
Hybrid Evolutionary Algorithm

for Flowtime Minimisation in

No-Wait Flowshop Scheduling

Geraldo Ribeiro Filho1, Marcelo Seido Nagano2, and Luiz Antonio Nogueira
Lorena3

1 Faculdade Bandeirantes de Educação Superior
R. José Correia Gonçalves, 57

08675-130, Suzano - SP - Brazil
geraldorf@uol.com.br

2 Escola de Engenharia de São Carlos - USP
Av. Trabalhador São-Carlense, 400
13566-590, São Carlos - SP - Brazil

drnagano@usp.br
3 Instituto Nacional de Pesquisas Espaciais - INPE/LAC

Av. dos Astronautas, 1758
12227-010, São José dos Campos - SP - Brazil

lorena@lac.inpe.br

Abstract. This research presents a novel approach to solve m-machine
no-wait flowshop scheduling problem. A continuous flowshop problem
with total flowtime as criterion is considered applying a hybrid evolution-
ary algorithm. The performance of the proposed method is evaluated and
the results are compared with the best known in the literature. Exper-
imental tests show the superiority of the evolutionary hybrid regarding
the solution quality.

1 Introduction

This paper considers the m-machine no-wait flowshop scheduling problem. In a
no-wait flowshop, the operation of each job has to be processed without interrup-
tions between consecutive machines, i.e., when necessary, the start of a job on a
given machine must be delayed so that the completion of the operation coincides
with the beginning of the operation on the following machine. Applications of
no-wait flowshops can be found in many industries. For example, in steel facto-
ries, the heated metal continuously goes through a sequence of operations before
it is allowed to cool in order to prevent defects in the composition of the steel.
A second example is a plastic product that requires a series of processes to im-
mediately follow one another in order to prevent degradation. Similar situations
arise in other process industries such as the chemical and pharmaceutical. Hall
and Sriskandarajah [1] give in their survey paper a detailed presentation of the
applications and research on this problem and indicate that the problem with
the objective of total or mean completion time is NP-Complete in the strong



sense even for the two-machine case. Considering that flowtime or completion
time of a job is the same when the job is ready for processing at time zero and
that minimizing total or mean completion time are equivalent criteria, some of
the works on the no-wait problem with the objective of minimizing any of these
criteria include Adiri and Pohoryles [2], Rajendran and Chaudhuri [3], Van der
Veen and Van Dal [4], Chen et al. [5], Aldowaisan and Allahverdi [6], Aldowaisan
[7], and Allahverdi and Aldowaisan [8].

Chen et al. [5] later develop a genetic algorithm and compare it with the
heuristics of Rajendran and Chaudhuri [3]. Aldowaisan and Allahverdi [9] pro-
posed six heuristics for the no-wait flowshop with the objective of minimizing
the total completion time, which perform better than the heuristics of Rajen-
dran and Chaudhuri [3] and Chen et al. [5]. Aldowaisan and Allahverdi [10]
proposed simulated annealing (SA) and GA-based heuristics for the no-wait
flowshop scheduling problem with the makespan criterion by incorporating a
modified Nawaz-Enscore-Ham (NEH) heuristic (see Nawaz et al. [11]), based on
a new insertion technique and pairwise procedure.

Fink and Voβ [12] presented some construction methods and metaheuristics
for the no-wait flowshop scheduling problem with the total flowtime criterion.
Construction methods presented were the NN, the Chins, and the Pilot heuristics
whereas metaheuristics investigated were steepest descent (SD), iterated steep-
est descent (ISD), SA, and TS algorithms. See Fink and Voβ [12] for the details
of construction methods and metaheuristics. The application of above heuristics
for the no-wait flowshop scheduling problem were based on HotFrame, a heuris-
tic optimization tool developed by Fink and Voβ [13]. All heuristics have been
applied to the benchmark suite of Taillard [14], originally generated for the un-
restricted permutation flowshop sequencing problem. In addition, Fink and Voβ
[12] provided a detailed analysis of construction methods, different neighborhood
structures embedded in SD, ISD, SA and TS algorithms. According to results,
SA and reactive tabu search (RTS) algorithms generated better results with a
1000s CPU time in connection with shift (insert) neighborhood on the basis of
initial solutions provided by Chins and Pilot-10 heuristics.

Recently Pan Q-K., et al. [15] presented a discrete particle swarm opti-
mization (DPSO) to solve the no-wait flowshop scheduling problem with both
makespan and total flowtime criteria. The main contribution of this study is
due to the fact that particles are represented as discrete job permutations and
a new position update method is developed based on the discrete domain. In
addition, the DPSO algorithm is hybridized with the variable neighborhood de-
scent (VND) algorithm to further improve the solution quality. Several speed-up
methods are proposed for both the swap and insert neighborhood structures. The
DPSO algorithm is applied to both 110 benchmark instances of Taillard [14] by
treating them as the no-wait flowshop problem instances with the total flowtime
criterion, and to 31 benchmark instances provided by Carlier [16], Heller [17],
and Reeves [18] for the makespan criterion. For the makespan criterion, the so-
lution quality is evaluated according to the reference makespans generated by
Rajendran [19] whereas for the total flowtime criterion, it is evaluated with the



optimal solutions, lower bounds and best known solutions provided by Fink and
Voβ [12]. The computational results show that the DPSO algorithm generated
either competitive or better results than those reported in the literature. Ulti-
mately, 74 out of 80 best known solutions provided by Fink and Voβ [12] were
improved by the VND version of the DPSO algorithm. Based on the literature
examination we have made, the aforementioned metaheuristic presented by Pan
Q-K., et al. [15] yields the best solutions for total flowtime minimization in a
permutation no-wait flowshop. In this paper, we address the generic m-machine
no-wait flowshop problem with the objective of minimizing total flowtime. We
propose a new Hybrid Evolutionary metaheuristic Algorithm and compare with
the heuristic of Pan Q-K., et al. [15].

2 Evolutionay Heuristic

We have used in this work a Evolutionary Heuristics (EH) based on classic Ge-
netic Algorithms. The chromosome representation used in EH was a n positions
array, were each position indicates a task in the solution schedule. The population
size was fixed in 200 individuals empirically, to make room for good individuals
in the initial population altogether with randomly generated individuals to give
some degree of diversification.

As the quality of the individual in the initial population has great importance
in the evolutionary strategies, we have tried to create such quality individuals
with a variation of the heuristic called NEH presented by Nawaz et al. [11]. The
original form of NEH initially sorts a set of n tasks according to non-descending
values of the sum of task processing times by all machines. The two first tasks
in the sorted sequence are scheduled to minimize the partial flow time. The
remaining tasks are then sequentially inserted into the schedule in the position
that minimizes the partial flow time. In the variation used in this work, after
the sort, the first two tasks to be scheduled were randomly taken. The very first
individual inserted into the population was generated by NEH, the variation of
NEH was used to generate other individuals in a number given by

min

(

n ∗ (n − 1)

4
,
200

2

)

, (1)

and the remain part of the initial population was filled with randomly generated
schedules.

The evaluation of the individuals was made by the minimization of the to-
tal flow time for no-wait flowshop. The individual insertion routine kept the
population sorted, and the best individual, the one with the lowest total flow
time, occupied the first position in the population. The insertion routine was
also responsible for maintain only one copy of each individual in the population.

Twenty five new individuals were created by iteration, and possibly inserted
into the population. The stop condition used was the maximum of 200 iterations
or 20 consecutive iterations with no new individuals being inserted. All these
parameters had its values chosen empirically as result of tests.



A new individual generation was made by randomly selecting two parents,
one from the best 20% of the population, called the base parent, and the other
from the entire population, called the guide parent. A crossover process known
as Block Order Crossover (BOX), presented by Syswerda [20], was applied to
both parents, generating a single offspring by copying blocks of genes from the
parents. In this work the offspring was generated with 70% of its genes coming
from the base parent. Several other recombination operators are studied and
empirically evaluated by Cotta and Troya [21]. Investigation regarding position-
oriented recombination operators is also possible in further studies.

After the crossover, the offspring had a probability of 70% to be improved
by a local search procedure called LS1, shown in Figure 1. This procedure used
two neighborhood types: permutation and insertion. The permutation neigh-
borhood around an individual was obtained by swapping every possible pair of
chromosome genes, producing n ∗ (n − 1)/2 different individuals. The insertion
neighborhood was obtained by removing every gene from its position, and insert-
ing it in each other position in the chromosome, producing n ∗ (n − 1) different
individuals. Both, the improvement probability and the number of genes coming
from the base parent to the offspring were parameters which values were taken
after several tests.

Procedure LS1(current_solution)

Begin

cs = current_solution;

stop = false;

While (stop == false) do Begin

P = Permutation_neighborhood(cs);

sp = First s in P that eval(s) < eval(cs), or eval(s) < eval(t) for all t in P;

I = Insertion_neighborhood(cs);

si = First s in I that eval(s) < eval(cs), or eval(s) < eval(t) for all t in I;

If (eval(sp) < min(eval(si), eval(cs))) then

cs = sp;

else

If (eval(si) < min(eval(sp), eval(cs))) then

cs = si;

else

stop = true;

End;

Return cs;

End

Fig. 1. Pseudo-code for the LS1 Local Search Procedure

The new individual was then inserted into the population in the position
relative to its evaluation, shifting ahead the subsequent part of the population,
and therefore removing the last, and worst, individual.

At the end of the EH iterations, the very first individual in the population
was considered as the best solution found so far.



To evaluate the EH, tests were made using the first Taillard [14] instances
considered as no-wait flowshop, with n=20 tasks and m=5, 10 and 20 machines.
The code was written in C language and ran in a Pentium IV, 3.0 GHz, 1Gb
RAM computer. The EH ran 10 times for each instance and the EH has obtained
exactly the same as best solution values found so far, compared with the work
of Fink and Voβ [12] and Pan et al. [15].

The preliminary tests with the Taillard next instances, with 50 and 100 tasks,
were showing not so promising results. Therefore, we have adapted the EH to a
hybrid form using the Cluster Search (CS) algorithm, following described.

3 Clustering Search

The metaheuristic Clustering Search (CS), proposed by Oliveira and Lorena
[22, 23], consists of a solution clustering process to detect supposedly promising
regions in the search space. The objective of the detection of these regions as
soon as possible is to adapt the search strategy. A region can be seen as a search
subspace defined by a neighborhood relation.

The CS has an iterative clustering process, simultaneously executed with
a heuristic, and tries to identify solution clusters that deserve special interest.
The regions defined by these clusters must be explored, as soon as they are
detected, by problem specific local search procedures. The expected result of
more rational use of local search is convergence improvement associated with
reduction of computational effort.

CS tries to locate promising regions by using clusters to represent these
regions. A cluster is defined by a triple G = (C, r, β) where C, r and β are,
respectively, the center, the radius of a search region around the center, and a
search strategy associated with the cluster.

The center C is a solution that represents the cluster, identify its location
in the search space, and can be changed along the iterative process. Initially
the centers can be obtained randomly, and progressively tend to move to more
promising points in the search space. The radius r defines the maximum distance
from the center to consider a solution being inside the cluster. For example, the
radius r could be defined as the number moves to change a solution into another.
The CS admits a solution to be inside of more than one cluster. The strategy β
is a procedure to intensify the search, in which existing solutions interact with
each other to create new ones.

The CS consists of four components, conceptually independent, with different
attributions: a metaheuristic (ME), an iterative clustering process (IC), a cluster
analyzer (CA), and a local optimization algorithm (LO).

The ME component works as a full time iterative solution generator. The
algorithm is independently executed from the other CS components, and must
be able to continuously generate solutions for the clustering process. Simultane-
ously, the clusters are maintained as containers for these solutions. This process
works as a loop in which solutions are generated along the iterations.



The objective of the IC component is to associate similar solutions to form
a cluster, keeping a representative one of them as the cluster center. The IC is
implemented as an online process where the clusters are feed with the solutions
produced by the ME. A maximum number of clusters is previously defined to
avoid unlimited cluster generation. A distance metric must be defined also pre-
viously to evaluate solutions similarity for the clustering process. Each solution
received by IC is inserted into the cluster having the center most similar to it,
causing a perturbation in this center. This perturbation is called assimilation
and consists of the center update according to the inserted solution.

The CA component provides an analysis of each cluster, at regular time
intervals, indicating probable promising clusters. The so called cluster density λi

measures the i-th cluster activity. For simplicity, λi can be the cluster’s number
of assimilated solutions. When λi reach some threshold, meaning that ME has
produced a predominant information model, the cluster must be more intensively
investigated to accelerate its convergence to better search space regions. CA is
also responsible for the removal of low density clusters, allowing new and better
clusters to be created, while preserving the most active clusters. The clusters
removal does not interfere with the set of solutions being produced by ME, as
they are kept in a separate structure.

Finally, the LO component is a local search module that provides more inten-
sive exploration of promising regions represented by active clusters. This process
runs after CA has determined a highly active cluster. The local search corre-
sponds to the β element that defines the cluster and is a problem specific local
search procedure.

4 Evolutionary Clustering Search for the No-Wait Flow

Shop Problem

This research has used a metaheuristic called Evolutionary Clustering Search
(ECS) proposed by Oliveira and Lorena [22, 23] that combines Evolutionary
Heuristics (EH) and Clustering Search, and has originally applied it to the No-
Wait Permutation Flow Shop problem. The ECS uses an EH to implement the
ME component of the CS and generate solutions that allow the exploration of
promising regions. A pseudo-code representation of the ECS for the No-Wait
Flowshop problem is shown in Figure 2.

As ECS has presented good performance in previous applications, and con-
sidering the accelerated convergence provided by CS when compared with pure,
non hybrid, algorithms, the aim of this work was to attempt to beat the best
results recently produced and found in the literature, even with larger computer
times, characteristic of evolutionary processes. Seeking originality, this was an-
other reason to apply CS in this research.

The Evolutionary Clustering Search for No-Wait Flow Shop (ECS-NWFS)
presented in this work has used the EH presented in Section 2 with some different
parameters values. The population was fixed in 500 individuals to make room for
more individuals generated by the NEH variation with larger number of tasks.



Procedure ECS-NWFS()

Begin

Initialize population P;

Initialize clusters set C;

While (stop condition == false) do Begin

While (i < new_individuals) do Begin

parent1 = Selected from best 40% of P;

parent2 = Selected from the whole P;

offspring = Crossover(parent1, parent2);

Local_Search_LS1(offspring) with 60% probability;

If (Insert_into_P(offspring))

Assimilate_or_create_cluster(offspring, C);

i = i + 1;

End;

For each cluster c in C

If (High_assimilation(c))

Local_Search_LS2(c);

End;

End;

Fig. 2. Pseudo-code for the ECS algorithm

Therefore, the number of such individuals was given by Equation 1 adapted to
the new population size. At each iteration, 50 new individuals were generated and
possibly inserted into the population. The stop condition used was a maximum
of 500 iterations or 20 consecutive iterations with no insertions. New individuals
generation was made the same way, using base and guide parents with BOX
crossover. All other parameter were kept the same and these new values were
obtained empirically with several tests.

A cluster set initialization process was created to take advantage of the good
individuals in the EH initial population. This routine scanned the population,
from the best individual to the worst, creating new clusters or assimilating the
individuals into clusters already created. A new cluster was created when the
distance from the individual to the center of any cluster was larger than r =
0.85 ∗ n, and the individual was used to represent the center of the new cluster.
Otherwise, the individual was assimilated by the cluster with the closest center.
The distance measure from an individual to the cluster center was taken as the
number of swaps necessary to transform the individual into the cluster center.
Starting from the very first, each element of the individual was compared to
its equivalent in the cluster center, at the same position. When non coincident
elements were found the rest of the individual chromosome was scanned to find
the same element found in the cluster center, and make a swap. At the end,
the individual was identical to the cluster center, and the number of swaps was
considered as a distance measure. The clusters initialization process ended when
the whole population was scanned or when a maximum of 450 clusters were
created. The cluster radius and the maximum number of clusters were chosen
after several tests.

The assimilation of an individual by a cluster was based on the Path Relinking
procedure presented by Glover [24]. Starting from the individual chromosome,



successive swaps were made until the chromosome became identical to the cluster
center. The pair of genes chosen to swap was the one that more reduced, or less
increased, the chromosome total flow time. At each swap the new chromosome
configuration was evaluated. At the end of the transformation, the cluster center
was moved to (replaced by) the individual, or the intermediary chromosome, that
has the best evaluation better than the current center. If no such improvement
was possible, the cluster center remains the same.

The successfully inserted individuals were then processed by the IC compo-
nent of ECS-NWFS. This procedure tried to find the cluster having the closest
center and of which radius r the individual was within. When such cluster could
be found, the individual was assimilated, otherwise, a new cluster was created
having the individual as its center. New clusters were created only if the ECS-
NWFS had not reached the clusters limit. Tests have shown that the number of
cluster tends to increase at very first iterations, and slowly decrease as iterations
continue and the ECS removes the less active clusters.

After the generation of each new individual by the EH, its improvement by
LS1, and the insertion into the population, the ECS-NWFS executed its cluster
analysis procedure, with two tasks: remove the clusters that had no assimilations
in the last 5 iterations, and take every cluster that had any assimilation in the
current iteration and ran it through a second local optimization procedure, called
LS2 and shown in Figure 3.

Procedure LS2(current_solution)

Begin

cs = current_solution;

stop = false;

While (stop == false) do Begin

I = Insertion_neighborhood(cs);

si = First s in I that eval(s) < eval(cs), or eval(s) < eval(t) for all t in I;

If (eval(si) < eval(cs)) then Begin

cs = si;

P = Permutation_neighborhood(cs);

sp = First s in P that eval(s) < eval(cs), or eval(s) < eval(t) for all t in P;

If (eval(sp) < eval(cs)) then

cs = sp;

End else Begin

Pnh = Permutation_neighborhood(cs);

sp = Scan Pnh until sp is better than cs, or sp is the best in Pnh;

If (eval(sp) < eval(cs))

cs = sp;

else

stop = true;

End;

End;

Return cs;

End

Fig. 3. Pseudo-code for the LS2 Local Search Procedure



Along the ECS-NWFS processing the best cluster was kept saved. At the
end of the execution, the center of the best cluster found so far was taken as the
final solution produced by the algorithm.

5 Computational Experiments with ECS-NWFS

The ECS-NWFS ran 10 times for each instance and Table 1 shows that, except
by one single instance, the algorithm has obtained better results than the best
found by Fink and Voβ [12] and Pan et al. [15] for the Taillard instances with
n=50 and 100 tasks. The table also shows the average of 10 runs of the ECS-
NWFS, and the percentage gap between this average and the best solution. The
gap was very low, less than 0.5% for all test instances.

Table 1. New Best Known solution for Taillard’s benchmarks with n=50 tasks
and m=5 machines (Ta031-Ta040), m=10 (Ta041-Ta050), m=20 (Ta051-Ta060), and
n=100 tasks with m=5 machines (Ta061-Ta070), m=10 (Ta071-Ta080) and m=20
(Ta081-Ta090), considered as No-Wait Permutation Flow Shop, for Flowtime minimi-
sation

Inst F&V DPSO ECS Avg %Gap Inst F&V DPSO ECS Avg %Gap

Ta031 76016 75682 75668 75674.2 0.01 Ta061 308052 303750 303567 304736.3 0.39
Ta032 83403 82874 82874 83028.2 0.19 Ta062 302386 297672 296321 297472.3 0.39
Ta033 78282 78103 78103 78112.3 0.01 Ta063 295239 291782 290638 291406.2 0.26
Ta034 82737 82467 82359 82370.6 0.01 Ta064 278811 277093 274722 275266.1 0.20
Ta035 83901 83493 83476 83476.0 0.00 Ta065 292757 289554 288344 288766.4 0.15
Ta036 80924 80749 80671 80685.1 0.02 Ta066 290819 287055 285752 286502.3 0.26
Ta037 78791 78604 78604 78628.8 0.03 Ta067 300068 297731 296537 297383.7 0.29
Ta038 79007 78796 78672 78707.7 0.05 Ta068 291859 287754 285961 286890.1 0.32
Ta039 75842 75825 75639 75709.1 0.09 Ta069 307650 304131 303657 304119.4 0.15
Ta040 83829 83430 83430 83507.0 0.09 Ta070 301942 298119 296964 297683.6 0.24
Ta041 114398 114051 113908 113984.4 0.07 Ta071 412700 409715 407679 408079.3 0.10
Ta042 112725 112427 112180 112255.0 0.07 Ta072 394562 390417 389001 389884.5 0.23
Ta043 105433 105345 105345 105357.1 0.01 Ta073 405878 402274 402036 402483.7 0.11
Ta044 113540 113367 113201 113273.2 0.06 Ta074 422301 417733 417091 417545.9 0.11
Ta045 115441 115295 115295 115335.8 0.04 Ta075 400175 397049 395519 396701.0 0.30
Ta046 112645 112459 112459 112481.2 0.02 Ta076 391359 387398 386418 387696.8 0.33
Ta047 116560 116631 116444 116453.7 0.01 Ta077 394179 391057 390076 390798.6 0.19
Ta048 115056 115065 114945 114973.5 0.02 Ta078 402025 399214 397072 398109.4 0.26
Ta049 110482 110367 110367 110371.8 0.00 Ta079 416833 413701 411396 412792.1 0.34
Ta050 113462 113427 113427 113427.0 0.00 Ta080 410372 406206 406001 406311.1 0.08
Ta051 172845 172981 172740 172774.1 0.02 Ta081 562150 558199 556564 557322.9 0.14
Ta052 161092 160836 160739 160745.5 0.00 Ta082 563923 561305 559171 560357.8 0.21
Ta053 160213 160104 160104 160263.0 0.10 Ta083 562404 560530 558440 559562.1 0.20
Ta054 161557 161690 161492 161549.0 0.04 Ta084 562918 559690 557386 558275.3 0.16
Ta055 167640 167336 167081 167081.0 0.00 Ta085 556311 551388 550704 551675.1 0.18
Ta056 161784 161784 161460 161558.9 0.06 Ta086 562253 558356 557051 558196.7 0.21
Ta057 167233 167064 167098 167099.7 0.02 Ta087 574102 571680 568667 569486.6 0.14
Ta058 168100 167822 167822 168020.9 0.12 Ta088 578119 574269 572945 574158.1 0.21
Ta059 165292 165207 165207 165215.5 0.01 Ta089 564803 560710 557946 559497.0 0.28
Ta060 168386 168386 168386 168386.0 0.00 Ta090 572798 568927 566054 567688.8 0.29

The quality of the initial population individuals, allied to diversity, and the
performance of the local search routines, can be considered key factors for the
quality of the final solutions.



Processing times had a large variation from 48 seconds for an instance with
50 tasks, to 1 hour and 3 seconds for an instance with 100 tasks.

6 Conclusion

The main objective of this work was apply CS to the No-Wait Permutation Flow
Shop Scheduling Problem of original and inedited form. Experimental results
presented in the tables have shown that the EH had comparable, and the ECS-
NWFS method had superior performance compared with the best results found
in the literature for the considered test problems, using the in-process inventory
reduction, or minimization of the total flow time, as the performance measure.
The computational effort was acceptable for practical applications.

The classic optimization problem of task schedule in No-Wait Flow Shop has
been the object of intense research for decades. For practical applications this
problem may be considered already solved, although, because of its complexity it
still remains as a target for the search for heuristic and metaheuristic methods.

The research related in this paper was motivated by the above considerations,
and have tried to rescue the essential characteristics of metaheuristic methods,
balance between solution quality and computational efficiency, simplicity and
implementation easiness.

References

1. Hall, N.G., Sriskandarajah, C.: A survey of machine scheduling problems with
blocking and no-wait in process. Operations Research, 44 (1996) 510–525

2. Adiri I., Pohoryles D.: Flowshop/no-idle or no-wait scheduling to minimize the
sum of completion times. Naval Research Logistics Quarterly. 29 (1982) 495–504

3. Rajendran C., Chaudhuri D.: Heuristic algorithms for continuous flow-shop prob-
lem. Naval Research Logistics. 37 (1990) 695–705

4. Van der Veen, J.A.A., Van Dal, R.: Solvable cases of the no-wait flowshop schedul-
ing problem. Journal of the Operational Research Society. 42 (1991) 971–980

5. Chen C.L., Neppalli R.V., Aljaber N.: Genetic algorithms applied to the continuous
flow shop problem. Computers and Industrial Engineering. 30 (1996) 919–929

6. Aldowaisan T., Allahverdi A.: Total flowtime in no-wait flowshops with separated
setup times. Computers and Operations Research. 25 (1998) 757–65

7. Aldowaisan T.: A new heuristic and dominance relations for no-wait flowshops
with setups. Computers and Operations Research, 28 (2000) 563–584

8. Allahverdi A., Aldowaisan T.: No-wait and separate setup three-machine flowshop
with total completion time criterion. International Transactions in Operational
Research. 7 (2000) 245–264

9. Aldowaisan T., Allahverdi A.: New heuristics for m-machine no-wait flowshop to
minimize total completion time. Omega. 32(5) (2004) 345–352

10. Aldowaisan T., Allahverdi A.: New heuristics for no-wait flowshops to minimize
makespan. Computers and Operations Research. 30(8) (2003) 1219–1231

11. Nawaz, M., Enscore, E. E. and Ham, I.: A heuristic algorithm for the m-machine,
n-job flow-shop sequencing problem. OMEGA, 11 (1983) 91–95



12. Fink A., Voβ S.: Solving the continuous flow-shop scheduling problem by meta-
heuristics. European Journal of Operational Research. 151 (2003) 400-414

13. Fink A., Voβ S.: HotFrame: a heuristic optimization framework. In: Vo S., Woodruff
D., editors. Optimization software class libraries. Kluwer, Boston (2002) 81–154

14. Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Op-
erational Research. 64 (1993) 278–285

15. Pan Q.K., Tasgetiren M.F., Liang Y.C.: A discrete particle swarm optimization
algorithm for the no-wait flowshop scheduling problem. Computers and Operations
Research (2007) doi: 10.1016/j.cor.2006.12.030.

16. Carlier J.: Ordonnancements a contraintes disjonctives. RAIRO Recherche opera-
tionelle. 12 (1978) 333-351

17. Heller J. Some numerical experiments for an MxJ flow shop and its decision-
theoretical aspects. Operations Research. 8 (1960) 178–184

18. Reeves C.: A genetic algorithm for flowshop sequencing. Computers and Operations
Research. 22 (1995) 5–13

19. Rajendran C.: A no-wait flowshop scheduling heuristic to minimize makespan.
Journal of the Operational Research Society. 45 (1994) 472-479

20. Syswerda, G.: Uniform crossover in genetic algorithms. In: International Conference
on Genetic Algorithms (ICGA). Virginia, USA, (1989) 2–9

21. Cotta, C., Troya, J. M.: Genetic Forma Recombination in Permutation Flowshop
Problems. Evolutionary Computation. 6 (1998) 25–44

22. Oliveira, A. C. M. and Lorena, L. A. N.: Detecting promising areas by evolutionary
clustering search. In: Advances in Artificial Intelligence, Bazzan, A.L.C. and Labidi,
S. (eds) Springer Lecture Notes in Artificial Intelligence. (2004) 385–394

23. Oliveira, A. C. M. and Lorena, L. A. N.: Hybrid evolutionary algorithms and clus-
tering search. In: Crina Grosan,Ajith Abraham and Hisao Ishibuchi (eds) Hybrid
Evolutionary Systems - Studies in Computational Intelligence - Springer SCI Se-
ries. 75 (2007) 81–102

24. Glover, F.: Tabu search and adaptive memory programing: Advances, applica-
tions and challenges. In: Interfaces in Computer Science and Operations Research.
Kluwer. (1996) 1–75


