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Abstract

This work presents a constructive approach to the process of fixing a sequence of meetings between teachers and students
in a prefixed period of time, satisfying a set of constraints of various types, known as school timetabling problem. The
problem is modeled as a bi-objective problem used as a basis to construct feasible assignments of teachers to classes on
specified timeslots. This constructive type of genetic algorithm considers evaluation of schemata and structures in a
common basis. A variable size population is formed only by schemata, considered as building blocks for feasible solutions
construction along the generations. A new representation for the timetabling problem is presented. Pairs of teachers and
classes are used to form conflict-free clusters for each timeslot. Binary strings representing pairs are grouped based on
dissimilarity measurement. Teacher preferences and the process of avoid undesirable waiting times between classes are
explicitly considered as additional objectives. Computational results over real test problems are presented.

Keywords: School Timetabling, constructive genetic algorithm,  multi-objective heuristics.

1. Introduction

The timetabling problem consists in fixing a sequence of meetings between teachers and students in a
prefixed period of time (typically a week), satisfying a set of constraints of various types. A large number of
variants of the timetabling problem have been proposed in the literature, which differ from each other based
on the type of institution involved (university or high school) and distinct constraints. A typical timetable
instance requires several days of work for a manual solution[26].

Several techniques have been developed to automatically solve the problem[2, 4, 7, 22, 27]. Most of the early
techniques were based on a simulation of the human way of solving the problem. All such techniques were
based on a successive augmentation. That is, a partial timetable is extended, lecture by lecture, until all
lectures have been scheduled. The underlying idea of all approaches is “schedule the most constrained lecture
first”, and they differ only on the meaning they give to the expression “most constrained”. Later on,
researchers started to apply general techniques to this problem. We therefore see algorithms based on integer
programming[25], network flow, and others. In addition, the problem has also been tackled by reducing it to a
well-studied problem: graph coloring[18]. More recently, some approaches based on search techniques



appeared in the literature[8]; among others, we have simulated annealing[1, 11], tabu search[10, 13, 23, 24]
and genetic algorithms[3, 5, 6, 9, 21].

We consider in this paper a problem known as school timetabling: the weekly scheduling for all the classes of
a high school, avoiding teachers meeting two classes in the same time, and vice versa. Our main objective was
to help administrative staff of public schools in Brazil. The particular characteristics observed for Brazilian
public schools are:

• Full use of available rooms;
• Closed timetabling – at any timeslot all rooms are occupied;
• Usual timeslot conflicts of classes and teachers; and
• Soft constraints for teachers – preferences to some determined timeslots and in general avoiding the

waiting timeslots (windows).

Genetic Algorithms (GA) are very known, having several applications to general optimization and
combinatorial optimization problems[14]. GA is based on the controlled evolution of a structured population,
and is considered as an evolutionary algorithm[16, 17]. The basis of a GA is the recombination operators and
the schema formation and propagation over generations. This work presents an application of a Constructive
Genetic Algorithm to school timetabling problems.

The Constructive Genetic Algorithm (CGA) is a recently approach of Furtado and Lorena [12] that provides
some new features to GA, such as a population formed only by schemata, recombination among schemata,
dynamic population size, mutation in complete structures, and the possibility of using heuristics in schemata
and/or structure representation. Schemata do not consider all the problem data. The schemata are recombined,
and they can produce new schemata or structures. New schemata are evaluated and can be added to the
population if they satisfy an evolution test. Structures can result from recombination of schemata or
complementing of good schemata. They suffer mutation and the best structure generated is kept in the
process.

In this work, the school timetabling problem is considered as a clustering problem to be solved using the
CGA. A CGA review is presented on section two, describing the representation, modeling, selection,
recombination and mutation, and a CGA pseudo-code. Some computational tests were conducted on real
world instances.

2. CGA Review

The CGA is proposed to address the problem of evaluating schemata and structures in a common basis.
While in the other evolutionary algorithms, evaluations of individuals is based on a single function (the fitness
function), in the CGA this process relies on two functions, mapping the space of structures and schemata onto
ℜ + .

2.1 Representation

Considering  p  timeslots in a week, and respecting the lecture requirements of each class, we can form all
possible pairs of (teacher, class), which should be implemented in the p timeslots. Let  n  be the total of
possible pairs.

The soft constraints for teachers are considered implicitly on the representation. The set of teachers is
partitioned on three levels, according the number of classes and overall time dedicated to the school. All the
teachers are asked to identify undesirable timeslots (preference constraints) conformable with their number of
classes per week.

Pairs (teacher, class) are represented by binary columns. For example, considering 4 teachers and 5 classes,
the column corresponding to the pair (2,3) is
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            0
1 ←   teacher 2
0
0
--

a  = 0
0
1 ←   class 3
0
0

The CGA works over a population of schemata (strings) formed by  n  symbols, one for each column. For
example: s = (#,0,0,0,#,0,1,#,1,1,0,0,0,1,#,#,0,#,0,1,0,0,0,1,#), is a possible schema. There are three possible
symbols:

1 →  the corresponding column is a seed to form a cluster
(there is always exactly p seeds inside each schema or structure);

0 →  the corresponding column is assigned to a cluster; and
#   →  the column is considered temporarily out of the problem.

The dissimilarity between two columns is then calculated to non-seed columns and all the others columns
assigned to a cluster. The result is used to identify the cluster to which non-seed columns will be assigned.
The dissimilarity measure between two columns is given by:

where:

is the value (zero or one) on position  i  at column  k , and

is the value (zero or one) on position  i  at column  j.

To find out the cluster to which a non-seed column will be assigned,
• columns are ordered according teacher level and number of  preference constraints,
• we take the seed column that is most dissimilar,
• the columns (the non-seed and the chosen seed) are collapsed into a single one (simple binary OR

operation – see figure 1 for an example) that becomes a new seed column. The process then continues
until all non-seed columns are assigned to a cluster.

0 0 0
1 1 0
0 1 1
0 0 0
-- -- --
0 1 1
0 0 0
1 1 0
0 0 0
0 0 0

Figure 1: collapsing two strings
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After columns to clusters assignments, exactly  p  clusters )(),...,(),( 21 sCsCsC p are identified,

corresponding to the  p  available timeslots.

2.2. CGA Modeling

Let  Χ   be the set of all structures and schemata that can be generated by the 0-1-# string representation
of section 2.1., and consider two functions  f  and  g ,  defined as  f : Χ  →  ℜ +    and    g : Χ  →  ℜ +  such that
f(si) ≤  g(si) , for all  si ∈  Χ .  We define the double fitness evaluation of a structure or schema si , due to
functions  f  and  g, as  fg-fitness.

The CGA optimization problem implements the  fg-fitness  with the following two objectives:
( interval minimization) Search for  si ∈  Χ   of minimal  {g(si) - f(si)}, and
( g  maximization) Search for si ∈  Χ   of maximal  g(si) .

Considering the schema representation, the fg-fitness evaluation increases as the number of labels #
decreases, and therefore, structures have higher fg-fitness evaluation than schemata. To attain these purposes,
a problem to be solved using the CGA is modeled as the following Bi-objective Optimization Problems
(BOP):

)}()({ ii sfsgMin −
)( isgMax

subj. to     g(si) ≥  f(si)
              si ∈Χ

Functions  f  and  g  must be properly identified to represent optimization objectives of the problems at
issue. For each schema si ∈  Χ , exactly  p  clusters )(),...,(),( 21 ipii sCsCsC are identified. Functions  g  and  f
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Considering graphs formed by vertices as columns and the edges as possible conflicts between
columns (clashes of teachers or classes), function g(si) can be interpreted as the total number of possible
conflicts if  p  complete graphs of size )( ij sC . Function f (si) decreases this number by the true number of

conflicts on the clusters )( ij sC . When f (si) =  g(si)  the  p  clusters )( ij sC  are free of conflicts (a possible

feasible solution).

2.3. The Evolution Process

The evolution process in the CGA is conducted to accomplish the objectives (interval minimization and
g  maximization) of the BOP. At the beginning of the process, the following two expected values are given to
these objectives: a non-negative real number gmax  > )( is sgMax

i Χ∈ , that is an upper bound  to  g(si), for

each  si ∈  Χ ; and the interval length  d maxg  , obtained from maxg  using a real number 0 < d ≤ 1.

Let  ( ) 
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pnpnpmultg . This upper bound is obtained dividing the number of

vertices  n  in  p  clusters with approximately the same number of elements ( the expression  pn /  gives the
large integer smaller than  n/p ), and the same procedure used for g(si) is applied, where the positive factor
mult  is considered to certify that gmax > )( iXs

sgMax
i∈

.



The evolution process is then conducted considering an adaptive rejection threshold, which
contemplates both objectives in BOP. Given a parameter  α ≥ 0 ,  the expression

g(si ) - f(si ) ≥   d gmax  - α . )]([ max ksggd −       (2.3.1)

presents a condition for rejection of a schema or structure  si from the current population.

The right hand side of  (2.3.1) is the threshold, composed of the expected value to the interval
minimization  d gmax  , and  the measure )]([ max ksgg − , that shows the difference of  g(si)  and gmax

evaluations. For  α = 0 ,  the expression (2.3.1)   is equivalent to comparing the interval length obtained by  si

and the expected length  d gmax . Schemata or structures are discarded if expression  (2.3.1)  is satisfied. When
α > 0 , schemata have higher possibility of being discarded than structures, as structures present, in general,
smaller differences )]([ max ksgg −  than schemata.

The evolution parameter α  is related to time in the evolution process. Considering that the good
schemata need to be preserved for recombination, α  starts from  0 , and then increases slowly, in small time
intervals, from generation to generation. The population at the evolution time α , denoted by Pα  , is dynamic

in size according to the value of the adaptive parameter α , and can be eventually emptied during the process.

The parameter α  is now isolated in expression  (2.3.1) , thus yielding the following expression and

corresponding  rank  to  si : ( )i
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At the time they are created, structures and/or schemata receive their corresponding rank value )( isδ .
This rank is then compared to the current evolution parameter  α . At the moment a structure or schema is
created, it is then possible to have some figure of its survivability.  The higher the value of  )( isδ , and better
is the structure or schema to the BOP, and they also have more surviving and recombination time.

2.4. Selection, Recombination and Mutation

Functions  f  and  g  defined in section 2.2. drives the evolution process to reach feasible solutions
(structures free of conflicts), but the soft constraints are not directly considered. The selection will consider

explicitly the soft constraints. Define a new measure  
windowpref
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    prefw  is the preference constraint weight,

  windoww  is the window constraint weight, and

     )()(),()( 11 iiii sfsfsgsg ==  (as defined in section 2.2),
     =)(2 isg  number of columns,
    −= )()( 22 ii sgsf number of columns with preference in conflict,

     =)(3 isg  number of columns, and
          −= )()( 33 ii sgsf number of windows.

The population is kept in a non-decreasing order according to the following key:
( ) ( )#/)(1)( nnsds ii −+=∆ , where n# is the number of # labels in si. Schemata with small n# and/or



presenting small )( isd  are better and appear in first order positions.

The method used for selection takes one schema from the n first positions in the population (base) and
the second schema from the whole population (guide). Before recombination, the first schema is
complemented to generate a structure representing a feasible solution (all #’s are replaced by 0’s). This
complete structure suffers mutation and is compared to the best solution found so far, which is kept
throughout the process. The recombination merges information from both selected schemata, but preserves
the number of labels 1 (number of colors) in the new generated schema.

Recombination
if sbase(j) = sguide(j) then snew(j) ←  sbase(j)
if sguide(j)=# then snew(j) ←  sbase(j)
if sbase(j) = # or 0 and sguide(j)=1 then

snew(j) ←  1 and snew(i) ←  0 for some snew(i)=1
if sbase(j) = 1 and sguide(j)=0 then

snew(j) ←  0 and snew(i) ←  1 for some snew(i)=0

At each generation, exactly n new individuals are created by recombination. If a new individual is a
schema, it is inserted into the population; otherwise new individual is a structure, it suffers mutation, and is
compared to the best solution found so far.

The mutation process has three parts. The purpose of the first two parts is to repair infeasible solutions
eventually produced by recombination. The third part maximizes soft constraints satisfaction. The following
pseudo-code describes the mutation process:

Mutation Process
1: Class feasibility
For each cluster

While there are repeated classes
Find in other clusters a class missing on this cluster
Swap columns

End_while
End_for
2: Teacher feasibility
For each cluster

While there are repeated teachers
Find in other clusters a teacher missing on this cluster for the same class
Swap columns

End_while
End_for
3: Teacher preference improvement
Make columns ordered according teacher level and number of constraints

For each column
            If the teacher is constrained in the present cluster then
            Find in other clusters a unconstrained teacher missing on this cluster

                                                                                                         and feasible to swap
                        Swap columns
                       End_if
           End_for

2.5. The Algorithm

The Constructive Genetic Algorithm can be summed up by the pseudo-code:



CGA
Given  gmax and  d ;
α := 0 ;
ε := 0.05; { time interval }
Initialize Pα ; { initial population }
Evaluate Pα ; { fg-fitness }
For all  si ∈  Pα  compute )( isδ { rank computation }
end_for
While (not stop condition) do

For all  si ∈  Pα  satisfying  α < )( isδ do { evolution test }
α := α + ε ;
Select Pα from Pα-ε ; { reproduction operator }
Recombine Pα ;       { recombination operators }
Evaluate Pα ;  { fg-fitness }

end_for
            For all new si ∈  Pα  compute )( isδ { rank computation }

end_for
end_while

The initial population was composed of 100 schemata, generated randomly, considering for each
schema, 20% of zeros, exactly  p  ones and  #  on the remaining positions.

3. Computational Tests

The computational tests consider four instances, corresponding to two typical Brazilian high schools.
Three periods was considered for the Gabriel school, respectively, morning, afternoon and evening, and only
one period for the Massaro school. The set of teachers is partitioned on three levels, according the number of
classes and overall time dedicated to the school. Teachers in level one precede the others and so on. All the
teachers were asked to identify undesirable timeslots (preference constraints) conformable with their number
of classes per week.

Tables 1 to 4 show the results for weights ( prefw  and  windoww ) varying on the set {0, 0.5, 1}. The
columns show the weight values, percentage of preferences attendance (total and for teachers in level one)
and number of windows (total and for the teachers in level one) at the best timetable. It can be seen in tables
that the weights have direct influence on the soft constraints attendance.  Computational times reported results
from a Pentium II 266 MHz machine. Results can be considered successful aiming the possibility of  being in
future an important component of administrative school tools.

4. Conclusion

The school timetabling problem is very challenging for public schools in Brazil. Several days of work
are normally employed to manually solve these problems. We have proposed in this paper a constructive
evolutionary approach to school timetabling problems. It considers the usual feasibility problem of teachers
and classes allocation avoiding conflicts, and also some soft constraints, like teacher preferences and to avoid
waiting times.

The problem was considered as a clustering problem, and adapted to the application of a  recently
proposed Constructive Genetic Algorithm (CGA). The CGA have applied with success to other clustering
problems[15, 19, 20]. The weights used at the selection phase may extend the CGA to the class of
multicriteria algorithms. The mutation process was highly specialized to this problem. Some algorithm
parameter tuning can  give even better results.



Computational tests with real world instances was promising and the algorithm may result on a useful
tool for Brazilian high schools.
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Gabriel
morning

prefw windoww
% prefer. % prefer.

(1)
Number of
windows

Number of
windows

 (1)

Times
(sec.)

0 0 89.39 83.33 55.00 12.33 718.67
0 0.5 88.33 74.24 33.33 7.33 625.33

30 teachers 0 1 89.85 80.30 33.33 8.67 599.33
17 classes 0.5 0 93.18 83.33 43.00 8.67 687.33

5x5 timeslots 0.5 0.5 91.52 81.82 36.00 7.33 632.00
220 pref. const. 0.5 1 90.91 81.82 37.00 10.00 601.33

22 pref. const (1) 1 0 93.18 81.82 42.67 11.33 681.00
1 0.5 92.12 87.88 35.67 7.33 628.00
1 1 92.88 83.33 36.67 9.67 594.67

Table 1: Results for Gabriel - morning

Gabriel
afternoon

prefw windoww
% prefer. % prefer.

(1)
Number of
windows

Number of
windows

 (1)

Times
(sec.)

0 0 92.75 75.76 48.67 6.00 840.33
0 0.5 92.31 69.70 32.00 3.33 740.00

38 teachers 0 1 93.28 75.76 34.33 3.00 692.00
17 classes 0.5 0 94.52 75.76 49.67 3.33 758.67

5x5 timeslots 0.5 0.5 93.72 83.33 38.67 4.00 687.67
377 pref. const. 0.5 1 94.16 81.82 35.67 3.00 668.67

22 pref. const. (1) 1 0 95.05 84.85 51.33 4.33 732.00
1 0.5 94.16 80.30 41.67 4.33 679.00
1 1 93.37 77.27 35.67 4.33 648.67

Table 2: Results for Gabriel - afternoon

Gabriel
evening

prefw windoww
% prefer. % prefer.

(1)
Number of
windows

Number of
windows

 (1)

Times
(sec.)

0 0 88.17 75.31 25.00 4.67 574.33
0 0.5 88.17 76.54 12.33 2.67 518.67

38 teachers 0 1 88.69 79.01 13.00 1.67 503.33
17 classes 0.5 0 90.59 77.78 22.67 3.33 486.33

5x4 timeslots 0.5 0.5 90.24 87.65 15.33 2.00 478.00
386 pref. const. 0.5 1 89.55 82.72 13.33 2.67 480.33

27 pref. const. (1) 1 0 90.85 76.54 26.67 2.33 451.00
1 0.5 90.59 77.78 16.33 3.00 444.67
1 1 89.90 83.95 16.33 3.00 446.33

Table 3: Results for Gabriel - evening



Massaro
prefw windoww

% prefer. % prefer.
(1)

Number of
windows

Number of
windows

 (1)

Times
(sec.)

0 0 85.79 66.67 11.33 2.33 182.00
0 0.5 88.80 86.67 4.67 0.33 169.67

18 teachers 0 1 89.89 76.67 4.00 1.67 163.00
11 classes 0.5 0 93.44 86.67 7.00 1.33 163.67

5x4 timeslots 0.5 0.5 92.62 93.33 4.00 0.67 159.00
122 pref. const. 0.5 1 93.17 96.67 6.33 1.00 160.00

10 pref. const. (1) 1 0 93.72 90.00 7.67 1.67 157.33
1 0.5 93.44 86.67 5.33 1.00 158.33
1 1 92.90 83.33 6.00 2.33 158.00

Table 4: Results for Massaro.
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