seems to indicate that ICD and WCD has no effect over CGA performance.

All the tests were made using ε=0.01 as the α increment, and d = 0.1 as the overall proportional
deviation from gmax  .

Instance Part/
Machine

Cells Coef
Literature

Coef
CGA

0.7571
0.7571Burbidge 20/35 4 0.7571
0.7571
0.8403
0.8403Chandra 40/100 10 0.8403
0.8403

Table 1: Tests using instances from the literature

Instance Part/
Machine

Cells WCD ICD Coef
Original

Coef
CGA

0.7527
0.7527W80i02 20/35 4 0.8 0.02 0.7527
0.7527
0. 7330
0. 7330W80i03 20/35 4 0.8 0.03 0.7330
0. 7330
0. 6931
0. 6931W80i05 20/35 4 0.8 0.05 0.6931
0. 6931
0. 6140
0. 6140W80i10 20/35 4 0.8 0.10 0.6140
0. 6140

Table 2: Tests for ICD sensibility



Instance Part/
Machine

Cells WCD ICD Coef
Original

Coef
CGA

0. 6398
0. 6398W70i02 20/35 4 0.7 0.02 0.6398
0. 6398
0. 7527
0. 7527W80i02 20/35 4 0.8 0.02 0.7527
0. 7527
0. 8280
0. 8280W90i02 20/35 4 0.9 0.02 0.8280
0. 8280

Table 3: Tests for WCD sensibility

4. Final considerations

This work describes an application of the Constructive Genetic Algorithm - CGA proposed by Lorena
and Lopes (1996) to the clustering formation of parts and machines in manufacturing cells. The CGA
provides the following new features to genetic algorithms, such as the direct evaluation of schemata,
population dynamic in size and formed only by schemata and the new fg-fitness process.

The computational results obtained were very good; presenting performance measure values as good
as those listed in the literature. The algorithm seems to be unaffected by within-cellular density or
inter-cellular density variation.
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