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Abstract. The Traveling Tournament Problem (TTP) is an optimiza-
tion problem that represents some types of sports timetabling, where the
objective is to minimize the total distance traveled by the teams. This
work proposes the use of a hybrid heuristic to solve the mirrored TTP
(mTTP), called Clustering Search (*CS), that consists in detecting sup-
posed promising search areas based on clustering. The validation of the
results will be done in benchmark problems available in literature and
real benchmark problems, e.g. Brazilian Soccer Championship.

1 Introduction

Scheduling problems in sports has become an important class of optimization
problems in recent years. For the applications of Operational Research the man-
agement of this sporting activity type is an area very promising and little ex-
plored. The professional sport leagues represent one of the largest economical
activities around the world. For several sports, e.g. soccer, basketball, football,
baseball, hockey, etc, where the teams plays a double round-robin tournament
among themselves, where the games are played in different places during some
time period, the automating of that schedulings are necessary and very impor-
tant. Other facts fortify the application of optimization techniques. Teams and
leagues do not want to waste their investments in players and structure in conse-
quence of poor scheduling of games; sports leagues represent significant sources
of revenue for radio and television world networks; the scheduling interfere di-
rectly in the performance of the teams; etc. On the other hand, sport leagues
generate extremely challenging optimization problems, that attract attention of
the Operational Research communities.

The scheduling problems in sports are known in the literature as Traveling
Tournament Problem and it was proposed by Easton et al. [7]. The TTP ab-
stracts the salient features of Major League Baseball (MLB) in the United States
and was established to stimulate research in sport scheduling. Since the challenge
instances were proposed the TTP has raised significant interest. Several works
in different contexts (see e.g. [2],[3],[5],[9],[13],[16],[17],[18]) tackled the problem
of tournament scheduling in different leagues and sports, which contains many
interesting discussion on sport scheduling. Basically, the schedule of MLB is a



conflict between minimizing travel distances and feasibility constraints on the
home/away patterns. A TTP solution is a double round-robin which satisfies
sophisticated feasibility constraints (e.g. no more than three away games in a
road trip) and minimizes the total travel distances of the teams.

Problems of that nature contain in general many conflicting restrictions to
be satisfied and different objectives to accomplish, like minimize the total road
trips of the teams during the tournament, one just game per day and per team,
accomplishment of certain games in stadiums and in pre-established dates, num-
ber of consecutive games played in the team’s city and out, etc. To generate good
schedulings, satisfying all constraints, is a very hard task. The difficulty of so-
lution of that problem is attributed to the great number of possibilities to be
analyzed, e.g., for a competition with 20 teams there are 2, 9062 x 10130 possible
combinations [4].

This work proposes the application of Clustering Search (*CS) [15] to solve
the mirrored version of the TTP, known as Mirrored Traveling Tournament Prob-
lem (mTTP) [16]. The *CS is a generalization of the Evolutionary Clustering
Search (ECS) proposed in [14]. This paper is organized in six sections, being
this the first. In the next section, the Traveling Tournament Problem and your
mirrored version are described. In Section 3, we describe the basic ideas and
conceptual components of *CS. In Section 4, the methodology is detailed, with
neighborhoods and the algorithm implemented. The computational results are
examined in Section 5 and conclusions are summarized in Section 6.

2 Problem description

The Traveling Tournament Problem was first proposed by Easton et al. in [7].
A scheduling to a double round-robin (DRR) tournament, played by n teams,
where n is a even number, consists in a schedule where each team plays with each
other twice, one game in its home and other in your opponent’s home. A game
between teams Ti and Tj is represented by unordered pair (i, j). That schedule
needs 2(n−1) rounds to represents all games of the tournament. The input data
consists of the number of teams (n), a symmetric matrix D, n x n, where Dij

represents the distance between the home cities of the teams Ti and Tj .
The cost of a team is the total distance traveled starting from its home city

and return there after the tournament ending. The cost of the solution is the
sum of the cost of every team.

The objective is to find a schedule with minimum cost, satisfying the following
constraints:

– No more than three consecutive home or away games for any team;
– A game of Ti at Tj ’s home cannot be followed by the game of Tj at Ti’s

home;

The Mirrored Traveling Tournament Problem (mTTP) proposed by Ribeiro and
Urrutia in [16] is a generalization of TTP that represents the common structure
in Latin-America tournaments (e.g. Brazilian Soccer Championship). The main



difference is the concept of mirrored double round-robin (MDRR). A MDRR is a
tournament where each team plays every other once in the n−1 rounds, followed
by the same games with reversed venues in the last n− 1 rounds.

The objective is the same of TTP, find a schedule with minimum cost sat-
isfying the same constraints plus an additional constraint: the games played in
round R are the same played in round R + (n − 1) for R = 1, 2, ..., n − 1, with
reversed venues.

3 Clustering Search

The Clustering Search (*CS) [15] is a generalization of the Evolutionary Cluster-
ing Search (ECS) proposed in [14] that employs clustering for detecting promis-
ing areas of the search space. It is particularly interesting to find out such areas
as soon as possible to change the search strategy over them. An area can be seen
as a search subspace defined by a neighborhood relationship in metaheuristic
coding space.

In the ECS, a clustering process is executed simultaneously to an evolutionary
algorithm, identifying groups of individuals that deserve special interest. In the
*CS, the evolutionary algorithm was substituted by distinct metaheuristics.

The *CS attempts to locate promising search areas by framing them by
clusters. A cluster can be defined as a tuple G = {c; r ; s} where c, r and s
are, respectively, the center and the radius of the area, and a search strategy
associated to the cluster.

The center is a solution that represents the cluster, identifying the location of
the cluster inside of the search space. Initially, the center c is obtained randomly
and progressively it tends to slip along really promissing points in the close
subspace. The radius r establishes the maximum distance, starting from the
center, that a solution can be associated to the cluster.

For example, in combinatorial optimization, r can be defined as the number
of movements needed to change a solution into another. The search strategy is a
systematic search intensification, in which solutions of a cluster interact among
themselves along the clustering process, generating new solutions.

The *CS consists of four conceptually independent components with differ-
ent attributions: a search metaheuristcs (SM); an iterative clustering (IC); an
analyzer module (AM); and a local searcher (LS).

Figure 1 shows the four components and the *CS conceptual design.
The SM component works as a full-time solution generator. The algorithm

is executed independently of the remaining components and this must to be
able of the continuous generation of solutions directly for the clustering process.
Simultaneously, clusters are maintained to represent these solutions. This entire
process works like an infinite loop, in which solutions are generated along the
iterations.

IC component aims to gather similar solutions into groups, maintaining a
representative cluster center for them. To avoid extra computational effort, IC
is designed as an online process, in which the clustering is progressively fed by



Fig. 1. *CS Components

solutions generated in each iteration of SM. A maximum number of clusters NC
is a bound value that prevents an unlimited cluster creation. A distance metric
must be defined, a priori, allowing a similarity measure for the clustering process.

The AM component provides an analysis of each cluster, in regular intervals,
indicating a probable promising cluster. A cluster density, δi, is a measure that
indicates the activity level inside the cluster i. For simplicity, δi counts the num-
ber of solutions generated by SM and allocated to the cluster i. Whenever δi

reaches a certain threshold, meaning that some information template becomes
predominantly generated by SM, such information cluster must be better inves-
tigated to accelerate the convergence process on it. AM is also responsible for
the elimination of clusters with lower densities, allowing to create other centers
and keeping framed the most active of them. The cluster elimination does not
affect the set of solutions in SM. Only the center is considered irrelevant for the
process.

At last, the LS component is a local search module that provides the ex-
plotation of a supposed promising search area, framed by cluster. This process
can happen after AM having discovered a promising cluster and the local search
is applied on the center of the cluster. LS can be considered as the particular
search strategy s associated with the cluster.

4 Methodology

The methodology used to solve the mTTP is based on the use of the Clustering
Search (*CS), explained in Section 3, with the metaheuristic Variable Neighbor-
hood Search (VNS) [12] as the SM component of *CS, generating the approach
VNS-CS. The next sections describes in full detail the methodology.



4.1 Representation of a solution

The representation of a schedule is a table indicating the opponents of the teams,
where each line corresponds to a team and each column corresponds to a round.
The opponent’s representation is given by the pair (i, j), where i represents the
team Ti and j represents the round rj (e.g., the opponent of the team T1 in
round r2 is given by (1, 2)). If (i, j) is positive, the game takes place at Ti’s
home, otherwise at Ti’s opponent home.

In this work only the n− 1 first rounds (first half ) are represented, because
the n− 1 last rounds (second half ) are the mirror with reversed venues and all
alteration in the first half affects the second half (see Figure 2).

Fig. 2. Representation of a Schedule

4.2 The neighborhood

Five different movements have been defined to compose distinct kinds of neigh-
borhood, named Home-away swap, Team swap, Round swap, Partial Round swap
and Games swap, from a schedule S. The neighborhood of a schedule s is the set
of the schedules (feasibles and infeasibles) which can be obtained by applying
one of these five types of movements.

Home-away swap This move swaps the home/away roles of a game involving
the teams Ti and Tj . The application of the move Home-away swap in a solution
s obtain a solution s′, with a single game swapped, by reversing the game’s place.
In other words, if team Ti plays at home with Tj (Tj plays away) in s, then Tj

plays at home and Ti plays away in s′.

Team swap This move swaps the schedule of two teams, Ti and Tj . Only the
games where Ti and Tj play against each other are not swapped. For example, if
a team TL was playing against team Ti at home in a round rk of s, then in the
neighbor solution s′ it’ll play against team Tj in the same round (rk) at home.



Round Swap Given two rounds ri and rj , the application of the Round Swap
in a solution s obtain a solution s′ where all the opponents of the all teams were
swapped in these two rounds. For example, if a team Ti was playing against the
teams Tj and Tk in the rounds rm and rL, respectively, of s, then in the neighbor
solution s′ the team Ti plays against the teams Tj and Tk in the rounds rL and
rm, respectively.

Partial Round swap Consider the teams Ti, Tj , Tk and TL and the rounds,
rm and rz, such that games {Ti, Tk} and {Tj , TL} take place in round rm and
games {Ti, TL} and {Tj , Tk} take place in round rz. The application of the move
Partial Round Swap consists in swapping the rounds in which these games take
place. The games {Ti, Tk} and {Tj , TL} are set to round rz and the games {Ti,
TL] and {Tj , Tk} are set to round rm.

Games swap This move consists in selecting an arbitrary game and enforcing it
to be played in a round, followed by the necessary modifications to avoid teams
playing more than one game in the same round. In consequence, more games
would be swapped to maintain the feasible of the schedule. The modifications
that have to be applied to the current schedule give rise to an ejection chain move.
Ejection chains are based on the notion of generating compound sequences of
moves by linked steps in which changes in selected elements cause other elements
to be ejected from their current state, position, or value assignment [16].

Fig. 3. Schedule before (left) and after (right) the application of Games swap

The figure 3 shows the schedule produced by the application of Game swap
move. Note that several games are swapped, when the team T3 was enforcing to
play with team T1 in round r2.

4.3 Clustering Search for mTTP

A *CS metaheuristc is now described: VNS-CS (Variable Neighborhood Search
Clustering Search). In this approach, the component SM is a hybrid metaheuris-
tic that combines VNS and VND. As it is already known, VNS [12] starts from
the initial solution and at each iteration, a random neighbor is selected in the



N(k)(s) neighborhood of the current solution. That neighbor is then submitted
to some local search method. If the solution obtained is better than the current,
update the current and continue the search of the first neighborhood structure.
Otherwise, the search continues to the next neighborhood. The VNS stopped
when the maximum number of iterations since the last improvement is satisfied.

The local optimum within a given neighborhood is not necessarily an opti-
mum within other neighborhoods, and a change of neighborhoods can also be
performed during the local search phase. This local search is then called Variable
Neighborhood Descent (VND) [12].

In this work, we used the VNS with the three movements as follow, in this
order: Games swap, Round swap and Partial Round swap. We used the VND as a
local search method of the VNS, and it is composed by the other two movements
proposed, in this order: Team swap and Home-away swap.

The IC is the CS’s core, working as a classifier, keeping in the system only
relevant information, and driving a search intensification in the promising search
areas. Initially, a maximum number of clusters (NC ) is defined. In our case, we
used NC = 20. Solutions generated by VNS are passed to IC that attempts to
group as known information, according to distance metric. In this paper, the
distance metric was the number of different games between the solution and the
center of the cluster, not considering the home-away definition(A x B equals B
x A).

If the information is considered sufficiently new, it is kept as a center in a new
cluster. Otherwise, redundant information activates the closest center ci (center
c that minimizes the distance metric), causing some kind of pertubation on it.

The information will be considered similar if there is at least 50% of coinci-
dence between the games of the two compared solutions.

The perturbation means an assimilation process, in which the center of
the cluster is update by the new generated solution. Here, we used the Path-
Relinking method [8], that generates several points (solutions) taken in the path
connecting the solution generated by VNS and the center of the cluster. Since
each point is evaluated by the objective function, the assimilation process itself
is an intensification mechanism inside the clusters. The new center ci is the best
evaluated solution sampled in the path.

The AM is executed whenever an solution is assigned to a cluster, verifying
if the cluster can be considered promising. A cluster becomes promising when
reaches a certain density λt,

λt ≥ PD

[
NS

NTc

]
(1)

where, NS is the number of solutions generated in the interval of analysis of the
clusters, NTc is the number of cluster in the iteration t, and PD is the desirable
cluster density beyond the normal density, obtained if NS was equally divided
to all clusters. In this work, we used NS = 300, PD = 2 and NTc = 20, chosen
after several tests.



The component LS has been activated when the AM discover a promising
cluster. The LS implemented was the Iterated Local Search (ILS) [11]. This
metaheuristic starts from a locally optimal feasible solution. A random pertuba-
tion (movement Game swap) is applied to the current solution and followed by
a local search similar to VNS, with the movements Team swap, Partial Round
swap and Home-away swap. If the local optimum obtained after these steps sat-
isfies some acceptance criterion, then it is accepted as the new current solution,
otherwise the latter does not change. The best solution is eventually updated
and the above steps are repeated for 1000 iterations.

Figure 4 shows the Pseudo Code of the algorithm implemented.

Procedure VNS-CS (f(.), N(.), s0)
1 Iter ← 0; { Current iteration }
2 Cactive ← ∅; { Define if a cluster is active }
3 CP ← False; { Define if a cluster is promising }
4 s ← s0; { Current Solution }
5 while (Iter < IterMax) do
6 k ← 1;
7 while (k ≤ 3) do
8 Generate any neighbor s′ ∈ N(k)(s);
9 s′′ ← VND(s′);
10 Cactive ← Component-IC(s′′);
11 CP ← Component-AM(Cactive);
12 if(CP = True) then
13 Component-LS(Cactive);
14 if (f(s′′) < f(s)) then
15 s ← s′′;
16 k ← 1;
17 else
18 k ← k + 1;
19 end-if;
20 end-while;
21 Iter ← Iter + 1;
22 end-while;
end-VNS-CS ;

Fig. 4. Algorithm VNS-CS

5 Experiments and computational results

The algorithm was coded in C++ and was run on Pentium IV 3.0 GHz clock
with 512 Mbytes of RAM memory.



The benchmark’s instances, described in [7] and adapted to the mirrored form
in [16] was used to validate the results. A real-life instance (br2003.24), where
24 teams playing in the main division of the 2003 edition of Brazilian Soccer
Championship was also tested. These test problems are available to download in
http://mat.gsia.cmu.edu/TOURN/. The parameters of the methods were em-
pirically chosen, after several simulations.

Table 1 shows the results for the considered instances. For each instance is
reported the best solution found by the algorithms proposed by [16] and [10]
(they obtained the best known solutions) and the minimum computation time
of this last algorithm, the solutions obtained by this approach, the relative gap in
percent between our solutions and the best solution between [16] and [10], and
the last column presents the total computation times in seconds. The results
represented by “–” wasn’t considered by the authors.

Table 1. Computational results

Instances Best by [16] Best by [10] Time[10] VNS-CS gap(%) Time

circ4 20 – – 20 0% 6
circ6 72 – – 72 0% 9
circ8 140 140 0.2 140 0% 438
circ10 272 272 28160 276 1,47% 4951
circ12 456 432 93.1 446 3,14% 1275
circ14 714 696 53053.5 702 0,86% 3672
circ16 978 968 38982.7 978 1,02% 826
circ18 1306 1352 178997.5 1352 3,40% 1153
circ20 1882 1852 59097.9 1882 1,59% 1189

nl4 8276 – – 8276 0% 5
nl6 26588 – – 26588 0% 7
nl8 41928 41928 0.1 41928 0% 1030
nl10 63832 63832 477.2 65193 2,09% 228
nl12 120655 119608 15428.1 120906 1,07% 2630
nl14 208086 199363 34152.3 208824 4,53% 796
nl16 279618 279077 55640.8 287130 2,80% 3201

con4 17 – – 17 0% 4
con6 48 – – 48 0% 5
con8 80 80 0.1 81 1,23% 39
con10 130 130 0.1 130 0% 92
con12 192 192 0.3 193 0,52% 299
con14 253 253 6.0 255 1,18% 131
con16 342 342 2.7 343 0,29% 407
con18 432 432 8.1 433 0,23% 1265
con20 524 522 1106.3 525 0,57% 1102

br2003.24 503158 – – 512545 1,83% 798



The results presented demonstrate that the proposed methodology can be
competitive, because was possible to obtain values near of the best results known
in the literature, getting to reduce to zero the gap in six of the seventeen instances
and being near of reducing to zero in some others. The worse gap was 4, 53%.

The main aspect of the results is the computation time. See that the VNS-CS
can reach solutions with similar quality quicker than the algorithm proposed in
[10], e.g., whilst the algorithm of the literature took some days (more than two
days) to reach the best solutions for the instance circ18, the VNS-CS reached
high-quality solutions, near the best known, in few minutes.

The result of the real-life instance was very interesting. First, because it is the
larger instance in the literature, with 24 teams. Second, because was observed a
reduction of 51.09% in the total distance traveled, where in the official schedule
the teams traveled 1.048.134 km and in the schedule found by the work they
traveled 512.545 km only.

6 Conclusions

In this work was investigate the Mirrored Traveling Tournament Problem, first
published in [16], with a implementation of a new way of detecting promising
search areas based on clustering: the Clustering Search (*CS) [15]. Together
with other search metaheuristics, working as full-time solution generators, *CS
attempts to locate promising search areas by solution clustering. The clusters
work as sliding windows, framing the search areas and giving a reference point
to problem-specific local search procedures, besides an iterative process, called
assimilation.

A metaheuristic based on *CS was proposed to solve the all mTTP in-
stances available in literature: VNC-CS (Variable Neighborhood Search Clus-
tering Search).

Five different neighborhood structures for local search was investigated: three
simple neighborhood, Home-away swap, Round swap and Team swap; and two
more complicated, Partial Round swap and Game swap.

The approach become very promising, when the reported results are ana-
lyzed. Seventeen benchmark instances was tested and VNS-CS approach have
achieved similar and sometimes superior performance than the works presented
in literature. One real-life instance, the 2003 edition of Brazilian Soccer Cham-
pionship, was also tested, with reduction of 51.09% of the total distance traveled
by the official schedule. Although not all real constraints were analyzed, but only
the main constraints, the obtained result for this instance was very interesting.

Finally, this work explores the mirrored instances of TTP, because its repre-
sents common structure in Latin-America tournaments.

For further research there are a variety of open issues that need to be ad-
dressed, e.g., to study other neighborhood to obtain high-quality solutions. In
the same way the real championships has many other restrictions that should be
analyzed: treatment of the classic games, allocation of stadiums, do not consider
distance metric, but the airfares, and many others real constraints.
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