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Abstract. We present in this paper an application of the Constructive Genetic Algorithm (CGA) to the 
Generalised Assignment Problem (GAP). The GAP can be described as a problem of assigning n 
items to m knapsacks, n>m, such that each item is assigned to exactly one knapsack, but with capacity 
constraints on the knapsacks. The CGA has a number of new features compared to a traditional 
genetic algorithm. These include a dynamic population size and the possibility of using heuristics. In 
our application of CGA to GAP we use a binary representation and an assignment heuristic which 
allocates items to knapsacks. Computational tests are presented using large publicly available problem 
instances taken from the literature.  
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1. Introduction 
In this paper we consider an important combinatorial optimisation problem, the 
Generalised Assignment Problem (GAP). This is the problem of assigning at minimum cost 
n items to m knapsacks (n>m), such that each item is assigned to exactly one knapsack 
subject to capacity constraints on the knapsacks.  
 
Many real life applications can be formulated as a GAP, e.g. resource scheduling, the 
allocation of memory space in a computer, the design of a communications network with 
capacity constraints at each network node, assigning software development tasks to 
programmers, assigning jobs to computers in a network, vehicle routing problems, and 



  

others, see De Maio and Roveda (1971), Balachandran (1976), Fisher and Jaikumar (1981) 
and Catrysse and Van Wassenhove (1992).  
  
GAP is NP-hard, e.g. see Narciso and Lorena (1999). A number of algorithms in the 
literature are exact tree search algorithms [Ross and Soland (1975), Martello and Toth 
(1990)] and there are also a number of heuristics for the problem [Klastorin (1979), Fisher, 
Jaikumar and Van Wassenhove (1986), Jornsten and Varbrand (1990), Martello and Toth 
(1990), Catrysse and Van Wassenhove (1992), Lorena and Narciso (1996), Narciso and 
Lorena (1999)]. 
 
Genetic Algorithms (GA) have become popular in recent years as effective heuristics for 
NP-hard combinatorial optimisation problems such as the GAP. Today there are many 
variations on the general GA theme, but all such variations can be classified generically as 
population heuristics [Beasley (2002)], that is as heuristics which progressively evolve a 
population of solutions. Such heuristics are in marked contrast to other approaches, such as 
tabu search and simulated annealing, that operate on just a single solution. We shall assume 
throughout this paper some familiarity on the part of the reader with genetic algorithms. 
 
Holland (1975) originated GA’s . For application to optimisation problems the first step in a 
GA is the definition of a representation – some way of encoding a solution to the problem 
under consideration, typically into a binary bit string. For example, if there are 7 binary 
(zero-one) variables in an optimisation problem then solutions can be represented as 
0100010, 1100110, 1010101, etc – all of which are 7 digit binary bit strings. Solutions are 
evaluated though use of a fitness function and the fitness value associated with a solution 
indicates “how good” the solution is in terms of the original optimisation problem that is 
being considered. 
 
Suppose now that, although we are sure of certain variable values in a solution, we are 
unsure of others. For example 101#1#1 represents the situation where we are sure of 
variable values for all except the fourth and sixth variables, unsure variable values being 
conventionally represented by #. 101#1#1 is an example of a schema. Clearly the schema: 
            101#1#1  
comprises four solutions, namely:  
            1010101 
            1010111 
            1011101 
            1011111 
which are formed by enumerating all combinations of possible values for each # in 
101#1#1. 
 
Holland  put forward the building block hypothesis (schemata formation and conservation) 
as a theoretical basis for the GA mechanism. In this view avoiding disruption of good 
schemata is the basis for the good behaviour of a GA. One major difficulty with the 
building block hypothesis however is that schemata are only evaluated indirectly, via 
evaluation of specific solutions. This raises two problems: 
1. a schema with v #’s has 2v solutions (replace each # by zero or one) and inevitably, for 

computational reasons, we typically only gain limited information about the schema by 
examination of a limited number of the 2v possible solutions  



  

2. a solution with v decided variables is a member of 2v-1 schemata (replace each decided 
variable by # or not) and so when using an evaluated solution we are attempting to use 
information about many schemata. 

In this paper we use the word structure as a generic term to cover both solutions and 
schemata.  
 
The Constructive Genetic Algorithm (CGA) [Furtado (1998), Ribeiro Filho and Lorena 
(1998), Lorena and Furtado (2001)] was proposed recently as an alternative to the 
traditional GA approach. One of the objectives of a CGA is the direct evaluation of 
schemata. In this paper we present a CGA for the GAP. 
 
This paper is organised as follow. Application of the CGA to the GAP is presented in 
Section 2. In a CGA the original problem is regarded as a bi-objective optimisation problem 
that drives the evolutionary search for well adapted structures. The relevant aspects of our 
CGA for the GAP are explained: structure representation, the evolution process, selection, 
recombination and mutation, and CGA pseudo-code is presented. Section 3 presents 
computational tests using large publicly available problem instances from the literature, 
providing insights into CGA performance.  
 
2. CGA for the GAP 
 
2.1 GAP formulation 
The GAP is best described using knapsack problems. Readers unfamiliar with knapsack 
problems (either single dimensional, bidimensional or multi-dimensional are referred to 
Martello and Toth (1979,1987,1990), Chu and Beasley (1998a), Lin (1998) and Beasley 
(2000). Given n items and m knapsacks, with pij  as the cost associated with assigning item j 
to knapsack i, wij  as the weight of assigning item j  to knapsack i, and ci  as the capacity of 
knapsack i, assign each item j  to exactly one knapsack i, not exceeding knapsack capacities. 
Defining x ij=1 if item j is assigned to knapsack i, =0 otherwise, the GAP can be formulated 
as: 

    minimise ∑∑
==

n

j

m

i 11
pijxij       {minimise total cost} 

   subject to: ∑
=

n

j 1
 wijxij ≤ ci  ∀i∈M = {1,…,m} {respect knapsack capacities} 

 ∑
=

m

i 1
 xij = 1   ∀j∈N = {1,…,n}  {all items assigned} 

 x ij ∈ {0,1}   ∀i∈M ,∀j∈N 
 
There have been relatively few papers presented in the literature applying genetic 
algorithms to the GAP. Chu and Beasley (1997) presented an algorithm where a solution 
was represented by an assignment of all items to knapsacks. Violation of knapsack 
capacities was dealt with in their genetic algorithm by use of unfitness (see Chu and 
Beasley (1998b)), which separates the measurement of constraint violation from the 
measurement of objective function quality (fitness). They presented computational results 



  

for a large number of randomly generated problems involving up to 20 knapsacks and 200 
items. 
 
Wilson (1997), working independently from Chu and Beasley (1997), used the same 
representation. In his approach the initial population is composed of solutions that perform 
well with respect to the GAP objective function, but are infeasible. He then uses a genetic 
algorithm to evolve a feasible solution. Once a feasible solution has been found the genetic 
algorithm stops and that feasible solution is subjected to a local improvement procedure in 
an attempt to improve its GAP objective function value, whilst maintaining feasibility. He 
presented computational results for a large number of randomly generated problems 
involving up to 50 knapsacks and 500 items. 
 
In order to apply the CGA to the GAP we will view the problem as a bi-objective 
optimisation problem. Note here that our CGA approach is distinctly different from the 
approaches adopted in Chu and Beasley (1997) and Wilson (1997). We first describe our 
structure representation. 
 
2.2 Structure representation 
For structure representation we used a sequence of n characters, where n is the number of 
items. This n character representation contains just three symbols: 
 1 to indicate that the item is a seed item and has been assigned to a knapsack 
 0 to indicate that the item is a non-seed item which will be assigned to a knapsack by 
  a heuristic  
 # to indicate that the item is temporarily out of the problem (an undecided item). 
Seed items are initially assigned to the m  knapsacks, exactly one per knapsack, so there are 
always precisely m 1’s in each structure.  
 
For example, considering a problem with n=7 items and m=3 knapsacks, we could have a 
structure S = (#1#01#1), where the 3 seed items are: item number 2 assigned to knapsack 1, 
item number 5 assigned to knapsack 2, and item number 7 assigned to knapsack 3. It em 4 
has the label 0 and will be assigned to one of the knapsacks according to an assignment 
heuristic. Items 1, 3 and 6 have the label # and are temporarily not being considered. As S 
contains #’s it is a schema. By contrast the structure S =(0100101) is not a schema but a 
solution.  
 
The following assignment heuristic is used to translate any structure S into a solution to the 
underlying GAP. 
 
Assignment Heuristic - AH 
 
1 – Assign the m items with label 1 to the m knapsacks, and update the knapsack capacities 
accordingly 
 
2 – Assigning the other n-m items to the knapsacks (labels 0 and #): 
 2.1 – Solve the m knapsack problems separately exactly 
 2.2 – Update the knapsack capacities for the items assigned to exactly one knapsack 
 2.3 – Resolve the m knapsack problems separately exactly for the remaining items 
 2.4 – Update the knapsack capacities for the items assigned to exactly one knapsack 



  

 2.5 – For each item j remaining, assign it to the knapsack i* that minimises wi*j 
2.6 – If the solution obtained is not feasible for the GAP, restart the assignment of the 
n-m items (the m  seed items were already assigned in step 1), assigning (if possible) 
item j  to knapsack i* that minimises wi*j and for which capacity is not violated 

 
3 – If the solution is feasible for the GAP improve the solution with the second part of 
MMTH (see Lorena and Narciso (1996))  
 
4 – Discard from knapsacks any items with label # in S 
 

 

2.3 The bi-objective problem 
Let Χ be the set of all 3n structures that can be generated by the 0-1-# representation we 
have adopted, and consider two functions f and g, defined as f:Χ→ℜ+  and g:Χ→ℜ+  
such that g(S) ≥ f(S) ∀S∈Χ. We define the double fitness evaluation of a structure due to 
functions f and g as fg-fitness.  
 
For the GAP the function g represents the cost of items assigned to knapsacks after 
application of the assignment heuristic AH. Letting C i(S)AH represent the items assigned to 

knapsack i after application of AH to structure S we have that g(S) = ∑ ∑
= ∈

m

i SCj AHi1 )(
pij. Note 

here that from step 4 in AH above any item j  assigned a label # in S is not assigned to any 
knapsack at the end of AH and so is not included in g(S). 
 
For the GAP the function f  represents the cost of items assigned to knapsacks after taking 
the solution produced by AH and moving a single item between knapsacks. To define f  the 
following MAH heuristic is applied to S, producing an additional move of one item between 
two knapsacks: 
 
Modified Assignment Heuristic – MAH 
 
1. Apply AH to S 
2. Over all the items in knapsacks presenting label 0 in S let j* be the item with the most 

costly assignment (ties broken arbitrarily)  
3. Let i* be the knapsack corresponding to the least cost assignment of item j* (ties broken 

arbitrarily)  
4. Assign (move) item j* to knapsack i* 
 
 
Letting Ci(S)MAH represent the items assigned to knapsack i after application of MAH to 

structure S we have that f(S) =∑ ∑
= ∈

m

i SCj MAHi1 )(
pij. Clearly we have g(S) ≥  f(S). The difference 

g(S) - f(S) ≥  0 can be interpreted as the cost of a wrong assignment if the resulting GAP 



  

solution is feasible. Considering our representation we have that fg-fitness values increase 
as the number of # labels decrease and therefore structures with few # labels have higher 
fg-fitness.  

 
In our CGA for the GAP fg-fitness plays two roles:  
• interval minimisation we would like to search for a S∈Χ that minimises g(S) - f(S), 

since obviously a good quality solution to the GAP cannot be improved by moving a 
single item between knapsacks. 

• g maximisation  we would like to search for a S∈Χ that maximises g(S), since we need 
to increase cost to ensure feasibility. A structure that has very few items assigned to 
knapsacks, e.g. because it is a schema in which most items are labelled #, will have low 
cost, but will not be a feasible solution to the GAP. This objective can be viewed as 
encouraging the process to move from schemata to solutions. 

 
Hence our CGA implicitly considers the following Bi-objective Optimisation Problem 
(BOP): 
   minimise   g(S) - f(S) 
   maximise  g(S)  
   subject to:  g(S) ≥ f(S) ∀S 

  S ∈Χ 
 
Zitzler and Thiele (1999), amongst others, have recognised that genetic algorithms 
(evolutionary algorithms) are a common approach to dealing with multiobjective problems. 
One genetic algorithm approach to dealing with such problems is simply to aggregate 
objectives together, but this does require a scaling between differing objectives to be 
defined. As Zitzler and Thiele (1999) have noted this “requires profound domain 
knowledge that is often not available”. The approach taken in our CGA is not to aggregate 
g(S) and f(S) together but to consider them separately.  
 
2.4 The evolution process 
The BOP defined above is not directly considered as the set X is not completely known. 
Instead we consider an evolution process to attain the objectives (interval minimisation and 
g maximisation) of the BOP.  
 
At the beginning of the process, two expected values are given to these objectives: 
• for the g maximisation  objective we use a value gmax > maxS∈X g(S) that is an upper 

bound on the objective value  
• for the interval minimisation  objective we use a value dgmax, obtained from gmax  using a 

real number 0 < d ≤ 1. 
 

The evolution process proceeds using an adaptive rejection threshold, which considers both 
objectives. Given a parameter α ≥ 0 a structure S is discarded from the population if:  
   g(S) - f(S) ≥  dgmax - αd(gmax – g(S))             (1)  
The right-hand side of equation (1)  is the threshold for structure removal from the 
population and is composed of the expected value dgmax associated with interval 
minimisation and the measure (gmax – g(S)), which is the difference between gmax and g(S) 
evaluations. For α=0 equation (1) is equivalent to comparing the interval length associated 



  

with S against the expected length dgmax. When α > 0 structures containing a high number 
of # labels (i.e. structures which are schemata) have a higher probability of being discarded 
as, in general, they have higher differences (gmax – g(S)) since gmax is fixed and g(S) is 
smaller for schemata than for solutions. 

 
In our approach the value of the evolution parameter α is related to time in the evolution 
process. As initially good schemata need to be preserved for recombination α starts from 
zero and then slowly increases (in steps of ε) from generation to generation. The population 
at evolution time α (denoted by Pα) is dynamic in size according to the value of the 
adaptive parameter α. The population can shrink to zero during the evolution process 
(extinction).  

 
Rearranging equation (1) a structure S should be discarded from the population if 
   δ(S) = [dgmax – (g(S) – f(S))]/[d(gmax – g(S))] ≤ α  
A key computational point here is that δ(S) (which we refer to as the rank of a structure) is 
fixed in value at the time the structure is created. The evolution parameter α on the other 
hand does increase over time. Hence we need only compute the rank δ(S) of a structure 
once and then continually compare it against the changing evolution parameter in deciding 
whether to discard the structure or not. Obviously the la rger the rank the longer a structure 
will exist in the population, since a structure is only discarded once α becomes large 
enough to satisfy δ(S) ≤ α. 
 
2.5 Selection, recombination and mutation 
Selection of individuals can be made in several ways. CGA has been tested with a number 
of optimisation problems and in all cases an appropriate approach is that the population is 
kept ordered using a key value that involves for each structure its fg-fitness and its 
proximity to a feasible solution. Then, several times in a generation, two structures are 
randomly selected, one from the best part of the population and the other from the whole 
population, and these are recombined to form (one or more) new structures (see Lorena and 
Furtado (2001)). 
 
The manner of recombination depends on the problem and the way the structure represents 
a solution. The main goal of recombination is population diversification. Structures 
representing feasible solutions can be generated not only by recombination, but also by 
complementation of a selected schema. The best results found with the CGA approach use 
mutation over structures that represent feasible solutions for the problem (see Lorena and 
Furtado (2001)). 
 
In our CGA for the GAP the population is ordered in increasing value of ∆(S)=(1+d(S))/(n- 
n#(S)), where d(S)= (g(S)-f(S))/g(S)  and n#(S) is the number of # labels in S. Structures with 
small n#(S) and/or with small d(S) appear in first order positions.  
 
The method used for selecting structures for recombination takes one structure from the n 
first positions in the ordered population (base) and the second structure from the whole 
population (guide). Before recombination the first structure is changed to generate a 
structure representing a solution, i.e. all #’s are replaced by 0’s. This complete structure 
suffers mutation and is compared to the best solution found so far (which is kept throughout 



  

the process).  
 
Recombination merges information from both selected structures, but preserves the number 
of 1 labels (number of knapsacks) in the new generated structure.  
 
Recombination 
 
  if Sbase(j) = Sguide(j) then Snew(j) ← Sbase(j) 
  if Sguide(j)= # then Snew (j) ← Sbase(j) 
  if Sbase(j) = # and Sguide(j)=0 then Snew (j) ← 0 
  if Sbase(j) = # or 0 and Sguide(j)=1 then Snew (j) ← 1 and Snew(i) ← 0 for some Snew (i)=1 
  if Sbase(j) = 1 and Sguide(j)=0 then Snew (j) ← 0 and Snew(i) ← 1 for some S new(i)=0 
 
 
 
At each generation, exactly n new structures are created by recombination. If a new 
structure does not represent a feasible solution, then it is inserted into the population, 
otherwise it suffers mutation and is compared to the best solution found so far. The 
following pseudo-code describes the mutation process. 
 
Mutation 
 
For each position j with label 1 do 
 For each position k with label 0 do 
  Interchange the labels on positions j and k generating an offspring Snew  ;  

 {offspring generation} 
  Interchange the labels on positions j and k ;  {return to the original S} 
 End_for 
End_for 
  
 
The mutation process was limited to considering just ten new structures to avoid excessive 
computation time.  
 
At each generation, after new structure insertion, the population is scanned to remove all 
structures S satisfying the condition δ(S) ≤  α. As described earlier in this paper, the 
evolution parameter α is initially set to zero and slowly increased at each generation.  
 
2.6 CGA pseudo-code 
The pseudo-code for our CGA, Lorena and Furtado (2001), is:  
 
Constructive Genetic Algorithm - CGA 
 
α := 0                  {initialise α} 
ε := 0.01                {step value for time advance} 
Initialise Pα                {initial population} 
Evaluate Pα                {compute fg-fitness} 



  

For all S∈ Pα compute δ(S)          {rank computation} 
While (not stopping condition) do 
 Discard from Pα all S∈ Pα satisfying δ(S) ≤ α    {evolution test} 
 α := α + ε              {increment α} 
 Produce Pα from Pα-ε           {generate new population} 
 Evaluate Pα               {compute fg-fitness} 
 For all  new S∈ Pα compute δ(S)       {rank computation} 
End_while 
 
 
As the evolution parameter α increases, the population size initially increases and then 
starts to decrease until eventually the population becomes empty. Two stopping conditions 
are considered: stop when the population is empty, or when a pre-defined generation limit 
is reached. 
 
To compute the upper bound gmax, at the very beginning of the process, a structure S 
representing a solution (i.e. containing no #’s) is randomly generated and  gmax set equal to 
g(S). For all of the computational results presented in this paper an initial population of size 
200 was randomly created comprising structures with exactly m (number of knapsacks) 
label 1's and n/5 label 0's with the remainder of the structure being # labels.   
 
3. Results 
In this section we outline the performance of our CGA for the GAP when coded in C and 
run on a SUN ULTRA 2 200 MHz machine with 256 Mb RAM. 
 
A set of large-scale problem instances were solved of dimensions, m×n, (5×100), (5×200), 
(10×100), (10×200), (20×100) and (20×200), which were taken from OR-Library [Beasley 
(1990,1996)]. These comprise 24 instances of different sizes and types. Referring to Table 
1 the problems in classes A, B and C present increasingly constrained knapsacks. Class D 
comprises more difficult correlated problems.  
 
Table 1 presents the CGA results (best feasible solution found over ten replications of CGA) 
compared with the best known solutions as reported in Chu and Beasley (1997). The CGA 
parameters were set to:  

d = 0.15  
ε = 0.1 for 0 ≤ α ≤ 1 and ε = 0.01 for α >1 
stopping condition: maximum number of generations = 150 or the population is empty  

For problems in class A the best known solutions are optimal so the algorithm was 
terminated when those solutions were found.  
  
Considering Table 1 we have that, over all problems, the average percentage deviation from 
the best known solution for our CGA [100(best CGA solution – best known solution)/(best 
known solution)] is 0.2724%, with the average computation time being 646 seconds. In 
addition for 11 of the 24 instances we find the best known solution. 
 
The CGA solutions reported in Table 1 are very close to the best known solutions, obtained 
in the GA implementation of Chu and Beasley (1997) who ran their GA until five million 



  

children had been generated. It can be conjectured that the computation time involved in 
our CGA is small compared to their GA. The computer times are not directly comparable as 
their GA was run on a different machine. We also conjecture that this computational time 
difference is the reason why the algorithm of Chu and Beasley (1997) outperforms our 
CGA (in terms of always finding equal, or better, solutions). 
 

Table 1 Computational results 

Problem Best known solution  CGA solution  Number of generations  CGA times (seconds) 
A 5×100 1698 best 51 253  
A 5×200 3235 best 1 502  
A 10×100 1360 best 87 308  
A 10×200 2623 best 72 930  
A 20×100 1158 best 1 350  
A 20×200 2339 best 19 860  
B 5×100 1843 best 150  302  
B 5×200 3553 3601 150  432  
B 10×100 1407 1410 150  165  
B 10×200 2831 best 150  949  
B 20×100 1166 best 150  474  
B 20×200 2340 2347 150  683  
C 5×100 1931 1941 150  195  
C 5×200 3458 3460 150  405  
C 10×100 1403 1423 150  203  
C 10×200 2814 2815 150  498  
C 20×100 1244 best 150  479  
C 20×200 2397 best 150  1059 
D 5×100 6373 6479 150  259  
D 5×200 12796  12823  150  1253 
D 10×100 6379 6390 150  497  
D 10×200 12601  12634  150  1321 
D 20×100 6269 6280 150  974  
D 20×200 12452  12471  150  2158 
best means that the CGA solution was the same as the best known solution 

 
With regard to the sensitivity of our results with respect to d it is clear from equation (1) 
that the larger the value of d the larger the population will become. Our computational 
experience has been that for small d, the population increases slowly, but remains small. 
For large d the population grows large, presenting stor age problems, but this eventually 
leads to good structures. 
 
With regard to the sensitivity of our results with respect to ε in order to investigate this we 
resolved the problems shown in Table 1, but with two different ε schedules. Table 2 
presents the results where ε = 0.01 for 0 ≤ α ≤ 1 and ε = 0.001 for α >1. Considering Table 
2 we have that, over all problems the average percentage deviation from the best known 
solution for our CGA is 1.9090%, with an average computation time of 688 seconds. For 2 
of the 24 instances we find the best known solution. It is clear that these results are not as 
good as those shown in Table 1. 



  

 

Table 2 Computational results ε = 0.01 for 0 ≤ α ≤ 1 and ε = 0.001 for α  >1 

Problem Best known solution  CGA solution  Number of gener ations  CGA times (seconds) 
A 5×100 1698 1699 150  704  
A 5×200 3235 best 1 519  
A 10×100 1360 1361 150  332  
A 10×200 2623 2625 150  947  
A 20×100 1158 best 1 375  
A 20×200 2339 2340 150  850  
B 5×100 1843 1897 150  321  
B 5×200 3553 3642 150  442  
B 10×100 1407 1414 150  189  
B 10×200 2831 2923 150  957  
B 20×100 1166 1171 150  489  
B 20×200 2340 2357 150  678  
C 5×100 1931 1969 150  186  
C 5×200 3458 3539 150  405  
C 10×100 1403 1445 150  231  
C 10×200 2814 2891 150  523  
C 20×100 1244 1267 150  457  
C 20×200 2397 2482 150  1105 
D 5×100 6373 6602 150  272  
D 5×200 12796  13084  150  1268 
D 10×100 6379 6691 150  517  
D 10×200 12601  12690  150  1356 
D 20×100 6269 6507 150  921  
D 20×200 12452  13019  150  2458 
 
Table 3 presents the results where ε = 1 for 0 ≤ α ≤ 1 and ε = 0.1 for α >1. Considering 
Table 3 we have that, over all problems the average percentage deviation from the best 
known solution for our CGA is 1.8395%, with an average computation time of 707 seconds. 
For 3 of the 24 instances we find the best known solution. It is clear that these results are 
not as good as those shown in Table 1. With respect to Table 2 they are marginally better.  
 

Table 3 Computational results ε = 1 for 0 ≤ α ≤ 1 and ε = 0.1 for α  >1 

Problem Best known solution  CGA solution  Number of generations  CGA times (seconds) 
A 5×100 1698 1699 150  897  
A 5×200 3235 best 1 535  
A 10×100 1360 best 1 341  
A 10×200 2623 2624 150  976  
A 20×100 1158 best 1 328  
A 20×200 2339 2340 150  873  
B 5×100 1843 1891 150  378  
B 5×200 3553 3645 150  427  
B 10×100 1407 1416 150  195  
B 10×200 2831 2910 150  1023 



  

B 20×100 1166 1175 150  512  
B 20×200 2340 2357 150  691  
C 5×100 1931 1963 150  222  
C 5×200 3458 3513 150  413  
C 10×100 1403 1452 150  248  
C 10×200 2814 2901 150  510  
C 20×100 1244 1265 150  413  
C 20×200 2397 2473 150  1097 
D 5×100 6373 6575 150  295  
D 5×200 12796  13077  150  1231 
D 10×100 6379 6681 150  497  
D 10×200 12601  12701  150  1349 
D 20×100 6269 6508 150  975  
D 20×200 12452  13011  150  2543 
 
4. Conclusions  
In this paper we have presented an application of the cons tructive genetic algorithm to the 
generalised assignment problem. Computational results were promising as compared to a 
previous genetic algorithm approach presented in the literature. 
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