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Abstract. The Mirrored Traveling Tournament Problem (mTTP) is an
optimization problem that represents certain types of sports timetabling,
where the objective is to minimize the total distance traveled by the
teams. This work proposes the use of hybrid heuristic to solve the mTTP,
using an evolutionary algorithm in association with the metaheuristic
Simulated Annealing. It suggests the use of Genetic Algorithm with a
compact genetic codification in conjunction with an algorithm to expand
the code. The validation of the results will be done in benchmark prob-
lems available in literature and real benchmark problems, e.g. Brazilian
Soccer Championship.

1 Introduction

Scheduling problems in sports has become an important class of optimization
problems in recent years. The professional sport leagues represent a major eco-
nomic activity around the world. For several sports, e.g. soccer, basketball, foot-
ball, baseball, hockey, etc, where the teams plays a double round-robin tourna-
ment among themselves, where the games are played in different places during
some time period, the automating of that schedulings are necessary and very
important. Other facts fortify the application of optimization techniques. Teams
and leagues do not want to waste their investments in players and structure
in consequence of poor scheduling of games; sports leagues represent significant
sources of revenue for radio and television world networks; the scheduling in-
terfere directly in the performance of the teams; etc. On the other hand, sport
leagues generate extremely challenging optimization problems, that attract at-
tention of the Operational Research communities.

The scheduling problems in sports are known in the literature as Traveling
Tournament Problem and it was proposed by Easton et al. [7]. The TTP abstract
the salient features of Major League Baseball (MLB) in the United States and
was established to stimulate research in sport scheduling. Since the challenge
instances were proposed the TTP has raised significant interest. Several works
in different contexts (see e.g. [2],[4],[9],[12],[13],[14],[18]) tackled the problem
of tournament scheduling in different leagues and sports, which contains many
interesting discussion on sport scheduling. Basically, the schedule of MLB is a



conflict between minimizing travel distances and feasibility constraints on the
home/away patterns. A TTP solution is a double round-robin which satisfies
sophisticated feasibility constraints (e.g. no more than three away games in a
road trip) and minimizes the total travel distances of the teams.

Problems of that nature contain in general many conflicting restrictions to
be satisfied and different objectives to accomplish, like minimize the total road
trips of the teams during the tournament, one just game per day and per team,
accomplishment of certain games in stadiums and in pre-established dates, num-
ber of consecutive games played in the team’s city and out, etc. To generate good
schedulings, satisfying all constraints, is a very hard task. The difficulty of so-
lution of that problem is attributed to the great number of possibilities to be
analyzed, e.g., for a competition with 20 teams there are 2, 9062 x 10130 possible
combinations ([3]).

This work proposes the application of evolutionary techniques and local
search for solving the mirrored version of the TTP, known as Mirrored Traveling
Tournament Problem - mTTP ([13]). This paper is organized in five sections, be-
ing this the first. In the next section, the traveling tournament problem and your
mirrored version are described. In section three, the methodology is detailed,
with neighborhoods and the algorithm implemented. Section four presents the
computational results and section five describe some conclusions of this paper.

2 Problem description

The Traveling Tournament Problem was first proposed by Easton et al. in [7].
A scheduling to a double round-robin (DRR) tournament, played by n teams,
where n is a even number, consists in a schedule where each team plays with each
other twice, one game in its home and other in your opponent’s home. A game
between teams Ti and Tj is represented by unordered pair (i, j). That schedule
needs 2(n−1) rounds to represents all games of the tournament. The input data
consists of the number of teams (n), a symmetric matrix D, n x n, where Dij

represents the distance between the home cities of the teams Ti and Tj .
The cost of a team is the total distance traveled starting from its home city

and return there after the tournament ending. The cost of the solution is the
sum of the cost of every team.

The objective is to find a schedule with minimum cost, satisfying the following
constraints:

– No more than three consecutive home or away games for any team;
– A game of Ti at Tj ’s home cannot be followed by the game of Tj at Ti’s

home;

The Mirrored Traveling Tournament Problem (mTTP) proposed by Ribeiro and
Urrutia in [13] is a generalization of TTP that represents the common structure
in Latin-America tournaments (e.g. Brazilian Soccer Championship). The main
difference is the concept of mirrored double round-robin (MDRR). A MDRR is a



tournament where each team plays every other once in the n−1 rounds, followed
by the same games with reversed venues in the last n− 1 rounds.

The objective is the same of TTP, find a schedule with minimum cost sat-
isfying the same constraints plus an additional constraint: the games played in
round R are the same played in round R + (n − 1) for R = 1, 2, ..., n − 1, with
reversed venues.

3 Methodology

The methodology used to solve the problem is based on the use of Genetic
Algorithms in association with the metaheuristic Simulated Annealing. The idea
is to use the Genetic Algorithm as construction phase, generating new solutions
starting from the individuals’ crossing and the Simulated Annealing to improve
the local search in those new solutions.

The representation of a schedule is a table indicating the opponents of the
teams, where each line corresponds to a team and each column corresponds
to a round. The opponent’s representation is given by the pair (i, j), where i
represents the team Ti and j represents the round rj (e.g., the opponent of the
team T1 in round r2 is given by (1, 2)). If (i, j) is positive, the game takes place
at Ti’s home, otherwise at Ti’s opponent home.

In this work only the n− 1 first rounds (first half ) are represented, because
the n− 1 last rounds (second half ) are the mirror with reversed venues and all
alteration in the first half affects the second half (see Figure 1).

Fig. 1. Representation of a Schedule

The rest of that section describes the neighborhood and the algorithms im-
plemented in this work.

3.1 The Neighborhood

Three different moves have been defined to compose distinct kinds of neighbor-
hood, named Home-away swap, Team swap and Games swap, from a schedule
S. The neighborhood of a schedule S is the set of the schedules (feasibles and
infeasibles) which can be obtained by applying one of three types of moves.



Home-away swap This move swaps the home/away roles of a game involving
the teams Ti and Tj . The application of the move Home-away swap in a solution
S obtain a solution S′, with a single game swapped, by reversing the game’s
place. In other words, if team Ti plays at home with Tj (Tj plays away) in S,
then Tj plays at home and Ti plays away in S′.

The figure 2 shows a schedule before and after the application of Home-away
swap move. In this example, the move swap the home/away roles of the game
involving the teams T1 and T4.

Fig. 2. Schedule before (left) and after (right) the application of Home-away swap

Team swap This move swaps the schedule of two teams, Ti and Tj . Only the
games where Ti and Tj play against each other are not swapped.

Fig. 3. Schedule before (left) and after (right) the application of Team swap

The figure 3 shows the application of Team swap move in teams T3 and T5.

Games swap This move consists in selecting an arbitrary game and enforcing it
to be played in a round, followed by the necessary modifications to avoid teams
playing more than one game in the same round. In consequence, more games
would be swapped to maintain the feasible of the schedule. The modifications
that have to be applied to the current schedule give rise to an ejection chain move.



Ejection chains are based on the notion of generating compound sequences of
moves by linked steps in which changes in selected elements cause other elements
to be ejected from their current state, position, or value assignment ([13]).

Fig. 4. Schedule before (left) and after (right) the application of Games swap

The figure 4 shows the schedule produced by the application of Game swap
move. Note that several games are swapped, when the team T3 was enforcing to
play with team T1 in round r2.

3.2 The Algorithm

In this work was implemented a Genetic Algorithm ([10]) that uses the Simulated
Annealing ([11]) metaheuristic to address new individuals to a local optimum.
The application of local search in the individuals can be related with the combi-
nation of learning and evolution (Baldwin effect, [17]). In general, the learning is
a search for the near viable solution and the modifications will be incorporate for
the individual. The use of the SA metaheuristic leaves the stage of local search
more aggressive, resulting in individuals more and more adapted inside of the
population.

A compact representation of the chromosomes (individuals) was proposed for
the application of the GA. The chromosomes are submitted to an algorithm of
code expansion, which decodes them in scales of games.

In this representation, each gene of the chromosomes is associated to a team.
The figure 5 presents an example of the compact representation used. Once the

3 2 5 1 6 4

Fig. 5. Example of a chromosome for a tournament with 6 teams

chromosome is defined, then it is submitted to an algorithm of code expansion,
the well known Polygon Method ([5]), in association with heuristic to definition
of the home/away roles. All solutions generated by this phase are feasible.



Consider a vector V of size n (n even) where each position i is associated
to a team. The execution of the polygon method starts with the definition of
the base team. This team is positioned in the first position of the vector V . The
other teams are positioned in the rest of the positions, i = 2, .., n. In each round
ri = 1, ..., n− 1 the base team plays with the team of the position 2. The teams
of positions i = 3, ..., (n/2) + 1 plays with the teams of positions n − i + 3 (n
is the number of teams). Defined all games of a round ri, the teams of position
i = 3, ..., n are moved to the position i− 1 and the team of position 2 are moved
to position n. The base team are not moved. The figure 6 presents an example
of execution.

Fig. 6. Polygon Method

The initial population is randomly defined and each individual is submitted
to a Randomized Non-Ascendent method (RNA), with the home-away swap
move only .

A reproduction mechanism, based on evolutionary processes, is applied on
the population to explore the search space and to find better solutions for the
problem. The operator of crossover implemented was based on the Block Order
Crossover (BOX, [15]), illustrated in the Figure 7 . The ”parents” are combined,
through the random copy of both individuals blocks, what results in a new
offspring, containing the two parents’ genetic information.

Fig. 7. BOX Crossover



In each generation a constant number of individuals are selected. Two indi-
viduals are randomly selected in the population for each crossover, which pro-
duces only one new individual. This offspring can, eventually, suffer mutation.
The mutation used was the Games Swap move (see fig. 4).

Immediately after the execution of the genetic operators, the algorithm of
code expansion is executed for generation the schedule.

The figure 8 presents the pseudo code of the algorithm implemented.

procedure GA
1 Initialize Population P ;
2 while ( g < nGenerations) do
3 while ( i < nIndividuals) do
4 parents ← Select two individuals ∈ P ;
5 offspring ← Crossover(parents);
6 if (MutationAcceptionCriterion) then
7 Mutation(offspring);
8 end-if
9 offspring’ ← LocalSearch(offspring);
10 Evaluate(offspring’);
11 Add offspring’ in P ;
12 i ← i + 1;
13 end-while
14 P ← Select( P );
15 g ← g + 1;
16 end-while
end- GA

Fig. 8. Pseudo Code of the implemented GA

The metaheuristic Simulated Annealing, with Home-away swap and Team
swap moves, are applied in each offspring, to address it to a local optimum.

The idea of use the methods above mentioned in association is related to
the fact that evolutionary algorithms find some difficulties to treat optimization
problems with constraints. On the other hand, isolated application of optimiza-
tion techniques based in constraints and local search can find more difficulties
in virtue of low quality local optimum.

The application of evolutionary algorithms together with local search is jus-
tified for two main aspects:

– The evolutionary process will act just in the compact codification, always
feasible. Therefore not reducing your effectiveness;

– The existence of a candidates population for the solution in evolution, to-
gether with the application of a local search procedure, increases the chances
of obtaining local optimum of good quality.



4 Experiments and computational results

The algorithm was coded in C++ and was run on Pentium IV 3.0 GHz clock
with 512 Mbytes of RAM memory.

The benchmark’s instances, described in [7] and adapted to the mirrored form
in [13] was used to validate the results. A real-life instance (br2003.24), where
24 teams playing in the main division of the 2003 edition of Brazilian Soccer
Championship was also tested. These test problems are available to download in
http://mat.gsia.cmu.edu/TOURN/. The parameters of the methods were em-
pirically chosen, after several simulations. The population starts with 100 indi-
viduals and 50 offsprings are generated in each one of the 10 generations. The
mutation probability and crossover probability are 30% and 100% respectively.

Table 1 shows the results for the considered instances. For each instance
is reported the best known solution ([13]), the obtained by this approach, the
relative gap in percent between the best and obtained solutions, and the total
computation times in seconds.

Table 1. Computational results

Instances Best known Obtained gap(%) Time(secs.)

circ4 20 20 0% 2
circ6 72 72 0% 4
circ8 140 142 1,41% 48
circ10 240 282 14,89% 365
circ12 456 458 0,44% 51
circ14 714 714 0% 26
circ16 980 1014 3,35% 264
circ18 1306 1370 4,67% 604
circ20 1882 1890 0,42% 28

nl4 8276 8276 0% 2
nl6 26588 26588 0% 3
nl8 41928 43112 2,75% 55
nl10 58190 66264 12,18% 130
nl12 120655 120981 0,27% 317
nl14 208086 208086 0% 140
nl16 279618 290188 3,64% 142

br2003.24 503158 511256 1,58% 938

The results presented demonstrate that the proposed methodology can be
competitive, because using only three movements was possible to obtain values
near of the best results known in the literature, getting to reduce to zero the gap
in six of the seventeen instances and being near of reducing to zero in nine others.
On the other hand, the results of circ10 and nl10 wasn’t good, demonstrating the
requirement of improving the algorithm, mainly the neighborhoods. This fact is



easily explained. The schedule generated by this implementation is fixed in a
pattern, due the polygon method characteristics. The ejection chains moves are
very important, because they are able to find solutions that are not reachable
through other neighborhoods. Admissible moves in other neighborhoods may ap-
pear after an ejection chain move is performed, in situations where none existed
before. If they are not used, algorithms based on local improvement strategies
may easily stop at local optimum of low quality.

The result of the real-life instance was very interesting. First, because it is the
larger instance in the literature, with 24 teams. Second, because was observed a
reduction of 51.2% in the total distance traveled, where in the official schedule
the teams traveled 1.048.134 km and in the schedule found by the work they
traveled 511.256 km only.

5 Conclusions

In this work was investigate the Mirrored Traveling Tournament Problem, first
published in [13], with a implementation of a Genetic Algorithm in association
with the metaheuristic Simulated Annealing.

A compact representation for the chromosomes (population individuals) was
proposed. These chromosomes are submitted to a code expansion algorithm, used
to decodes them in scales of games. Initially, the home-away roles are aleatory
defined. After this phase a Randomized Non-Ascendent method (RNA) is ap-
plied in the schedule to address it to a local optimum. This method showed
effectiveness, because all solutions found are feasible, increasing the chance of
obtained local optimum with good quality.

Three different neighborhood structures for local search was investigated: two
simple neighborhood (Home-away swap and Team swap) and a more complicated
based on ejection chain, whose the importance was described in section three.
The results show the need of explores other neighborhoods to escape from the
pattern imposed to the solutions generated by the Polygon Method.

The approach become very promising, when the reported results are ana-
lyzed. Seventeen benchmark instances was tested and in six the algorithm got to
reduce to zero the gap and almost reduced to zero in nine others. One real-life
instance, the 2003 edition of Brazilian Soccer Championship, was also tested,
with reduction of 51.2% of the total distance traveled by the official schedule.

Finally, this work explores the mirrored instances of TTP, because its rep-
resents common structure in Latin-America tournaments (e.g. Brazilian Soccer
Championship). There are a variety of open issues that need to be addressed,
e.g., to consider a large neighborhood to obtain high-quality solutions. In the
same way the championships has many other restrictions that should be ana-
lyzed: treatment of the classic games, allocation of stadiums, do not consider
metric distance, but the airfares, and many others real constraints.
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