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Abstract 
 
The Machine-Part Cell Formation is the problem of creating manufacture cells 

aiming best production flow of manageable sub-systems. Systems automation and 

control can be improved by the aggregation of similar parts into families, and 

machines into independent cells that completely manufactures families of parts. 

The objective of the problem is to form a given number of disjoint parts-machines 

groups in which products do not have to move from one cell to the other to be 

processed. This problem be viewed as a clustering problem, and can be modeled 

as a p-median location problem. This paper presents a column generation 

approach to p-median problem, adapted to produce feasible assignments of parts 

into families. A further heuristic step assigns machines to families of parts to form 

the manufacturing cells. Experimental tests were made using instances from the 

literature. The computational results obtained with the heuristic were as good as in 

the literature for the majority of the instances, and even better in some cases. 
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1 Introduction 
 
The international competition and its consequent needs for quick answers to the 

market demands have lead several companies to consider non-traditional 

approaches to control and design the manufacturing systems. The “group 

technology” as described by Burbidge (1963) decompose manufacturing systems 

into manageable sub-systems, or groups, by aggregating similar parts into families 

and machines into cells. The production flow analysis of Burbidge (1969) is one 

of the first and well-known methodologies associated with group technology. 

Cellular manufacturing can simplify automation and control through the creation 

of independent cells that completely manufactures families of parts. The objective 

of this problem is to form a given number of disjoint part-machines groups in 

which products do not have to move from one cell to the other for processing. The 

number of groups to be formed is the equivalent to the number of families of parts 

and the number of machine cells to be formed. We call this problem as the 

Machine-Part Cell Formation (MPCF) problem. 

 

Several optimization approaches have being proposed in the literature to create 

manufacturing cells. Heuristics for MPCF generally work over machine-part 

binary matrices, with one of the dimensions corresponding to machines and the 

other corresponding to parts. The matrices elements being ones or zeros indicate, 

respectively, which machines are used, and not used, to produce each part. These 

algorithms basically change rows and columns positions to produce blocks of 

ones, forming families of parts and cells of machines, simultaneously. The work 

of McCormick Jr. et al. (1972, King (1980), Chandrasekharan and Rajagopalan 

(1986a), and Venugopal and Narendran (1993), analyze the binary matrices to 

extract properties and suggest cell formation algorithms.  

 
Fig. 1 shows the original form of a matrix with 10 machines (rows) and 15 parts 

(columns).  Fig. 2 uses dashed lines and omit the zeros to better illustrate the same 

matrix after an attempt to form 3 part-machine groups by changing rows and 

columns positions. The solution shown has not produced completely independent 

cells as parts 0, 4 and 12 must be processed by machines in more than one cell. 
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Fig. 1  Original part-machine matrix 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  Same matrix after grouping parts and machines 
 
Many optimization techniques for MPCF have been proposed in the literature. 

Gupta and Seifoddini (1990) present a hierarchical clustering method, non-

hierarchical clustering methods are presented in Chandrasekharan and 

Rajagopalan (1989), and Jayakrishnan Nair and Narendran (1998), techniques 

based on graphs in Rajagopalan and Batra (1975), and Lin et al. (1996), neural 

networks applications are shown in Malave and Ramchandran (1991), and 

Guerrero et al. (2002), and fuzzy logic based techniques are shown in Torkul et al. 

(2006), and Xu and Wang (1989). Meta-heuristics are also applied, like Simulated 

Annealing in Venugopal and Narendran (1992a), Tabu search in Lei and Wu 

(2006), and Genetic Algorithms in Venugopal and Narendran (1992b), Gonçalves 

and Resende (2004), and Ribeiro Filho and Lorena (2000).  Jaumard et al. (1999) 

considered the objective of minimizing the number of bottleneck elements in the 

parts-machines matrix, modeling the problem as a large double assignment linear 

programming problem that was solved by column generation approach.  The 

papers of Joines et al.(1995), Gonçalves and Resende (2004) and Papaioannou 

and Wilson (2008) present comprehensive reviews of alternative methodologies.  

        0     1     2     3     4      5     6     7      8    9    10    11   12   13   14 

   --|------------------------------------------------------------------------------- 
0 |0  0  0  0  0  0  0  1  0  0  1  0  1  1  0 
1 |1  0  1  0  1  0  0  0  0  1  0  0  1  0  0 
2 |1  1  0  0  0  0  0  0  1  0  0  0  0  0  0 
3 |0  0  1  0  1  1  0  0  0  1  0  0  0  0  0 
4 |0  1  0  1  1  0  1  0  1  0  0  1  0  0  0 
5 |0  1  0  1  0  0  0  0  0  0  0  1  0  0  0 
6 |0  1  0  1  0  0  1  0  1  0  0  1  0  0  0 
7 |0  0  0  0  0  0  0  0  0  0  1  0  0  1  1 
8 |0  0  0  0  0  0  0  1  0  0  0  0  1  1  1 
9 |0  0  1  0  1  0  0  0  0  1  0  0  0  0  0 

 

    1  3  6  8 11 | 0  2  4  5  9 | 7 10 12 13 14  
------------------------------------------------- 
 1                | 1  1  1     1 |       1        
 3                |    1  1  1  1 |                
 9                |    1  1     1 |                
------------------------------------------------- 
 2  1        1    | 1             |                
 4  1  1  1  1  1 |       1       |                
 5  1  1        1 |               |                
 6  1  1  1  1  1 |               |                
------------------------------------------------- 
 0                |               | 1  1  1  1     
 7                |               |    1     1  1  
 8                |               | 1     1  1  1  
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The MPCF is a clustering problem and was modeled as a p-median problem in 

some papers, beginning with Kusiak (1987) and explored by Won and Currie 

(2004), among others. The search for p median vertices on a network (graph) is a 

classical location problem. The objective is to locate a given p number of facilities 

(medians) to minimize the sum of the distances from each demand vertex to its 

nearest facility. Recently, Senne et al. (2007) have presented a column generation 

approach to p-median problems were the clusters corresponds to columns, and 

new columns are generated using the linear programming relaxation of a set 

covering problem with a cardinality constraint.   

 

This paper presents a new model for the MPCF as a set partitioning problem with 

a cardinality constraint. The column generation approach to p-median problems 

introduced by Senne et al. (2007) is adapted to produce feasible assignments of 

parts into families. The assignments are based in Hamming or Jaccard distances 

for binary strings. A further heuristic step assigns machines to families of parts to 

form manufacturing cells. 

 

The remaining of this paper is organized as follows: section 2 introduces the p-

median formulation and the column generation algorithm, section 3 examines 

complimentary algorithms to assign parts to cells of machines or machines to 

families of parts, section 4 present computational results and final considerations 

are made in section 5. 

 
2 P-median and column generation 
 

Column generation is a powerful tool used to solve large scale linear 

programming problems. This technique can be used when the columns in the 

problem are not known previously and a complete enumeration of all columns is 

not a viable option, or when the problem is transformed using Dantzig-Wolfe 

(1960) decomposition. Column generation is a common choice in several well-

known applications, such as the cutting-stock problem, vehicle routing and crew 

scheduling.  

 
In the classical form, the column generation algorithm iterates between a column 

generator sub-problem and a restricted master problem. Solving the master 
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problem produces dual costs, which are used in the sub-problem to determine 

whether its solution variables values might be added to the master problem as a 

new column to improve its solution. 

 

The p-median problem considered in this paper can be formulated as the 

following set partition problem: 
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Where:  

n = |N| is the number of parts in the set parts N, 

},...,,{ 21 mSSSS = , is a set of subsets of N,  

[aij]nxm , is a matrix with aij = 1 if  jSi ∈  , and aij = 0 otherwise; 
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[dij]nxn is a symmetric distance (Hamming or Jaccard) matrix;  

m is the number of columns; and  

p is the number of families of parts to be created.  

 

The Hamming distance between two strings of equal length is the number of 

positions at which the corresponding symbols are different.  

The Jaccard index, also known as the Jaccard similarity coefficient, measures 

similarity between sample sets, like binary strings, and is defined as the size of the 

intersection divided by the size of the union of the sample sets. The Jaccard 

distance, which measures dissimilarity between sample sets, is complementary to 

the Jaccard coefficient and is obtained by subtracting the Jaccard coefficient from 

1.  



6 

Given two binary strings, both with the same number of binary values, for i and j 

in {0,1}, Mij is the total number of positions k in the strings A and B such that 

ak=i and bk=j. 

The Jaccard distance between A and B is given by: 

MMM
MM

BAd
111001

1001
, ++

+
=    (6) 

 

The (SP-Med) formulation above was used for location problems in Senne et al. 

(2007).  If S is the set of all subsets of N, the formulation can give an optimal 

solution to the p-median problem. But the number of subsets can be huge, and 

therefore a partial set of columns is considered instead. Another approximation 

considers a problem to be solved by column generation as the following set 

covering formulation of SP-Pmed: 

 

(SC-Pmed):   j
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The SC-Pmed problem is also known as the restricted master problem in the 

column generation context. After defining an initial pool of columns, this problem 

is solved and the final dual costs iπ , i = 1,...,n and α associated to constraints (8) 

and (9), respectively,  are used to generate new columns solving the following 

sub-problem:  

 

(Sub-Pmed):  
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The Sub-Pmed problem is easily solved setting 0,1 ≤−= jijj dify π  and 

0,0 >−= jijj dify π , for each i = 1,...,n. The column  








1
jy

 is added to SC-Pmed 
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when v(Sub-Pmed) < α .  In fact, for i = 1,...,n, all the corresponding columns 

satisfying 







−∑

∈∈
Nj

jjij
y

ydMin
j

)(
}1,0{

π  < α  can be added to the pool of columns, 

accelerating the column generation process. 
 
The column generation algorithm is summarized as:  
 

(i) Set an initial pool of columns to SC-Pmed; 

(ii)  Solve SC-Pmed and return the dual prices jπ  ,  j = 1,...,n and α  ; 

(iii)  Solve the corresponding sub-problem (Sub-Pmed) appending to SC-

Pmed the columns 








1
jy

satisfying 

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
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y
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π < α ,  

i=1,…,n ; 

(iv) If no columns are found in step (iii) then stop, otherwise return to (ii); 

(v) Solve the SP-Pmed problem with the generated columns. 

 
Solving the SP-Pmed problem in step (v) gives us a feasible assignment of parts to 

families. A further final step consists of the assignment of machines to cells that 

produce the part families. The machines assignment is described in the next 

section of this document.  

 

The relaxed intermediary problems (SC-Pmed) in step (ii) and the set partition 

problem in step (v) are usually solved by software tools like CPLEX (2006). The 

stop condition in step (iv) is generally combined with another criterion, like a 

maximum limit for number of columns to be generated in the process. 

  

The initial pool of columns in step (i) can be generated in several ways, simple or 

with higher processing cost. For instance, columns could be generated randomly 

choosing a number of parts for each column and randomly choosing each one 

these parts, or the generation process could implement some heuristic approach to 

create better initial columns, and perhaps accelerate the column generation phase.  

 

In this work, the number of 1’s (parts) in each initial column was given by a 

random number with a normal distribution with then mean given by the ratio 

between the number of parts in the problem (n) and the number of cells or groups 
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to be formed (p), 
p

n
E = , and standard deviation given by 

4

E
s = . The parts with 

value set to 1 in the columns were then randomly chosen. 

 
3 The assignments 
 
Solving a MPCF problem by column generation involves a further step to form 

machines cells. The objective of each machine cell is to produce a family of parts. 

Therefore, the assignment consists of the association of each machine to one of 

the   families of parts obtained in the previous column generation process. 

 

The assignments are performed by a local search heuristic presented by Gonçalves 

and Resende (2004). Their work, on the opposite way, assigns parts to machine 

cells generated by a genetic algorithm. 

 

The heuristic consists of an improvement procedure that is repeatedly applied. 

Each iteration k of the procedure starts with a given initial set of part 

families INITIAL
kP , and produces a set of machine cells FINAL

kM  , and another set of 

part families FINAL
kP  . Two block-diagonal matrices can be obtained by combining 

INITIAL
kP  with FINAL

kM  and FINAL
kP  with FINAL

kM . From these two matrices, the one 

with the highest grouping efficacy (as described at the end of this section) is 

chosen as the resulting block-diagonal matrix of the iteration k. The procedure 

stops if FINAL
kP  = INITIAL

kP  or if the grouping efficacy of the block-diagonal matrix 

resulting from iteration k is not greater than the grouping efficacy of the block-

diagonal matrix resulted from the previous iteration k-1, for k>2. Otherwise, the 

procedure sets INITIAL
kP 1+  = FINAL

kP  and continues to iteration k+1. 

 

Each iteration k of the local search heuristic consists of the following two steps: 

 
(1) Assignment of machines to the initial set of part families INITIAL

kP . The 

machines are assigned to a family of parts one at a time, in any order. A 

machine is assigned to the family of parts that maximizes an 

approximation of the grouping efficacy. A machine is assigned to the part 

family P*, given by: 
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Where 

argmax is the argument that maximizes expression; 

N1
 is the total number of 1’s in matrix; 

N
Out

P,1
 is the total number of 1’s outside the diagonal blocks if the machine 

is assigned to part family P; 

N
In

P,0
 is the total number of 0’s inside the diagonal blocks if the machine 

is assigned to part family P. 
 

The ideal blocks in the matrix should be as dense as possible, with few 0’s in it 

and, also ideally, the solution should not have 1’s outside the blocks. Therefore, 

the parameters1N ,  N
Out

P,1
 and N

In

P,0
 in equation (12) are directly related to the 

quality of the solution and are used to obtain the group efficacy measure used in 

the literature. 

 

In this step, the heuristic generates a set of machine cells FINAL
kM . Let µ1

k
be the 

efficacy of the block-diagonal matrix defined by INITIAL
kP  and FINAL

kM . 

 
 

(2) Assignment of parts to the set of machine cells FINAL
kM , obtained in step 

(1). Parts are assigned to machine cells, one at a time, in any order. A part 

is assigned to the machine cell that maximizes an approximation of the 

grouping efficacy. A part is assigned to the machine cell M*, given by: 
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Where 

argmax is the argument that maximizes expression; 

N1
 is the total number of 1’s in matrix; 

N
Out

M,1
 is the total number of 1’s outside the diagonal blocks if the part is 

assigned to machine cell M; 

N
In

M,0
 is the total number of 0’s inside the diagonal blocks if the part is 

assigned to machine cell M. 
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In this step, the local search heuristic generates a new set of families of parts 

FINAL
kP  . Let µ2

k
 be the efficacy of the block-diagonal matrix defined by FINAL

kP  

and FINAL
kM  .  

The block-diagonal matrix resulting from this iteration has a grouping efficacy 

given by ),max(
21 µµµ
kkk

= . If FINAL
kP  = INITIAL

kP  or µµ
1−

≤
kk

,  the iterative 

process stops and the block-diagonal matrix of iteration k-1 is take as the result. 

Otherwise, the procedure sets INITIAL
kP 1+  = FINAL

kP  and continues to step (1) of 

iteration k+1. 

 

Therefore, give an initial set of families of parts INITIALP , obtained by solving the 

SP-Pmed problem, the local search algorithm to associate machines to families of 

parts can be represented as follows:  

 
While the stop condition is false 

Obtain  FINALM  from INITIALP , assigning machines to families of 

parts according the criterion given by expression 12; 
Obtain  FINALP  from FINALM , assigning parts to cells of machines  

  according to the criterion given by expression 13; 

IFB = block-diagonal matrix obtained with INITIALP  and FINALM ; 

FFB = block-diagonal matrix obtained with FINALP  and FINALM ; 

IFe = efficacy of the solution represented by IFB ; 

FFe = efficacy of the solution represented by FFB ; 

If IFe  > FFe  then 

  solB  = IFB  is the final solution matrix; 

  sole  = IFe ; 

Else 
  solB  = FFB  is the final solution matrix; 

  sole  = FFe ; 

 End If; 
Stop condition = ( FINALP  = = INITIALP ),  or from the second 

iteration, sole  is not greater than sole  of previous iteration; 

End While; 
If the stop condition is false, INITIALP  =  FINALP ; 

Return the block-diagonal matrix solB  with efficacy sole . 
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The above assignment procedure may lead to what the work of Gonçalves and 

Resende (2004) call singletons, cells having less than two parts or two machines. 

They discard it these cells by assign zero efficacy. To avoid this effect of the 

procedure we have implemented an additional step, after the assignment of 

machines to cells and parts to families, and before the efficacy calculation. 

 

This additional procedure makes a list of eventually singleton machine cells and, 

while this list is not empty, repeatedly selects one cell from the list at random and 

looks for every other cell with at least three machines, and transfer to the 

singleton cell the machine that produces the larger increase in the solution 

efficacy. If the singleton cell becomes valid with the transfer, it is removed from 

the invalid cells list. An analog procedure takes place for families of parts. 

 

The grouping efficacy measure used in the literature and in this work is given by a 

coefficient that takes into account the number of zeros inside the clusters and the 

number of ones outside the clusters, respectively, representing the cluster 

compactness and intercellular movement:  

 

0

1

ee

ee
Coef

+
−=      (14) 

 
Where: 
  e  is the number of  1's in the matrix 
  e0 is the number of  0's inside the clusters 
  e1 is the number of  1's outside the clusters 
 
The ideal coefficient value is 1, that means no zeros inside and no ones outside the 

clusters, and a better clustering has a higher coefficient value.  

 
 
 
4 Experimental Results 
 
The experimental results were obtained with some instances used in the paper of 

Gonçalves and Resende (2004), and one additional instance with a 20x35 matrix 

of machines and parts from Burbidge (1963). Table 1 shows a list of the test 

instances, its origin in the literature, and its number of machines, parts and cells to 

be formed. 
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Table 1 Test instances 

 
 Instance Origin Machines Parts Cells 
1 King and Nakornchai, 1982  5 7 2 
2 Waghodekar and Sahu, 1984  5 7 2 
3 Seifoddini, 1989  5 18 2 
4 Kusiak and Cho, 1992  6 8 2 
5 Kusiak and Chow, 1987  7 11 3 
6 Boctor, 1991  7 11 3 
7 Seifoddini and Wolfe, 1986  8 12 3 
8 Chandrasekharan and Rajagopalan, 1986a  8 20 3 
9 Chandrasekharan and Rajagopalan, 1986b  8 20 2 
10 Mosier and Taube, 1985a  10 10 3 
11 Chan and Milner, 1982  10 15 3 
12 Askin and Subramanian, 1987  14 24 5 
13 Stanfel, 1985  14 24 5 
14 McCormick et al., 1972  16 24 5 
15 Srinivasan et al., 1990  16 30 4 
16 King, 1980  16 43 5 
17 Carrie, 1973  18 24 6 
18 Mosier and Taube, 1985b  20 20 5 
19 Kumar et al., 1986  20 23 5 
20 Carrie, 1973  20 35 4 
21 Boe and Cheng, 1991  20 35 5 
22 Chandrasekharan and Rajagopalan, 1989  24 40 7 
23 Chandrasekharan and Rajagopalan, 1989  24 40 7 
24 Chandrasekharan and Rajagopalan, 1989  24 40 7 
25 Chandrasekharan and Rajagopalan, 1989  24 40 9 
26 Chandrasekharan and Rajagopalan, 1989  24 40 9 
27 Chandrasekharan and Rajagopalan, 1989  24 40 9 
28 McCormick et al., 1972  27 27 4 
29 Carrie, 1973  28 46 9 
30 Kumar and Vannelli, 1987  30 41 11 
31 Stanfel, 1985  30 50 12 
32 Stanfel, 1985  30 50 11 
33 McCormick et al., 1972  37 53 2 
34 Burbidge, 1969  30 35 4 
 
 
Tests were made with both distances, Hamming and Jaccard, in the Column 

Generation (CG) algorithm. The performance measure was made with clustering 

efficacy coefficient. Table 2 shows the computational results obtained using 

Hamming distance, and Table 3 shows the results using the Jaccard distance.  

 

The columns in the tables 2 and 3 shows the instance number as listed in Table 1, 

the clustering efficacy found in the literature (Gonçalves and Resende, 2004), 

maximum, minimum and average efficacy found with 10 runs of the algorithm, 

average total time, average time for the column generation phase and average time 

for the integer programming problem solution phase, the average of the number of 
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iterations in the column generation loop, and the average number of generated 

columns in the ten runs of the algorithm. The tables have a last row with average 

values for each table column. 

 
Bold font style in the maximum efficacy column and literature efficacy column 

indicates algorithm results equal or better than the literature. Particularly, tables 2 

and 3 shows that for instances 21 and 33 the algorithm obtained better results than 

found in literature, using both distance measures. 

 

The experiments, for all instances, used 300 randomly made initial columns for 

the columns generation phase, and a limit of 15 thousand generated columns was 

used as an additional stop condition for the process. 

 

In table 2, using Hamming distance, we see that the algorithm was able to obtain 

equal or better results than those found in the literature for 20 out of the 34 

instances (58.8%), and in table 3, using Jaccard distance, the same occurs for 21 

out of 34 instances (61.8%). Tests were made using a 3 GHz Pentium IV 

microcomputer, with code written in C#, and using the Concert 2.6 library of the 

CPLEX 11 solver. 

 

5  Final considerations 
 
This paper examined a new heuristic for MPCF problems. The MPCF is modeled 

as a clustering problem assigning parts to families in a set partitioning problem 

with a cardinality constraint. The cells of machines and families of parts are 

created based on assignments obtained during column generation and a local 

search process.   

The computational results obtained with the heuristic were as good as in the 

literature for the majority of the instances, and even better in some cases. 

Complimentary research is in course to deal with large scale instances, such as the 

effective management of columns, removing unproductive columns along the 

process.  
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Table 2  Results obtained using Hamming distance 
 

Inst 
Efficacy  Time (sec) 

Loop Cols 
Liter Max Min Avg Tot CG IP 

1 0.7368 0.7368 0.7368 0.7368 0.1 0.0 0.0 0.3 0.6 
2 0.6250 0.6250 0.6087 0.6103 0.1 0.0 0.0 1.0 1.6 
3 0.7959 0.7959 0.7959 0.7959 1.1 0.2 0.8 75.6 907.6 
4 0.7692 0.7692 0.7692 0.7692 0.1 0.0 0.0 1.2 4.2 
5 0.5313 0.5313 0.4688 0.5157 0.3 0.1 0.2 61.7 459.0 
6 0.7037 0.7037 0.7037 0.7037 0.2 0.1 0.1 32.6 283.0 
7 0.6830 0.6830 0.6830 0.6830 0.2 0.1 0.1 34.1 297.9 
8 0.8525 0.8525 0.8525 0.8525 0.1 0.1 0.1 11.9 173.7 
9 0.5872 0.5833 0.5833 0.5833 1.2 0.4 0.8 216.2 1198.1 
10 0.7059 0.7059 0.7059 0.7059 0.1 0.0 0.0 2.3 9.1 
11 0.9200 0.9200 0.9200 0.9200 0.1 0.0 0.1 6.4 64.2 
12 0.6986 0.6533 0.6026 0.6313 1.1 0.3 0.7 126.7 1379.5 
13 0.6933 0.6933 0.6282 0.6776 0.7 0.2 0.5 68.6 857.9 
14 0.5258 0.4851 0.4112 0.4524 0.2 0.1 0.1 44.4 191.2 
15 0.6783 0.6783 0.6783 0.6783 1.6 0.5 1.1 164.6 1692.0 
16 0.5486 0.5486 0.5353 0.5426 3.3 0.9 2.4 273.2 2505.2 
17 0.5446 0.5273 0.3966 0.4547 0.2 0.1 0.1 39.8 193.6 
18 0.4296 0.4109 0.3769 0.3987 0.2 0.1 0.1 40.1 257.4 
19 0.4965 0.4887 0.3778 0.4564 1.0 0.3 0.7 128.3 1163.3 
20 0.7622 0.7614 0.7614 0.7614 3.1 0.8 2.3 148.9 2625.2 
21 0.5807 0.5815 0.5397 0.5547 1.1 0.3 0.7 107.9 1206.1 
22 1.0000 1.0000 1.0000 1.0000 0.3 0.1 0.2 14.8 421.1 
23 0.8511 0.8511 0.8511 0.8511 0.7 0.2 0.5 40.1 1046.1 
24 0.7351 0.7351 0.7351 0.7351 0.7 0.3 0.5 82.0 1093.1 
25 0.5197 0.5063 0.4383 0.4730 0.4 0.1 0.3 27.8 494.3 
26 0.4706 0.4545 0.4167 0.4422 0.8 0.3 0.5 109.4 1103.2 
27 0.4487 0.4348 0.3765 0.4217 0.3 0.1 0.2 45.9 408.2 
28 0.5427 0.5180 0.4448 0.5010 1.2 0.3 0.8 158.9 1100.7 
29 0.4462 0.4367 0.3577 0.4025 4.2 0.6 3.5 215.2 2288.7 
30 0.5848 0.5283 0.4667 0.4950 1.5 0.2 1.2 41.5 1090.4 
31 0.5966 0.5966 0.5525 0.5764 0.8 0.2 0.6 73.3 915.8 
32 0.5051 0.5025 0.4697 0.4865 2.6 0.8 1.8 216.5 2107.5 
33 0.5642 0.5672 0.5616 0.5633 48.5 17.5 31.0 284.7 7638.0 
34 0.7571 0.7571 0.7571 0.7571 1.8 0.5 1.3 102.9 1960.0 
Avg 0.6438 0.6360 0.6048 0.6232 2.3 0.8 1.6 88.2 1092.3 
 
 
 
 
 
 
 
 
 
 
 
 



15 

 
Table 3  Results obtained using Jaccard distance 
 

Inst 
Efficacy  Time (sec) 

Loop Cols 
Liter Max Min Avg Tot CG IP 

1 0.7368 0.7368 0.7368 0.7368 0.8 0.6 0.2 300.0 993.6 
2 0.6250 0.6250 0.6087 0.6120 0.5 0.4 0.1 270.0 482.2 
3 0.7959 0.7959 0.7959 0.7959 4.7 1.1 3.6 300.0 3658.0 
4 0.7692 0.7692 0.7692 0.7692 0.9 0.6 0.3 240.6 1207.2 
5 0.5313 0.5313 0.4848 0.5205 0.9 0.7 0.3 300.0 1568.2 
6 0.7037 0.7037 0.7037 0.7037 0.6 0.4 0.2 270.3 971.8 
7 0.6830 0.6830 0.6830 0.6830 1.1 0.7 0.4 300.0 1662.6 
8 0.8525 0.8525 0.8525 0.8525 1.5 0.6 0.9 271.6 1859.6 
9 0.5872 0.5872 0.5766 0.5815 2.1 0.8 1.3 300.0 2000.3 
10 0.7059 0.7059 0.7059 0.7059 0.5 0.4 0.1 152.0 582.2 
11 0.9200 0.9200 0.9200 0.9200 0.5 0.2 0.3 65.1 658.2 
12 0.6986 0.6625 0.5062 0.6357 1.8 0.7 1.1 243.2 1980.1 
13 0.6933 0.6933 0.6711 0.6853 1.4 0.7 0.7 272.1 1522.6 
14 0.5258 0.5152 0.4356 0.4822 2.1 0.8 1.3 300.0 3094.6 
15 0.6783 0.6783 0.6783 0.6783 2.1 0.9 1.2 300.0 2329.9 
16 0.5486 0.5486 0.5486 0.5486 7.1 1.8 5.3 300.0 4908.0 
17 0.5446 0.5321 0.4727 0.4982 2.0 0.8 1.2 300.0 2684.1 
18 0.4296 0.4074 0.3688 0.3959 1.4 0.7 0.6 300.0 2021.3 
19 0.4965 0.4545 0.4514 0.4520 1.2 0.7 0.4 300.0 1295.5 
20 0.7622 0.7614 0.7614 0.7614 6.6 1.8 4.8 298.3 4898.0 
21 0.5807 0.5815 0.5285 0.5691 3.4 1.0 2.5 300.0 3693.3 
22 1.0000 1.0000 1.0000 1.0000 0.3 0.1 0.2 10.7 385.6 
23 0.8511 0.8511 0.8511 0.8511 4.5 1.1 3.4 203.5 4034.2 
24 0.7351 0.7351 0.7351 0.7351 3.5 1.1 2.3 297.7 3835.6 
25 0.5197 0.5188 0.4417 0.4905 3.9 1.1 2.9 298.7 4604.0 
26 0.4706 0.4277 0.3631 0.4042 4.2 1.1 3.2 297.5 4320.9 
27 0.4487 0.4251 0.3869 0.4070 3.9 1.1 2.9 300.0 4265.4 
28 0.5427 0.5228 0.4729 0.4992 1.6 0.7 0.9 300.0 1333.3 
29 0.4462 0.4309 0.3690 0.4014 6.4 1.3 5.1 296.1 4708.3 
30 0.5848 0.5370 0.4798 0.5094 5.4 1.3 4.1 300.0 5917.7 
31 0.5966 0.5966 0.5385 0.5700 4.1 1.1 3.1 300.0 3959.5 
32 0.5051 0.5025 0.4488 0.4696 4.3 1.2 3.2 299.0 4059.4 
33 0.5642 0.5672 0.5672 0.5672 56.4 17.8 38.5 300.0 8698.3 
34 0.7571 0.7571 0.7571 0.7571 6.7 1.8 4.8 290.5 4797.6 
Avg 0.6438 0.6358 0.6080 0.6250 4.4 1.4 3.0 269.9 2911.5 
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