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Abstract

The Machine-Part Cell Formation is the problem amdating manufacture cells
aiming best production flow of manageable sub-sgsteSystems automation and
control can be improved by the aggregation of simparts into families, and
machines into independent cells that completely ufeartures families of parts.
The objective of the problem is to form a given tn@mof disjoint parts-machines
groups in which products do not have to move frame oell to the other to be
processed. This problem be viewed as a clusteriolglgm, and can be modeled
as ap-median location problem. This paper presents ainaol generation
approach tgp-median problem, adapted to produce feasible assgts of parts
into families. A further heuristic step assigns hiaes to families of parts to form
the manufacturing cells. Experimental tests werelenasing instances from the
literature. The computational results obtained \thih heuristic were as good as in

the literature for the majority of the instancesd @ven better in some cases.
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1 Introduction

The international competition and its consequemdador quick answers to the
market demands have lead several companies to desnsion-traditional
approaches to control and design the manufactusygtems. The “group
technology” as described by Burbidge (1963) dec@wapoanufacturing systems
into manageable sub-systems, or groups, by aggnggamilar parts into families
and machines into cells. The production flow analgs Burbidge (1969) is one
of the first and well-known methodologies assodatéth group technology.
Cellular manufacturing can simplify automation arwhtrol through the creation
of independent cells that completely manufactuaesilfes of parts. The objective
of this problem is to form a given number of digjopart-machines groups in
which products do not have to move from one ceth&other for processing. The
number of groups to be formed is the equivalerthéonumber of families of parts
and the number of machine cells to be formed. Wk thes problem as the
Machine-Part Cell Formation (MPCF) problem.

Several optimization approaches have being proposele literature to create
manufacturing cells. Heuristics for MPCF generalprk over machine-part
binary matrices, with one of the dimensions coresiing to machines and the
other corresponding to parts. The matrices elemagitsy ones or zeros indicate,
respectively, which machines are used, and not, usqutoduce each part. These
algorithms basically change rows and columns posstito produce blocks of
ones, forming families of parts and cells of maekinsimultaneously. The work
of McCormick Jr. et al. (1972, King (1980), Charsritharan and Rajagopalan
(1986a), and Venugopal and Narendran (1993), aealye binary matrices to

extract properties and suggest cell formation dtligms.

Fig. 1 shows the original form of a matrix with @r@achines (rows) and 15 parts
(columns). Fig. 2 uses dashed lines and omitéheszto better illustrate the same
matrix after an attempt to form 3 part-machine g®ly changing rows and
columns positions. The solution shown has not predicompletely independent

cells as parts 0, 4 and 12 must be processed blyinegan more than one cell.
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Fig. 1 Original part-machine matrix

1 3 6 811 0 2 4 5 9| 7 10 12 13 14

1 |1 1 1 1| 1
3 | 11 1 1|

9 | 1 1 1]

2 1 1 |1 |

4 1 1 1 1 1| 1 |

5 1 1 1] |

6 1 1 1 1 1| |

0 | |1 1 1 1
7 | | 1 1 1
8 | | 1 11 1

Fig. 2 Same matrix after grouping parts and machines

Many optimization techniques for MPCF have beerppsed in the literature.
Gupta and Seifoddini (1990) present a hierarchaaktering method, non-
hierarchical clustering methods are presented inan@tasekharan and
Rajagopalan (1989), and Jayakrishnan Nair and Masen(1998), techniques
based on graphs in Rajagopalan and Batra (1978)Lenet al. (1996), neural
networks applications are shown in Malave and Ramdiran (1991), and
Guerrero et al. (2002), and fuzzy logic based tegles are shown in Torkul et al.
(2006), and Xu and Wang (1989). Meta-heuristicsaése applied, like Simulated
Annealing in Venugopal and Narendran (1992a), Takarch in Lei and Wu
(2006), and Genetic Algorithms in Venugopal andeddran (1992b), Goncalves
and Resende (2004), and Ribeiro Filho and Loref@QR Jaumard et al. (1999)
considered the objective of minimizing the numbkbattleneck elements in the
parts-machines matrix, modeling the problem aggeldouble assignment linear
programming problem that was solved by column gaier approach. The
papers of Joines et al.(1995), Goncgalves and Resg@D4) and Papaioannou

and Wilson (2008) present comprehensive revievastefnative methodologies.
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The MPCF is a clustering problem and was modeled @snedian problem in
some papers, beginning with Kusiak (1987) and erpldoy Won and Currie
(2004), among others. The searchganedian vertices on a network (graph) is a
classical location problem. The objective is toakeca giverp number of facilities
(medians) to minimize the sum of the distances femnoh demand vertex to its
nearest facility. Recently, Senne et al. (2007)eharesented a column generation
approach tgo-median problems were the clusters correspondsltomns, and
new columns are generated using the linear prograghwelaxation of a set

covering problem with a cardinality constraint.

This paper presents a new model for the MPCF &$ pastitioning problem with
a cardinality constraint. The column generationrapph top-median problems
introduced by Senne et al. (2007) is adapted tdyme feasible assignments of
parts into families. The assignments are basedamring or Jaccard distances
for binary strings. A further heuristic step assignachines to families of parts to

form manufacturing cells.

The remaining of this paper is organized as foltogextion 2 introduces the

median formulation and the column generation atgorj section 3 examines
complimentary algorithms to assign parts to ceflamachines or machines to
families of parts, section 4 present computatioaaults and final considerations

are made in section 5.

2 P-median and column generation

Column generation is a powerful tool used to solaege scale linear
programming problems. This technique can be useenwthe columns in the
problem are not known previously and a completer@ration of all columns is
not a viable option, or when the problem is transfed using Dantzig-Wolfe
(1960) decomposition. Column generation is a commlovice in several well-
known applications, such as the cutting-stock gablvehicle routing and crew

scheduling.

In the classical form, the column generation akbpomi iterates between a column

generator sub-problem and a restricted master gmublSolving the master
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problem produces dual costs, which are used instheproblem to determine
whether its solution variables values might be ddmethe master problem as a

new column to improve its solution.

The p-median problem considered in this paper can bendtated as the
following set partition problem:

(SP-Pmed): V(SP - Pmed) = Min ici X (2)
j=1

subject to iaﬁxj =1;i=1...,n (2)
j=1
2% = 3)
j=1
x; 0{01}. 4)

Where:

n = N| is the number of parts in the set pa&tts
S={S,S,.....S,}, is a set of subsets of N,

[&j]mm » IS @ matrix withe; = 1 if 10 S; , anda; = 0 otherwise;

c, = I\iéén(ZdikJ; (5)
1\ KOs,

[dij]nxn is @ symmetric distance (Hamming or Jaccard) matri

mis the number of columns; and

p is the number of families of parts to be created.

The Hamming distance between two strings of eqgeagth is the number of
positions at which the corresponding symbols affergint.

The Jaccard index, also known as the Jaccard sityileoefficient, measures
similarity between sample sets, like binary strireged is defined as the size of the
intersection divided by the size of the union oé tkample sets. The Jaccard
distance, which measures dissimilarity between $amsgts, is complementary to
the Jaccard coefficient and is obtained by subtrgd¢he Jaccard coefficient from
1.



Given two binary strings, both with the same numddfeloinary values, for and]
in {0,1}, M;; is the total number of positiorksin the strings A and B such that
ac=i andb=j.

The Jaccard distance between A and B is given by:

d - M01+M10
AB
M Ol+ M 10+ M 11

(6)

The (SP-Med) formulation above was used for locapooblems in Senne et al.
(2007). IfSis the set of all subsets bf the formulation can give an optimal
solution to thep-median problem. But the number of subsets canuge,hand

therefore a partial set of columns is consideresdesd. Another approximation
considers a problem to be solved by column gemaratis the following set

covering formulation of SP-Pmed:

(SC-Pmed): V(SC - Pmed) = Min ici X; (7
j=1
subject to iaﬂxj >1;i=1..n (8)
i=1
DX =P 9)
j=1
x, O [01]. (10)

The SC-Pmed problem is also known as the restriotadter problem in the

column generation context. After defining an ilipaol of columns, this problem

is solved and the final dual costs, i = 1,...n and a associated to constraints (8)

and (9), respectively, are used to generate ndunuw solving the following

sub-problem:

(Sub-Pmed): v(Sub - Pmed) = Min[ Min Z(du - ﬂj)yj}. (11)

iON | y;{01} N

The Sub-Pmed problem is easily solved settigg=1 ifd;, -7z, < afd

y; =0, if d; =7, >0, for each = 1,...n. The column [%} is added to SC-Pmed



when v(Sub-Pmed) « . In fact, fori = 1,...n, all the corresponding columns

satisfying [ Miorl1}2(dij —iTj)y].:| < a can be added to the pool of columns,
25 oN
accelerating the column generation process.

The column generation algorithm is summarized as:

(1) Set an initial pool of columns to SC-Pmed;

(i) Solve SC-Pmed and return the dual priees j = 1,..nanda ;
(i)  Solve the corresponding sub-problem (Sub-Pmed)rajipg to SC-

Vil e .
Pmed th |m%7, t Min > (d, -m)y, |[<a,
e e column 1i|Sa ISfyln{ij{!{l\}jDN( ij J)y]:|

i=1,...n;
(iv)  If no columns are found in step (iii) then stofertvise return to (ii);
v) Solve the SP-Pmed problem with the generated cadumn

Solving the SP-Pmed problem in step (v) gives feasible assignment of parts to
families. A further final step consists of the gssnent of machines to cells that
produce the part families. The machines assignneemtescribed in the next

section of this document.

The relaxed intermediary problems (SC-Pmed) in gti¢@nd the set partition
problem in step (v) are usually solved by softwai@s like CPLEX (2006). The
stop condition in step (iv) is generally combinedhwanother criterion, like a

maximum limit for number of columns to be generatethe process.

The initial pool of columns in step (i) can be getted in several ways, simple or
with higher processing cost. For instance, coluwmdd be generated randomly
choosing a number of parts for each column andamhd choosing each one
these parts, or the generation process could inglesome heuristic approach to

create better initial columns, and perhaps acdeléh@ column generation phase.

In this work, the number of 1's (parts) in eachtialicolumn was given by a
random number with a normal distribution with therean given by the ratio

between the number of parts in the problenand the number of cells or groups



to be formed(f), E :ﬂ, and standard deviation given lsyzg The parts with
Y

value set to 1 in the columns were then randombgseh.

3 The assignments

Solving a MPCF problem by column generation invelheefurther step to form
machines cells. The objective of each machineised produce a family of parts.
Therefore, the assignment consists of the assogiati each machine to one of

the families of parts obtained in the previoukiom generation process.

The assignments are performed by a local searaishieypresented by Gongalves
and Resende (2004). Their work, on the opposite, \&agigns parts to machine

cells generated by a genetic algorithm.

The heuristic consists of an improvement procedhet is repeatedly applied.

Each iterationk of the procedure starts with a given initial st part

INITIAL
I:)k

families , and produces a set of machine célig™" , and another set of

part familiesP™* . Two block-diagonal matrices can be obtained diylzining

PNTA with M™* and RT™ with M;"™" . From these two matrices, the one

with the highest grouping efficacy (as describedhat end of this section) is

chosen as the resulting block-diagonal matrix & itlerationk. The procedure

Stops If PkFINAL = PkINITIAL

or if the grouping efficacy of the block-diagomahtrix
resulting from iteratiork is not greater than the grouping efficacy of thack-

diagonal matrix resulted from the previous itenati®l, for k>2. Otherwise, the

procedure set®') " = P™™" and continues to iteratide1.

Each iteration k of the local search heuristic &xtesof the following two steps:

(1) Assignment of machines to the initial set of panifliesR"™". The

machines are assigned to a family of parts onetahe in any order. A
machine is assigned to the family of parts that imees an
approximation of the grouping efficacy. A machiseassigned to the part

family P*, given by:



P = argmax{Nl_ an: } (12)
P N1+ NO,P

Where
argmax is the argument that maximizes expression;
N, is the total number of 1's in matrix;

Nf‘: is the total number of 1's outside the diagonatkéif the machine
is assigned to part family,

N::P is thetotal number of O's inside the diagonal blocksié machine
is assigned to part famiR.

The ideal blocks in the matrix should be as desspassible, with few 0’s in it

and, also ideally, the solution should not havedlitside the blocks. Therefore,

the parameterd,, Nf;‘ and N;”P in equation (12) are directly related to the

quality of the solution and are used to obtainghmup efficacy measure used in

the literature.

In this step, the heuristic generates a set of mactells M;™" . Let ,Ut be the

efficacy of the block-diagonal matrix defined By™™" and M;"™" .

(2) Assignment of parts to the set of machine celli§™", obtained in step

(1). Parts are assigned to machine cells, ondiatea in any order. A part
is assigned to the machine cell that maximizes @proaximation of the

grouping efficacy. A part is assigned to the maelaellM*, given by:

M* = argmax{Nl_I\lll;”} (13)
" [N:* Now

Where
argmax is the argument that maximizes expression;

N, is the total number of 1's in matrix;

Out

N u

assigned to machine céil,
NL’?M is the total number of O’s inside the diagonal kfoif the part is
assigned to machine cél.

is the total number of 1’s outside the diagonatksoif the part is



In this step, the local search heuristic generatesew set of families of parts

FINAL FINAL
I:)k Pk

. Let ,Ui be the efficacy of the block-diagonal matrix definby

and M"™

The block-diagonal matrix resulting from this ittoa has a grouping efficacy

INITIAL
I:)k

given by 'ukzmax('ulk, Iui). if BT = or f <fl . the iterative

process stops and the block-diagonal matrix ofiien k-1 is take as the result.

NITIAL

Otherwise, the procedure seBl ™ = P

and continues to step (1) of

iterationk+1.

Therefore, give an initial set of families of paRs" ™", obtained by solving the

SP-Pmed problem, the local search algorithm tocgstgomachines to families of

parts can be represented as follows:

While the stop condition is false
Obtain M ™" fromP™ ™" assigning machines to families of
parts according the criterion given by expressidn 1
Obtain P™™ fromM "™ | assigning parts to cells of machines
according to the criterion given by expression 13

B, = block-diagonal matrix obtained witR™ ™ andM ™™ ;

M FINAL .

B = block-diagonal matrix obtained witA™* and

e, = efficacy of the solution represented By ;
e = efficacy of the solution represented By; ;
If e > e, then

B, = By is the final solution matrix;

€ = Er>

Else
B, = B is the final solution matrix;
€ = G

End If;

FINAL _ PINITIAL

Stop condition = P ), or from the second

iteration, e, is not greater tham,, of previous iteration;

End While;

If the stop condition is false?™'™ = PFM-;

Return the block-diagonal matr&,, with efficacye,, .
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The above assignment procedure may lead to whaivtike of Gongalves and
Resende (2004) call singletons, cells having leas two parts or two machines.
They discard it these cells by assign zero efficday avoid this effect of the
procedure we have implemented an additional stépr she assignment of

machines to cells and parts to families, and betoeeefficacy calculation.

This additional procedure makes a list of evenyusithgleton machine cells and,
while this list is not empty, repeatedly selects orll from the list at random and
looks for every other cell with at least three maehl, and transfer to the
singleton cell the machine that produces the laigerease in the solution
efficacy. If the singleton cell becomes valid witte transfer, it is removed from

the invalid cells list. An analog procedure takksce for families of parts.

The grouping efficacy measure used in the liteeaturd in this work is given by a
coefficient that takes into account the numbereybg inside the clusters and the
number of ones outside the clusters, respectivedpresenting the cluster

compactness and intercellular movement:

Coef =5~4 (14)
e+eo

Where:
e is the number of 1's in the matrix
& is the number of 0's inside the clusters
e is the number of 1's outside the clusters
The ideal coefficient value is 1, that means nogdénside and no ones outside the

clusters, and a better clustering has a highefficaeft value.

4 Experimental Results

The experimental results were obtained with sons&airces used in the paper of
Goncalves and Resende (2004), and one additiostnice with a 20x35 matrix
of machines and parts from Burbidge (1963). Tablsh@ws a list of the test
instances, its origin in the literature, and itsntner of machines, parts and cells to

be formed.
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Table 1 Test instances

Instance Origin Machines Parts Cells
1 King and Nakornchai, 1982 5 7 2
2 Waghodekar and Sahu, 1984 5 7 2
3 Seifoddini, 1989 5 18 2
4  Kusiak and Cho, 1992 6 8 2
5 Kusiak and Chow, 1987 7 11 3
6 Boctor, 1991 7 11 3
7  Seifoddini and Wolfe, 1986 8 12 3
8 Chandrasekharan and Rajagopalan, 1986a 8 20 3
9 Chandrasekharan and Rajagopalan, 1986b 8 20 2
10 Mosier and Taube, 1985a 10 10 3
11 Chan and Milner, 1982 10 15 3
12 Askin and Subramanian, 1987 14 24 5
13 Stanfel, 1985 14 24 5
14 McCormick et al., 1972 16 24 5
15 Srinivasan et al., 1990 16 30 4
16 King, 1980 16 43 5
17 Carrie, 1973 18 24 6
18 Mosier and Taube, 1985b 20 20 5
19 Kumar et al., 1986 20 23 5
20 Carrie, 1973 20 35 4
21 Boe and Cheng, 1991 20 35 5
22 Chandrasekharan and Rajagopalan, 1989 24 40 7
23 Chandrasekharan and Rajagopalan, 1989 24 40 7
24 Chandrasekharan and Rajagopalan, 1989 24 40 7
25 Chandrasekharan and Rajagopalan, 1989 24 40 9
26 Chandrasekharan and Rajagopalan, 1989 24 40 9
27 Chandrasekharan and Rajagopalan, 1989 24 40 9
28 McCormick et al., 1972 27 27 4
29 Carrie, 1973 28 46 9
30 Kumar and Vannelli, 1987 30 41 11
31 Stanfel, 1985 30 50 12
32 Stanfel, 1985 30 50 11
33 McCormick et al., 1972 37 53 2
34 Burbidge, 1969 30 35 4

Tests were made with both distances, Hamming aedadd, in the Column
Generation (CG) algorithm. The performance meawwa® made with clustering
efficacy coefficient. Table 2 shows the computadlonesults obtained using

Hamming distance, and Table 3 shows the resultgyuke Jaccard distance.

The columns in the tables 2 and 3 shows the instanmber as listed in Table 1,
the clustering efficacy found in the literature (@alves and Resende, 2004),
maximum, minimum and average efficacy found withr@ifis of the algorithm,

average total time, average time for the columreggion phase and average time

for the integer programming problem solution ph#ise,average of the number of

12



iterations in the column generation loop, and thierage number of generated
columns in the ten runs of the algorithm. The talflave a last row with average

values for each table column.

Bold font style in the maximum efficacy column alitérature efficacy column
indicates algorithm results equal or better thanlitierature. Particularly, tables 2
and 3 shows that for instances 21 and 33 the @tgombtained better results than

found in literature, using both distance measures.

The experiments, for all instances, used 300 rahgomade initial columns for
the columns generation phase, and a limit of 15g¢hnod generated columns was

used as an additional stop condition for the praces

In table 2, using Hamming distance, we see thagalferithm was able to obtain
equal or better results than those found in therditire for 20 out of the 34
instances (58.8%), and in table 3, using Jaccatmtie, the same occurs for 21
out of 34 instances (61.8%). Tests were made uaing GHz Pentium IV
microcomputer, with code written in C#, and usihg Concert 2.6 library of the
CPLEX 11 solver.

5 Final considerations

This paper examined a new heuristic for MPCF prolleThe MPCF is modeled
as a clustering problem assigning parts to familiea set partitioning problem
with a cardinality constraint. The cells of mackinend families of parts are
created based on assignments obtained during colygeneration and a local
search process.

The computational results obtained with the heigrigtere as good as in the
literature for the majority of the instances, angkre better in some cases.
Complimentary research is in course to deal witfdascale instances, such as the
effective management of columns, removing unpradectolumns along the

process.
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Table2 Results obtained using Hamming distance

Inst

Efficacy
Liter Max Min Avg

Time (sec)
Tot CG

IP

Loop Cols

0.7368 0.7368 0.7368 0.7368
0.6250 0.6250 0.6087 0.6103
0.7959 0.7959 0.7959 0.7959
0.7692 0.7692 0.76920.7692
0.5313 0.5313 0.4688 0.5157
0.7037 0.7037 0.7037 0.7037
0.6830 0.6830 0.68300.6830
0.8525 0.8525 0.85250.8525
0.58720.5833 0.5833 0.5833
0.7059 0.7059 0.7059 0.7059
0.9200 0.9200 0.92000.9200
0.69860.6533 0.6026 0.6313
0.6933 0.6933 0.62820.6776
0.52580.4851 0.4112 0.4524
0.6783 0.6783 0.67830.6783
0.5486 0.5486 0.53530.5426
0.54460.5273 0.3966 0.4547
0.42960.4109 0.3769 0.3987
0.49650.4887 0.3778 0.4564
0.76220.76140.7614 0.7614
0.5807 0.5815 0.5397 0.5547
1.0000 1.0000 1.0000 1.0000
0.8511 0.8511 0.85110.8511
0.7351 0.7351 0.73510.7351
0.51970.5063 0.4383 0.4730
0.47060.45450.4167 0.4422
0.44870.4348 0.3765 0.4217
0.54270.5180 0.4448 0.5010
0.44620.4367 0.3577 0.4025
0.58480.5283 0.4667 0.4950
0.5966 0.5966 0.55250.5764
0.50510.5025 0.4697 0.4865

0.1
0.1
11
0.1
0.3
0.2
0.2
0.1
1.2
0.1
0.1
11
0.7
0.2
1.6
3.3
0.2
0.2
1.0
3.1
11
0.3
0.7
0.7
0.4
0.8
0.3
1.2
4.2
15
0.8
2.6

0.0
0.0
0.2
0.0
0.1
0.1
0.1
0.1
0.4
0.0
0.0
0.3
0.2
0.1
0.5
0.9
0.1
0.1
0.3
0.8
0.3
0.1
0.2
0.3
0.1
0.3
0.1
0.3
0.6
0.2
0.2
0.8

00 0.3 0.6
00 1.0 1.6
0.8 75.6 907.6
00 1.2 4.2
0.2 61.7 459.0
0.1 32.6 283.0
0.1 34.1 2979
0.1 119 173.7
0.8 216.21198.1
00 23 9.1
01 64 642
0.7 126.7 1379.5
0.5 68.6 857.9
0.1 444 191.2
1.1 164.6 1692.0
2.4 273.2 2505.2
0.1 39.8 193.6
0.1 40.1 2574
0.7 128.3 1163.3
2.3 148.9 2625.2
0.7 107.9 1206.1
0.2 148 4211
0.5 40.11046.1
0.5 82.01093.1
0.3 27.8 494.3
0.5 109.4 1103.2
0.2 459 408.2
0.8 158.9 1100.7
3.5 215.2 2288.7
1.2 41.51090.4
0.6 73.3 915.8
1.8 216.5 2107.5

0.5642 0.5672 0.5616 0.563348.5 17.5 31.0 284.7 7638.0
0.7571 0.7571 0.75710.7571 1.8 0.5 1.3 102.91960.0

Avg 0.64380.63600.60480.6232 2.3 0.8 1.6 88.21092.3
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Table 3 Results obtained using Jaccard distance

Efficacy Time (sec

NSt liter Max Min  Avg  Tot c(:G )IP Loop Cols

1 0.7368 0.7368 0.73680.7368 0.8 0.6 0.2 300.0 993.6
2 0.6250 0.6250 0.6087 0.6120 0.5 0.4 0.1 270.0 482.2
3 0.7959 0.7959 0.79590.7959 4.7 1.1 3.6 300.0 3658.0
4 0.7692 0.7692 0.76920.7692 0.9 0.6 0.3 240.6 1207.2
5 0.5313 0.5313 0.48480.5205 0.9 0.7 0.3 300.01568.2
6 0.7037 0.7037 0.70370.7037 0.6 0.4 0.2 270.3 971.8
7 0.6830 0.6830 0.68300.6830 1.1 0.7 0.4 300.0 1662.6
8 0.8525 0.8525 0.85250.8525 1.5 0.6 0.9 271.6 1859.6
9 0.5872 0.5872 0.57660.5815 2.1 0.8 1.3 300.0 2000.3
10 0.7059 0.7059 0.70590.7059 0.5 0.4 0.1 152.0 582.2
11 0.9200 0.9200 0.92000.9200 0.5 0.2 0.3 65.1 658.2
12 0.69860.66250.5062 0.6357 1.8 0.7 1.1 243.21980.1
13 0.6933 0.6933 0.67110.6853 1.4 0.7 0.7 272.1 1522.6
14 0.52580.51520.43560.4822 2.1 0.8 1.3 300.0 3094.6
15 0.6783 0.6783 0.67830.6783 2.1 0.9 1.2 300.02329.9
16 0.5486 0.5486 0.54860.5486 7.1 1.8 5.3 300.04908.0
17 0.54460.53210.47270.4982 2.0 0.8 1.2 300.02684.1
18 0.42960.40740.36880.3959 1.4 0.7 0.6 300.02021.3
19 0.49650.45450.4514 0.4520 1.2 0.7 0.4 300.0 1295.5
20 0.76220.76140.76140.7614 6.6 1.8 4.8 298.3 4898.0
21 0.5807 0.5815 0.52850.5691 3.4 1.0 2.5 300.0 3693.3
22 1.0000 1.0000 1.00001.0000 0.3 0.1 0.2 10.7 385.6
23 0.8511 0.8511 0.85110.8511 4.5 1.1 3.4 203.54034.2
24 0.7351 0.7351 0.73510.7351 3.5 1.1 2.3 297.7 3835.6
25 0.51970.51880.44170.4905 3.9 1.1 2.9 298.7 4604.0
26 0.47060.42770.36310.4042 4.2 1.1 3.2 297.54320.9
27 0.44870.42510.38690.4070 3.9 1.1 2.9 300.04265.4
28 0.54270.52280.47290.4992 1.6 0.7 0.9 300.01333.3
29 0.44620.43090.36900.4014 6.4 1.3 5.1 296.14708.3
30 0.58480.53700.47980.5094 5.4 1.3 4.1 300.05917.7
31 0.5966 0.5966 0.53850.5700 4.1 1.1 3.1 300.0 3959.5
32 0.50510.50250.44880.4696 4.3 1.2 3.2 299.04059.4
33 0.5642 0.5672 0.56720.567256.4 17.8 38.5 300.0 8698.3
34 0.7571 0.7571 0.75710.7571 6.7 1.8 4.8 290.54797.6
Avg 0.64380.63580.60800.6250 4.4 1.4 3.0 269.92911.5
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