Evolutionary Clustering Search
for Flowtime Minimization
in Permutation Flow Shop

Geraldo Ribeiro Filho!, Marcelo Seido Nagano?, and Luiz Antonio Nogueira
Lorena?

! Faculdade Bandeirantes de Educacio Superior
R. José Correia Gongalves, 57
08675-130, Suzano - SP - Brazil
geraldorf@uol.com.br
2 Escola de Engenharia de Sao Carlos - USP
Av. Trabalhador Sao-Carlense, 400
13566-590, Sao Carlos - SP - Brazil
drnaganoQusp.br
3 Instituto Nacional de Pesquisas Espaciais - INPE/LAC
Av. dos Astronautas, 1758
12227-010, Sao José dos Campos - SP - Brazil
lorena@lac.inpe.br

Abstract. This paper deals with the Permutation Flow Shop scheduling
problem with the objective of minimizing total flow time, and therefore
reducing in-process inventory. A new hybrid metaheuristic Genetic Algo-
rithm - Cluster Search is proposed for the scheduling problem solution.
The performance of the proposed method is evaluated and results are
compared with the best reported in the literature. Experimental tests
show the new method superiority for the test problems set, regarding
the solution quality.

1 Introduction

This paper deals with Permutation Flow Shop scheduling problems, which con-
sists of finding a sequence for the jobs that optimises some schedule performance
measure. Usually, such measures are the maximum completion time (makespan),
and the total flowtime. As it is well known, the first measure is associated with
an efficient utilization of resources, and the second one with a faster response to
job processing, therefore reducing in-process inventory. In this paper we intro-
duce a hybrid meta-heuristic method with the objective of minimizing the total
flowtime.

This production scheduling problem is NP-complete [9,26], therefore the
search for an optimal solution is of more theoretical than practical importance.

In the last ten years a number of heuristic methods have been introduced with
the objective of minimizing total flowtime, or equivalently the mean flowtime
in permutation flow shops. These heuristic methods can be divided into two

2 G. Ribeiro Filho, M. S. Nagano, L. A. N. Lorena

main classes: construction methods and improvement methods. The literature
on construction methods includes the heuristics proposed by Ahmadi and Bagchi
[1], Rajendran and Chaudhuri [22], Rajendran [23], Ho [12], Wang et al. [31],
Woo and Yim [33], Liu and Reeves [15], Allahverdi and Aldowaisan [2], Framinan
and Leisten [8], Framinan et al. [7], Li et al. [14] and Nagano and Moccellin [18].

Improvement methods such as ant-colony optimization algorithm proposed
by Rajendran and Ziegler [25] and swarm optimization algorithm proposed by
Tasgetiren et al. [30], start from an initial permutation, which is usually gen-
erated by a construction method, and then iteratively generate a sequence of
improved permutations. It is obvious that improvement methods generate sig-
nificantly better solutions than construction ones.

Rajendran and Ziegler [25] introduce two heuristics. The first algorithm ex-
tends the ideas of the ant-colony algorithm by Stuetzle [28], called max-min
ant system (MMAS), by incorporating the summation rule suggested by Merkle
and Middendorf [16] and a new proposed local search technique. The second
ant-colony algorithm is newly developed. These ant-colony algorithms were ap-
plied to 90 benchmark problems taken from Taillard [29]. Considering the min-
imization of makespan the comparison shows that the two proposed ant-colony
algorithms perform better, on an average, than the MMAS. Subsequently, by
considering the objective of minimizing the total flowtime of jobs, a comparison
of solutions yielded by the proposed ant-colony algorithms with the best heuris-
tic solutions known for the benchmark problems, as published in an extensive
study by Liu and Reeves [15], is carried out. The comparison shows that the pro-
posed ant-colony algorithms are clearly superior to the heuristics analyzed by
Liu and Reeves. For 83 out of 90 problems considered, better solutions have been
found by the two proposed ant-colony algorithms, as compared to the solutions
reported by Liu and Reeves [15].

Like many optimization problems, scheduling are commonly approached by
evolutionary techniques. Cotta and Fernandez [6] applied memetic algorithms
to planning, scheduling and timetabling, and Kleeman and Lamont [13] have
studied multi-objective evolutionary algorithms (MOEA) with fixed and variable
chromosome length applied to the flow-shop and job-shop problems.

Recently Tasgetiren et al. [30] presented a particle swarm optimization algo-
rithm (PSO) to solve the permutation flow shop sequencing problem with the
objectives of minimizing makespan and the total flowtime of jobs. For this pur-
pose, a heuristic rule called the smallest position value (SPV) borrowed from the
random key representation of Bean [3] was developed to enable the continuous
particle swarm optimization algorithm to be applied to all classes of sequencing
problems. In addition, a very efficient local search, called variable neighborhood
search (VNS), was embedded in the PSO algorithm to solve the well known
benchmark suites in the literature. The PSO algorithm was applied to both the
90 benchmark instances provided by Taillard [29], and the 14,000 random, nar-
row random and structured benchmark instances provided by Watson et al. [32].
For makespan criterion, the solution quality was evaluated according to the best
known solutions provided either by Taillard [29], or Watson et al. [32]. The total

Hybrid Metaheuristic for Permutational Flow Shop 3

flowtime criterion was evaluated with the best known solutions provided by Liu
and Reeves [15], and Rajendran and Ziegler [25]. For the total flowtime crite-
rion, 57 out of the 90 best known solutions reported by Liu and Reeves [15], and
Rajendran and Ziegler [25] were improved whereas for the makespan criterion,
195 out of the 800 best known solutions for the random and narrow random
problems reported by Watson et al. [32] were improved by the VNS version of
the PSO algorithm.

Based on the literature examination we have made, the aforementioned meta-
heuristic PSO-VNS presented by Tasgetiren et al. [30] yields the best solutions
for total flowtime minimization in a permutation flow shop.

2 Clustering Search

The metaheuristic Clustering Search (CS), proposed by Oliveira and Lorena
[20, 21], consists of a solution clustering process to detect supposedly promising
regions in the search space. The objective of the detection of these regions as
soon as possible is to adapt the search strategy. A region can be seen as a search
subspace defined by a neighborhood relation.

The CS has an iterative clustering process, simultaneously executed with
a heuristic, and tries to identify solution clusters that deserve special interest.
The regions defined by these clusters must be explored, as soon as they are
detected, by problem specific local search procedures. The expected result of
more rational use of local search is convergence improvement associated with
reduction of computational effort.

CS tries to locate promising regions by using clusters to represent these
regions. A cluster is defined by a triple G = (C,r,3) where C, r and are,
respectively, the center, the radius of a search region around the center, and a
search strategy associated with the cluster.

The center C is a solution that represents the cluster, identify its location
in the search space, and can be changed along the iterative process. Initially
the centers can be obtained randomly, and progressively tend to move to more
promising points in the search space. The radius r defines the maximum distance
from the center to consider a solution being inside the cluster. For example, the
radius r could be defined as the number moves to change a solution into another.
The CS admits a solution to be inside of more than one cluster. The strategy 3
is a procedure to intensify the search, in which existing solutions interact with
each other to create new ones.

The CS consists of four components, conceptually independent, with different
attributions: a metaheuristic (ME), an iterative clustering process (IC), a clus-
ter analyzer (CA), and a local optimization algorithm (LO). Figure 1 shows a
representation of the four components, the search space and the clusters centers.

The ME component works as a full time iterative solution generator. The
algorithm is independently executed from the other CS components, and must
be able to continuously generate solutions for the clustering process. Simultane-

4 G. Ribeiro Filho, M. S. Nagano, L. A. N. Lorena

ously, the clusters are maintained as containers for these solutions. This process
works as a loop in which solutions are generated along the iterations.

Solution
Search Space

Fig. 1. Clustering Search Conceptual Diagram

The objective of the IC component is to associate similar solutions to form
a cluster, keeping a representative one of them as the cluster center. The IC is
implemented as an online process where the clusters are feed with the solutions
produced by the ME. A maximum number of clusters is previously defined to
avoid unlimited cluster generation. A distance metric must be defined also pre-
viously to evaluate solutions similarity for the clustering process. Each solution
received by IC is inserted into the cluster having the center most similar to it,
causing a perturbation in this center. This perturbation is called assimilation
and consists of the center update according to the inserted solution.

The CA component provides an analysis of each cluster, at regular time
intervals, indicating probable promising clusters. The so called cluster density \;
measures the i-th cluster activity. For simplicity, A; can be the cluster’s number
of assimilated solutions. When A; reach some threshold, meaning that ME has
produced a predominant information model, the cluster must be more intensively
investigated to accelerate its convergence to better search space regions. CA is
also responsible for the removal of low density clusters, allowing new and better
clusters to be created, while preserving the most active clusters. The clusters
removal does not interfere with the set of solutions being produced by ME, as
they are kept in a separate structure.

Finally, the LO component is a local search module that provides more inten-
sive exploration of promising regions represented by active clusters. This process
runs after CA has determined a highly active cluster. The local search corre-
sponds to the [element that defines the cluster and is a problem specific local
search procedure.

Hybrid Metaheuristic for Permutational Flow Shop 5

3 Evolutionary Clustering for the Permutation Flow
Shop Problem

This research has used a metaheuristic called Evolutionary Clustering Search
(ECS) proposed by Oliveira and Lorena [20,21] that combines Genetic Algo-
rithms (GA) and Custering Search, and has applied it to the Permutation Flow
Shop problem. The ECS uses a GA to implement the ME component of the CS
and generate solutions that allow the exploration of promising regions by the
other components of CS. A pseudo-code representation of the ECS is shown in
Figure 2.

Procedure ECS-FS()
Begin
Initialize population P;
Initialize clusters set C;
While (stop condition == false) do Begin
While (i < new_individuals) do Begin
parentl Selected from best 40} of P;
parent2 Selected from the whole P;
offspring = Crossover(parentl, parent2);
Local_Search_LS1(offspring) with 60% probability;
If (Insert_into_P(offspring))
Assimilate_or_create_cluster(offspring, C);
i=1i+1;
End;
For each cluster c in C
If (High_assimilation(c))
Local_Search_LS2(c);

End;
End;

Fig. 2. Pseudo-code for the ECS algorithm

As ECS has presented good performance in previous applications, and con-
sidering the accelerated convergence provided by CS when compared with pure,
non hybrid, algorithms, the aim of this work was to attempt to beat the best
results recently produced and found in the literature, even with larger computer
times, characteristic of evolutionary processes. Seeking originality, this was an-
other reason to apply CS in this research.

The Evolutionary Clustering Search for Flow Shop (ECS-FS) presented in
this work has some modifications from the original CS general concept presented
in the previous section.

As the quality of the individuals in the initial population is important for
the GA performance, to ensure this quality, the population initialization was
done with a variation of the method known as NEH, presented by Nawaz et
al. [19]. The original form of NEH initially sort a set of n tasks according to
non-descending values of the sum of task processing times by all machines. The
two first tasks in the sorted sequence are scheduled to minimize the partial flow

6 G. Ribeiro Filho, M. S. Nagano, L. A. N. Lorena

time. The remaining tasks are then sequentially inserted into the schedule in the
position that minimizes the partial flow time.

The chromosome representation used in the GA was a n element vector, one
element for each task, storing the position of that task in the solution schedule.
After several tests, the population size was fixed in 500 individuals to make room
for good individuals produced by NEH and its variation, together with randomly
generated individuals to provide diversity.

The very fist individual inserted into the initial population was generated by
the NEH procedure. Part of the other individuals was generated by a variation
of the NEH in which the two tasks from the sorted sequence to be first scheduled
were randomly chosen from the whole sequence. The rest of the sequence was
then scheduled the same way as the original NEH.

To ensure some degree of diversity in the initial population, the maximum
number of individuals generated by the modified NEH was given by

i (”*<Z‘1>,5g0) 7 (1)

and the remain part of the initial population was filled with randomly generated
schedules.

The evaluation of the population individuals was made by the minimization of
the total flow time. The individual insertion routine kept the population sorted,
and the best individual, the one with the lowest total flow time, occupied the
first position in the population. The insertion routine was also responsible for
maintain only one copy of each individual in the population.

A cluster set initialization process was created to take advantage of the good
individuals in the GA initial population. This routine scanned the population,
from the best individual to the worst, creating new clusters or assimilating the
individuals into clusters already created. A new cluster was created when the
distance from the individual to the center of any cluster was larger than r =
0.85 x n, and the individual was used to represent the center of new cluster.
Otherwise, the individual was assimilated by the cluster with the closest center.
The distance measure from an individual to the cluster center was taken as the
number of swaps necessary to transform the individual into the cluster center.
Starting from the very first, each element of the individual was compared to
its equivalent in the cluster center, at the same position. When non coincident
elements were found the rest of the individual chromosome was scanned to find
the same element found in the cluster center, and make a swap. At the end,
the individual was identical to the cluster center, and the number of swaps
was considered as a distance measure. The clusters initialization process ended
when the whole population was scanned or when a maximum of 200 clusters
were created. Both the cluster radius and the maximum number of clusters are
parameters which values were chosen after several tests, with the objective to
work with all problem classes used for tests.

The assimilation of an individual by a cluster was based on the Path Relinking
procedure presented by Glover [10]. Starting from the individual chromosome,

Hybrid Metaheuristic for Permutational Flow Shop 7

successive swaps were made until the chromosome became identical to the cluster
center. The pair of genes chosen to swap was the one that more reduced, or less
increased, the chromosome total flow time. At each swap the new chromosome
configuration was evaluated. At the end of the transformation, the cluster center
was moved to (replaced by) the individual, or the intermediary chromosome, that
has the best evaluation better than the current center. If no such improvement
was possible, the cluster center remains the same.

At each iteration of the GA, 50 new individuals were created and possibly
inserted into the population. The stop condition used was the maximum of 100
iterations or 20 consecutive iterations with no new individuals being inserted, as
the population could have one single copy of each individual.

The new individual generation was made by randomly selecting two parents,
one from the best 40% of the population, called the base parent, and the other
from the entire population, called the guide parent. A crossover process known
as Block Order Crossove (BOX), presented by Syswerda [27], was then applied
to both parents, generating a single offspring by copying blocks of genes from
the parents. In this work the offspring was generated with 50% of its genes
coming from each parent. Several other recombination operators are studied and
empirically evaluated by Cotta and Troya [5]. Investigation regarding position-
oriented recombination operators are also possible in further studies. Figure 3
illustrates the BOX crossover.

‘532541‘ ‘512534‘

N

‘551324‘

Fig. 3. BOX Crossover

The number of new individuals created at each iteration, the stop condition,
the part of the population from which comes the base parent for crossover, and
contribution of each parent in the crossover process are all parameters which
values were obtained after several tests.

After the crossover, the offspring had a probability of 60% to be improved
by a local search procedure called LS1, shown in Figure 4.

This procedure used two neighborhood types: permutation and insertion.
The permutation neighborhood around an individual was obtained by swapping
every possible pair of chromosome genes, producing n*(n-1)/2 different individ-
uals. The insertion neighborhood was obtained by removing every gene from its
position, and inserting it in each other position in the chromosome, producing
n*(n-1) different individuals.

8 G. Ribeiro Filho, M. S. Nagano, L. A. N. Lorena

Procedure LS1(current_solution)
Begin
cs = current_solution;
stop = false;
While (stop == false) do Begin
P = Permutation_neighborhood(cs);
sp = First s in P that eval(s) < eval(cs), or eval(s) < eval(t) for all t in P;
I = Insertion_neighborhood(cs);
si = First s in I that eval(s) < eval(cs), or eval(s) < eval(t) for all t in I;
If (eval(sp) < min(eval(si), eval(cs))) then
cs = sp;
else
If (eval(si) < min(eval(sp), eval(cs))) then
cs = si;
else
stop = true;
End;
Return cs;
End

Fig. 4. Pseudo-code for the LLS1 Local Search Procedure

The new individual was then inserted into the population in the position
relative to its evaluation, shifting ahead the subsequent part of the population,
and therefore removing the last, and worst, individual.

The successfully inserted individuals were then processed by the IC compo-
nent of ECS-FS. This procedure tried to find the cluster having the closest center
and of which radius r the individual was within. When such cluster could found,
the individual was assimilated, otherwise a new cluster was created having the
individual as its center. New clusters were created only if the ECS-FS had not
reached the 200 clusters limit. Tests have shown that the number of cluster tends
to increase at very first ECS iterations, and slowly decrease as iterations continue
and the ECS removes the less active clusters.

After the generation of new individuals, its improvement and insertion into
the population, the ECS-FS executed its CA component. This cluster analysis
procedure performed two tasks: remove the clusters that had no assimilations
in the last 5 iterations, and take every cluster that had any assimilation in the
current iteration and ran it through a local optimization procedure, called L.S2
and shown in Figure 5, corresponding to the LO component of ECS-FS.

Again, the probability with which an offspring ran trough local search before
being inserted into the population and the number of iterations without assim-
ilation used to delete clusters was parameters which values were chosen after
several tests.

Along the ECS-F'S processing the best cluster was kept saved. At the end of
the ECS-FS execution, the center of the best cluster found so far was taken as
the final solution produced by the algorithm.

Hybrid Metaheuristic for Permutational Flow Shop 9

Procedure LS2(current_solution)
Begin
cs = current_solution;
stop = false;
While (stop == false) do Begin
I = Insertion_neighborhood(cs);
si = First s in I that eval(s) < eval(cs), or eval(s) < eval(t) for all t in I;
If (eval(si) < eval(cs)) then Begin
cs = si;
P = Permutation_neighborhood(cs);
sp = First s in P that eval(s) < eval(cs), or eval(s) < eval(t) for all t in P;
If (eval(sp) < eval(cs)) then
cs = sp;
End else Begin
Pnh = Permutation_neighborhood(cs);
sp = Scan Pnh until sp is better than cs, or sp is the best in Pnh;
If (eval(sp) < eval(cs))
cs = sp;
else
stop = true;
End;
End;
Return cs;
End

Fig. 5. Pseudo-code for the LS2 Local Search Procedure

4 Computational Experiments

The performance evaluation of the proposed hybrid heuristic method ECS-FS,
was made through computational experiments using the Taillard [29] test prob-
lems. These problem are divided into n tasks and m machines sets, each set
having ten instances. Results were compared with those reported in the works
of Liu and Reeves [15], Rajendran and Ziegler [25], Li et al. [14] and Tasgetiren
et al. [30].

For this work, the ECS-FS code was written in the C programming language
and was executed on a Pentium IV, 3.0 GHz, 1 GByte RAM personal computer.

Two statistic measures were used to performance evaluation: the success rate
and the average relative deviation. The first is given by the ratio between the
number of problems for which a method produced the minimum total flow time
given by all compared methods, and the number of problems solved in a problem
set. The second shows the deviation obtained by a method A from the minimum
total flow time as above, and is given by

RD, — (F;F) 2)

where F}, is the total flow time given by the method h, and F, is the minimum
total flow time given by all compared methods, for a given test problem.

10 G. Ribeiro Filho, M. S. Nagano, L. A. N. Lorena

5 Analysis of Results

The ECS-FS performance was evaluated comparing its results with the two ant
colony based algorithms (M-MMAS and PACO) shown by Rajendran and Ziegler
[25], and the particle swarm method (PSO) shown by Tasgetiren et al. [30].

Nine test problems classes were considered, each one having ten instances.
The classes were defined according to the number of tasks n being equal to 20,
50 and 100, and for each one of these values, the number of machines m being
equal to 5, 10 and 20.

Table 1 presents the best solution obtained by the methods for each instance
and shows the superiority of ECS-FS to the others for the test problems. The
listed results of ECS-F'S are the best out of 10 repeats. For a total of 90 instances
the ECS-FS produced equal or better solutions for 82 of them, corresponding
to 91.1%, and 59 solutions (65.5%) were inedited, better than the previous best
found in the literaure.

Table 2 presents success rates for problems classes and shows that the ECS-
FS had its success rate varying from 70% to 100%. This table shows also that
the difference from the ECS-FS average relative deviation to the other method
deviation is emphasized, reinforcing the proposed method superiority.

The quality of the initial population individuals, allied to diversity, and the
performance of the local search routines, can be considered key factors for the
quality of the final solutions.

Average processing time had a large variation from 8.62 seconds for the
smallest problems class, with 20 tasks and 5 machines, to 7 hours and 39 minutes
for the largest problems class used in this work, with 100 tasks and 20 machines.

6 Conclusion

The main objective of this work was apply CS to the Permutation Flow Shop
Scheduling Problem of original and inedited form. Experimental results pre-
sented in the tables have shown that the ECS-FS method had superior per-
formance regarding success rate and average relative deviation, compared with
the best results found in the literature for the considered Flow Shop test prob-
lems, using the in-process inventory reduction, or minimization of the total flow
time, as the performance measure. The computational effort was acceptable for
practical applications.

The classic optimization problem of task schedule in Flow Shop has been
the object of intense research in the last 50 years. For practical applications this
problem may be considered already solved, although, because of its complexity
it still remains as a target for the search for heuristic and metaheuristic methods
with better efficiency and solution quality, taking into account that the problem
is NP-hard.

The research related in this paper was motivated by the above considerations,
and have tried to rescue the essential characteristics of metaheuristic methods,
balance between solution quality and computational efficiency, simplicity and
implementation easiness.

Hybrid Metaheuristic for Permutational Flow Shop

11

Table 1. New Best Known solution for Taillard’s benchmarks for Flowtime minimisa-
tion in Permutation Flow Shop

n m M— MMAS PACO PSOy,s ECS—FS n m M — MMAS PACO PSOy,s ECS —FS
20 5 14056 14056 14033 14033 50 20 127348 126962 128622 126315
15151 15214 15151 15151 121208 121098 122173 119502
13416 13403 13301 13301 118051 117524 118719 116910
15486 15505 15447 15447 123061 122807 123028 121031
13529 13529 13529 13529 119920 119221 121202 118914
13139 13123 13123 13123 122369 122262 123217 121087
13559 13674 13548 13548 125609 125351 125586 123340
13968 14042 13948 13948 124543 124374 125714 123005
14317 14383 14295 14295 124059 123646 124932 122203
12968 13021 12943 12943 126582 125767 126311 124785
20 10 20980 20958 20911 20911 100 5 257025 257886 254762 254911
22440 22591 22440 22440 246612 246326 245315 243943
19833 19968 19833 19833 240537 241271 239777 239002
18724 18769 18710 18710 230480 230376 228872 228888
18644 18749 18641 18641 243013 243457 242245 241659
19245 19245 19249 19245 236225 236409 234082 234172
18376 18377 18363 18363 243935 243854 242122 241753
20241 20377 20241 20241 234813 234579 232755 232315
20330 20330 20330 20330 252384 253325 249959 249608
21320 21323 21320 21320 246261 246750 244275 244210
20 20 33623 33623 34975 33623 100 10 305004 305376 303142 301176
31604 31597 32659 31587 279094 278921 277109 276902
33920 34130 34594 33920 297177 294239 292465 290844
31698 31753 32716 31661 306994 306739 304676 304377
34593 34642 35455 34557 290493 289676 288242 287545
32637 32594 33530 32564 276449 275932 272790 272635
33038 32922 33733 32922 286545 284846 282440 282381
32444 32533 33008 32412 297454 297400 293572 294119
33625 33623 34446 33600 309664 307043 305605 304964
32317 32317 33281 32262 296869 297182 295173 294362
50 5 65768 65546 65058 64838 100 20 373756 372630 374351 371391
68828 68485 68298 68159 383614 381124 379792 376383
64166 64149 63577 63453 380112 379135 378174 374599
69113 69359 68571 68310 380201 380765 380899 378550
70331 70154 69698 69477 377268 379064 376187 374426
67563 67664 67138 66902 381510 380464 379248 377567
67014 66600 66338 66355 381963 382015 380912 378367
64863 65123 64638 64471 393617 393075 392315 389680
63735 63483 63227 63068 385478 380359 382212 380152
70256 69831 69195 69092 387948 388060 386013 383928
50 10 89599 88942 88031 87683
83612 84549 83624 83535
81655 81338 80609 80365
87924 88014 87053 86934
88826 87801 87263 86865
88394 88269 87255 86969
90686 89984 89259 89304
88595 88281 87192 87316
86975 86995 86102 86213
89470 89238 88631 88534
50 20 127348 126962 128622 126315
121208 121098 122173 119502
118051 117524 118719 116910
123061 122807 123028 121031
119920 119221 121202 118914
122369 122262 123217 121087
125609 125351 125586 123340
124543 124374 125714 123005
124059 123646 124932 122203
126582 125767 126311 124785

12 G. Ribeiro Filho, M. S. Nagano, L. A. N. Lorena
Table 2. Success Rate (a) and Average Relative Deviation (b)
n m M — MMAS PACO PSOyns ECS — FS
20 5 20% 20 100 100
0.1975° 0.4544 0.0000 0.0000
20 10 60 20 90 100
0.0492 0.3235 0.0021 0.0000
20 20 20 20 0 100
0.1195 0.1892 2.8278 0.0000
50 5 0 0 10 90
1.1302 0.9450 0.2452 0.0026
50 10 0 0 30 70
1.4196 1.1569 0.1841 0.0322
50 20 0 0 0 100
1.2852 0.9780 1.8421 0.0000
100 5 0 0 30 70
0.8733 0.9921 0.1638 0.0104
100 10 0 0 10 90
1.2714 0.9834 0.2189 0.0186
100 20 0 0 0 100
1.0678 0.8361 0.6627 0.0000
References
1. Ahmadi, R. H. and Bagchi, U.: Improved lower bounds for minimizing the sum

10.

11.

12.

of completion times of n jobs over m machines. Furopean Journal of Operational
Research. 44 (1990) 331-336

. Allahverdi, A. and Aldowaisan, T.: New heuristics to minimize total completion

time in m-machine flowshops. International Journal of Production Economics. 77
71-83

Bean, J. C.: Genetic algorithm and random keys for sequencing and optimization.
ORSA Journal on Computing. 6 (1994) 154-160

. Campbell, H. G., Dudek, R. A. and Smith, M. L.: A heuristic algorithm for n-job,

m-machine sequencing problem. Management Science. 16 (1970) 630-637
Cotta, C., Troya, J. M.: Genetic Forma Recombination in Permutation Flowshop
Problems. Evolutionary Computation. 6 (1998) 25-44

. Cotta, C., Fernandez, A. J.: Memetic Algorithms in Planning, Scheduling and

Timetabling. Evolutionary Schedulling. Springer-Verlag (2006) 1-30

. Framinan J. M., Leisten, R. and Ruiz-Usano R.: Comparison of heuristics for flow-

time minimisation in permutation flowshops. Computer and Operations Research.
32 (2005) 1237-1254

. Framinan, J. M. and Leisten, R.: An efficient constructive heuristic for flowtime

minimisation in permutation flow shop. OMEGA. 31 (2003) 311-317

. Garey, M. R., Johnson, D. S. and Sethi, R.: The Complexity of flowshop and

jobshop scheduling. Mathematics of Operations Research. 1 (1976) 117-129
Glover, F.: Tabu search and adaptive memory programing: Advances, applica-
tions and challenges. In: Interfaces in Computer Science and Operations Research.
Kluwer. (1996) 1-75

Gupta, J. N. D.: Heuristic algorithms for multistage flowshop scheduling problem.
AIIE Transactions. 4 (1972) 11-18

Ho, J. C.: Flowshop sequencing with mean flowtime objective. European Journal
of Operational Research. 81 (1995) 571-578

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Hybrid Metaheuristic for Permutational Flow Shop 13

Kleeman, M. P. and Lamont, G. B.: Scheduling of flow-shop, job-shop, and com-
bined scheduling problems using MOEAs with fixed and variable length chromo-
somes. Evolutionary Schedulling. Springer-Verlag (2006) 49-100

Li, X., Wang, Q. and Wu, C.: Efficient composite heuristics for total flow-
time minimization in permutation flow shops. Omega. (2006) doi: 10.1016-
j-omega.2006.11.003

Liu, J. and Reeves C. R.: Constructive and composite heuristic solutions to the
P//>" C; scheduling problem. European Journal of Operational Research. 132
(2001) 439-452

Merkle, D. and Middendorf, M.: An ant algorithm with a new pheromone evalua-
tion rule for total tardiness problems. In: Lecture Notes in Computer Science, Vol.
1803. Springer-Verlag, Berlin (2000) 287-296

Miyazaki, S., Nishiyama, N. and Hashimoto, F.: An adjacent pairwise approach to
the mean flowtime scheduling problem. Journal of the Operations Research Society
of Japan. 21 (1978) 287-299

Nagano, M. S. and Mocecellin, J. V.: Reducing mean flow time in permutation
flow shop. Journal of the Operational Research Society (2007) doi: 10.1057/pal-
grave.jors.2602395

Nawaz, M., Enscore, E. E. and Ham, I.: A heuristic algorithm for the m-machine,
n-job flow-shop sequencing problem. OMEGA, 11 (1983) 91-95

Oliveira, A. C. M. and Lorena, L. A. N.: Detecting promising areas by evolutionary
clustering search. In: Advances in Artificial Intelligence, Bazzan, A.L.C. and Labidi,
S. (eds) Springer Lecture Notes in Artificial Intelligence. (2004) 385-394

Oliveira, A. C. M. and Lorena, L. A. N.: Hybrid evolutionary algorithms and
clustering search. In: Springer SCI Series, Crina Grosan, Ajith Abraham and Hisao
Ishibuchi (eds) (2007) acepted (http://www.lac.inpe.br/ lorena/alexandre/HEA-
07.pdf)

Rajendran, C. and Chaudhuri, D.: An efficient heuristic approach to the scheduling
of jobs in a flowshop. European Journal of Operational Research. 61 (1991) 318-
325

Rajendran, C.: Heuristic algorithm for scheduling in a flowshop to minimise total
flowtime. International Journal Production Economics. 29 (1993) 65-73
Rajendran, C. and Ziegler, H.: An efficient heuristic for scheduling in a flowshop
to minimize total weighted flowtime of jobs. European Journal of Operational
Research. 103 (1997) 129-138

Rajendran, C. and Ziegler H.: Ant-colony algorithms for permutation flowshop
scheduling to minimize makespan/total flowtime of jobs. European Journal of Op-
erational Research. 155 (2004) 426-438

Rinnooy Kan, A. H. G.: Machine Scheduling Problems: Classification, Complexity,
and Computations. The Hahue: Nijhoff (1976)

Syswerda, G.: Uniform crossover in genetic algorithms. In: International Conference
on Genetic Algorithms (ICGA). Virginia, USA, (1989) 2-9

Stutzle, T.: Applying iterated local search to the permutation flowshop problem.
Technical Report, AIDA-98-04, Darmstad University of Technology, Computer Sci-
ence Department, Intelletics Group, Darmstad, Germany. (1998)

Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Op-
erational Research. 64 (1993) 278-285

Tasgetiren, M. F., Liang, Y. C., Sevkli, M. and Gencyilmaz, G.: A particle swarm
optimization algorithm for makespan and total flowtime minimization in the per-
mutation flowshop sequencing problem. European Journal of Operational Re-
search. 177 (2007) 1930-1947

14

31.

32.

33.

G. Ribeiro Filho, M. S. Nagano, L. A. N. Lorena

Wang, C., Chu, C. and Proth, J. M.: Heuristic approaches for n/m/F/ Ci scheduling
problems. European Journal of Operational Research. 96 (1997) 636-644
Watson, J. P., Barbulescu, L., Whitley L. D. and Howe, A. E.: Contrasting struc-
tured and random permutation flowshop scheduling problems: Search space topol-
ogy and algorithm performance. ORSA Journal of Computing. 14 (2002) 98-123
Woo, D. S. and Yim H. S.: A heuristic algorithm for mean flowtime objective in
flowshop scheduling. Computers and Operations Research. 25 (1998) 175-182

