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Abstract 

The point-feature cartographic label placement problem (PFCLP) is an NP-hard problem which 

appears during the production of maps. The labels must be placed in predefined places avoiding 

overlaps and considering cartographic preferences. Due to its high complexity several heuristics 

have been presented searching for approximated solutions. This paper proposes a greedy 

randomized adaptive search procedure (GRASP) for the PFCLP that is based on its associated 

conflict graph. The computational results show that this metaheuristic is a good strategy for 

PFCLP, generating better solutions than all those reported in the literature in reasonable 

computational times. 
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1. Introduction  

 

The cartographic label placement problem is an important task in automated cartography and 

Geographical Information Systems (GIS). Labels convey information about objects (or features) 

in graphical displays like graphs, networks, diagrams, or cartographic maps (Wolff, 1999). Each 

feature that needs to be labeled has a number of positions where its label can be placed. However, 

it is essential that all labels must be placed without overlaps.  

 

This paper is concerned with the placement of labels for point features. The point-feature 

cartographic label placement problem (PFCLP) is the problem of placing text labels to point 

features on a map, graph or diagram in such a manner so as to maximize the legibility of the 

picture. Figure 1 shows an example of the PFCLP. Note that there are several obscured areas and 

consequently we cannot read some names. 

 

Figure 1 – An example of a map with some overlapping labels (see arrows) (Ribeiro and Lorena, 

2006) 

 

For each point there exists a set of possible label positions also known as a set of candidate 

positions and the objective is to find a combination of these candidate positions that produces the 

best legibility in a map. This set of potential label positions indicates their desirability also known 

as cartographic standardization (Christensen et al., 1995). Figure 2 shows a group of 8 candidate 

positions for a point, where the numbers indicate the cartographic preferences. Position number 1 

is the most preferred. 

 

Figure 2 – Set of eight candidate positions for a point (Christensen et al., 1995) 
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The PFCLP is an optimization problem shown to be NP-Hard (Formann and Wagner, 1991; 

Marks and Shieber, 1991). Thus, exact solution techniques are not usual and several heuristics 

and metaheuristics have been proposed. Some approaches consider a conflict graph generated by 

the problem presenting the following structure where candidate positions are associated to 

vertices and the potential overlaps (or conflicts) are associated to edges.  

 

Let N be the number of points that must be labeled and P the number of candidate positions for 

each point. G={V,E} is the corresponding conflict graph where V={v1, v2, …, vN*P} is the set of 

candidate positions and E={(vi, vj):i,j ∈V, i≠j}  the potential conflicts between candidate positions.  

 

Figure 3. Conflict graph for PFCLP. (a) Problem, (b) Conflict graph and (c) Optimal solution 

(Ribeiro and Lorena, 2006). 

 

Figure 3(b) shows the conflict graph generated from problem shown in Figure 3(a), and Figure 

3(c) shows the optimal solution for this problem. The proportion of conflict free labels assesses 

the quality of labeling (Ribeiro and Lorena, 2005; Yamamoto et al, 2002; Christensen et al, 

1995). So, considering the problem shown in Figure 3, the solution provided in Figure 3(c) has 

100% of conflict free labels.  

 

In this paper we consider a greedy randomized adaptive search procedure (GRASP) applied to 

the conflict graph associated to the PFCLP. GRASP is a metaheuristic for finding approximate 

solutions to combinatorial optimization problems (Resende and Ribeiro, 2003). It was first 

introduced by Feo and Resende (1989) in a paper describing a probabilistic heuristic for set 

covering problems.  
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GRASP is an iterative method that has two distinct phases. The first one is a constructive phase 

that blends greedy and random construction either by using greediness to build a restricted 

candidate list (RCL) and using randomness to select an element from the list, or by using 

randomness to build the list and using greediness for the selection (Resende and Ribeiro, 2003). 

The second phase is represented by a local search algorithm, exploring a neighborhood of the 

current solution provided by first phase.  The solution resulting from the local search becomes the 

new best solution if the current solution is improved. 

 

The GRASP implementation for PFCLP is tested upon instances proposed in the literature and 

the computational results were successful compared with the best ones reported.  

 

The paper is organized as follows. Next section presents a review about the PFCLP, followed by 

Section 3 that presents a brief review of the GRASP and describes the GRASP proposed for the 

PFCLP. Section 4 presents the computational results and Section 5 concludes with some future 

research directions. 

 

2. Literature Review 

 

This paper deals with label placement of point features but the literature reports feature problems 

involving lines and areas such as roads and states. See the map labeling bibliography (Wolff and 

Strijk, 2005) for further details. The typical input of the PFCLP is a discrete set of candidate 

positions for the points (see Figure 2).  

 

There are three different approaches for PFCLP in the literature. The first one searches the largest 

number of conflict free labels, even not labeling all points. This problem can be seen as a 
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Maximum Independent Set Problem (MISP) (Zoraster, 1990; Strijk et al., 2000). The second 

approach also searches the maximum number of conflict free labels, however in this case, all 

points must be labeled. This problem is known as Maximum Number of Conflict Free Labels 

Problem (MNCFLP) (Ribeiro and Lorena, 2005). This approach has been used by several 

researchers such as Christensen et al (1994; 1995), Verner et al (1997) and Yamamoto and 

Lorena (2005). The last approach, first introduced by Ribeiro and Lorena (2005; 2006), the 

Minimum Number of Conflicts Problem (MNCP) is considered, where all points must be labeled 

whereas the number of conflicts is minimized. 

 

On the other hand, there are some more general models, which allow the labels to move around 

their features. They are known as slider models (Klau and Mutzel, 2000; 2003). However, the 

model we consider does not take sliding into account. 

 

If the PFCLP is considered as a MISP, substantial research has been done in the literature, and 

different algorithms and techniques are presented. Zoraster (1986, 1990 and 1991) formulated 

mathematically the PFCLP with conflict constraints and if the points could not be labeled they 

are related to dummy candidate positions of high cost. Zoraster used a Lagrangean relaxation and 

obtained some computational results for small-scale data sets. Moreover, Zoraster (1997) used a 

Simulated Annealing algorithm for solving PFCLPs in petroleum industry. 

 

Strijk et al. (2000) proposed other mathematical formulations exploring some cut constraints. 

These cuts are based on cliques and appeared before in the works of Moon and Chaudhry (1984) 

and Murray and Church (1996). They applied and proposed several heuristics: Simulated 

Annealing, Diversified Neighborhood Search, k-opt and Tabu Search. The last one showed the 

better results for their instances.  
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The Maximum Number of Conflict Free Labels Problem (MNCFLP) was examined in several 

papers. Hirsch (1982) developed a Dynamic Algorithm of label repulsion, where labels in 

conflicts are moved trying to avoid a conflict. The algorithm defines repelling forces for 

overlapping labels and computes translation vectors for them. After translation, this process is 

repeated and hopefully, a labeling with few overlaps appears after a number of iterations. 

Christensen et al. (1994; 1995) proposed an Exhaustive Search Approach, alternating positions of 

the labels that were previously positioned. Christensen et al. (1995) also proposed a Greedy 

Algorithm and a Discrete Gradient Descent Algorithm but these algorithms have difficulty of 

escaping from local maximum. Verner et al. (1997) applied a Genetic Algorithm with mask such 

that if a label is in conflict the changing of positions are allowed by crossover operators. 

Yamamoto et al. (2002) proposed a Tabu Search algorithm that provides good results when 

compared with the literature. Schreyer and Raidl (2002) applied Ant Colony System but the 

results were not interesting when compared to the ones obtained by Yamamoto et al. (2002). 

Yamamoto and Lorena (2005) developed an exact algorithm for small instances of PFCLP and 

applied the Constructive Genetic Algorithm (CGA) proposed by Lorena and Furtado (2001), to a 

set of large-scale instances. The exact algorithm was applied to instances of 25 points and the 

CGA was applied to instances up to 1000 points. Recently, Yamamoto et al (2005) proposed an 

algorithm called by FALP that provided better results than CGA using the same set of instances 

proposed by Yamamoto et al. (2002). 

 

The PFCLP considered as a MISP or MNCFLP can generate large conflict graphs that become 

hard to deal with. Wagner et al. (2001) presented an approach to reduce the conflict graph 

provided by a PFCLP. They proposed three rules to reduce the size of the conflict graph without 
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altering the set of optimal solutions. Moreover, they combined these rules with a heuristic 

yielding near-optimal solutions to a set of instances. 

 

Considering now the PFCLP as a MNCP, Ribeiro and Lorena (2005; 2006) have proposed two 0-

1 integer linear programming models and a Lagrangean heuristic that have presented the best 

solutions in the literature for the instances proposed by Yamomoto et al (2002). The second 

formulation proposed by the authors has a compact number of constraints and is reproduced 

bellow. 
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Where: 

• N is the number of  points to be labeled and Pi is the set of candidate positions of point i; 

• xi,j is a binary variable such as i∈N and j∈Pi; 

• wi,j is the cartographic preference assigned to each candidate position. It allowed us to 

prioritize some candidate positions as shown in Figure 2; 

• Si,j is a set of index pairs (k,t):k>i of candidate positions such that xk,t has potential 

conflict with xi,j; 
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• Ci,j is a set with all points that contain candidate positions in conflict with the candidate 

position xi,j; and 

• yi,j,c is a conflict variable between the candidate position xi,j and the point c∈Ci,j:c>i . 

 

Constraint (2) ensures that each point must be labeled with one candidate position. Constraint (3) 

ensures that if vertices with potential conflicts are chosen to compose the solution, the object 

function described in Equation (1) will be penalized. And Equation (4) indicates that all variables 

in the model are binaries. 

 

3. GRASP for the PFCLP 

 

The GRASP (greedy randomized adaptive search procedure) is a multistart  iterative process of 

two phases: a constructive phase, in which a feasible solution is produced, and local search phase, 

in which a local optimum in the neighborhood of the solution is sought (Feo and Resende, 1995). 

These phases are repeated considering a maximum number of iterations or an alternative criterion 

to stop the iterative process.  Figure 4 shows the GRASP pseudo-code for a minimization 

problem. The value of the best solution is stored in f*  and  imax GRASP iterations are executed. 

 

Figure 4 – A basic GRASP for minimization problem (Resende and Ribeiro, 2005). 

 

Considering the pseudo-code described in Figure 4, the procedures 

GreedyRandomizedConstruction and LocalSearch must be defined using the available 

information about the problem to be solved. The feasible solution is iteratively constructed in the 

first phase, one element at a time. The choice of the next element to be added is determined by 
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ordering all candidate elements in a candidate list with respect to its contribution to the objective 

function. The list of best candidates is called Restricted Candidate List (RCL).  

 

There are several practical applications using GRASP. Bard and Feo (1989) described a method 

for efficiently sequencing the cutting operations associated with manufacture of discrete parts. 

The authors use GRASP to provide a lower bound in a lagrangean relaxation of the problem. Feo 

et al (1991) used GRASP for a difficult single machine scheduling problem. Laguna et al (1991) 

combined GRASP and Tabu Search for solving just-in-time scheduling in parallel machines. 

Resende and Resende (1997) described a GRASP for routing permanent virtual circuits (PVC) 

for frame relay in telecommunications systems. Their objective was to minimize PVC delays 

while balancing trunk loads. GRASP was also applied in a complex vehicle-scheduling problem 

with tight time windows and with additional constraints providing interesting results (Atkinson, 

1998). 

 

GRASP has been also applied in theoretical applications. Feo et al (1994) applied it for 

approximately solving the maximum independent set problem obtaining good results. Resende 

and Ribeiro (1997) proposed a GRASP for graph planarization. Abello et al (1999) applied a 

GRASP for solving the maximum clique problem and maximum quasi-clique problem. They 

discuss some graph decomposition schemes that breaks up the original problem into several 

pieces of manageable dimensions. In this work, the construction phase uses vertex degrees as a 

guide for construction and a change heuristic for the local search. 

 

There are also GRASP enhancements in literature. The reactive GRASP, proposed by Prais and 

Ribeiro (2000), is a GRASP that does not use a fixed value for the basic parameter defining the 

RCL length during the constructive phase. Reactive GRASP self-adjusts the RCL according to 
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the quality of the solutions previously found. Laguna and Martí (1999) incorporated to GRASP a 

path relinking strategy proposed by Glover (1996) searching for improved outcomes. Recently, 

Resende and Ribeiro (2005) presented several advances and applications for the GRASP with 

path relinking. For a good review about GRASP and its applications, see Festa and Resende 

(2002), Aiex et al (2003) and Resende and Ribeiro (2003). 

 

The GRASP for the PFCLP proposed in this paper deals with the MNCP approach proposed by 

Ribeiro and Lorena (2005) minimizing the number of conflicts in the corresponding conflict 

graph. 

 

The constructive phase: 

Considering the PFCLP represented by a conflict graph, the constructive heuristic is based in the 

vertex degrees, as done in some works of the literature (Abello et al., 1999; Feo et al., 1994). The 

degree of a vertex is the number of incident edges in that vertex so it represents a measure of 

labels in conflict.  

 

Let G=(V,E) be a conflict graph as described in Section 1 where V is a set of vertices (candidate 

positions) and E is a set of edges (conflicts between vertices), and let RCL_Length be the size of 

the restricted candidate list (RCL). Thus, the pseudo-code of the constructive phase can be 

written as shown in Figure 5. 

 

Figure 5 – A constructive heuristic for the PFCLP. 

 

The method CreateRCL is responsible to create the restricted candidate list. First, considering the 

current conflict graph, it computes a weight for each vertex based on degrees, cartographic 
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preferences and potential conflicts with the current solution Sol, and sorts the vertices in an 

increase order. After that, only the first RCL_Length are considered as restricted. This list is 

created using the current graph because the graph is reduced at each iteration of the procedure 

shown in Figure 5. When the procedure selects an element to enter in the current solution, 

actually this element is a candidate position of some point i and a method to reduce the current 

graph must be applied. This method, called ReduceActiveVertices, receives the list of current 

vertices represented by V_Greedy and the selected candidate position v, and removes from 

V_Greedy all candidate positions of the point i that has v as a candidate position. 

 

When the graph is reduced, the remaining graph still presents some vertices that are in potential 

conflict with the current solution Sol. Thus, to order the candidate position and to select the 

restricted list, the method CreateRCL calculates the weight of each vertex considering the 

following equation: 

 

Weight(x) = CartographicPreference(x) + Degree(x) +M* PotentialConflicts(Sol,x)  (5) 

 

Where: 

• CartographicPreference(x) returns the cartographic preference of the vertex x; 

• Degree(x) returns the degree of the vertex x considering the current conflict graph; 

• PotentialConflicts(Sol, x) returns the number of the potential conflicts between x and the 

current solution Sol; and 

• M is a coefficient used to penalize the vertex x if it presents potential conflicts with the 

current solution Sol. 
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The function represented by Equation (5) ensures that if a vertex x has high degree and several 

potential conflicts with the current solution Sol, it will appear at the end of the list when the 

vertices are sorted, avoiding conflicts. 

 

Figure 6 shows two iterations of a theoretical example where all cartographic preferences are 

equal to one. For this example, RCL_Length = 4 and M =10 in Equation (5). Note that at first 

iteration represented in Figure 6(a), the randomized selected vertex was v1 and consequently all 

allowed candidate positions of the point are removed from the conflict graph. In second iteration 

(see Figure 6(b)), the conflict graph is reduced and all vertex degrees are recalculated. Besides, 

the vertex v13 has a potential conflict with the vertex v1 selected at iteration one. Thus, this vertex 

is penalized appearing at the end of sorted list, consequently reducing its chances of being 

selected.  

 

Figure 6 – An example of the constructive heuristic for the PFCLP. 

 

This process is repeated until a feasible solution is provided. If the considered RCL length in 

some iteration is greater than the remaining vertices in the reduced graph, the algorithm must 

consider the total of these remaining vertices as RCL length.  

 

The local search phase: 

The second phase of the GRASP for the PFCLP uses a local search heuristic that tries to change a 

candidate position assigned for each point i in the constructive heuristic to another valid position 

j∈ Pi, searching for a solution that reduces the objective function described in Equation (1). The 

proposed local search heuristic is shown in Figure 7. 
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The procedure shown in Figure 7 can be resumed as follows: Line 11 tests for each point another 

valid candidate position. Lines 9 to 18 perform the storage of the best change and after check all 

possible changes, the best one is performed (see lines 19 and 20).  While the algorithm finds a 

new solution, the search is repeated in the neighborhood of this new solution (line 5). Take a 

feasible solution tested with the same objective function of the best solution found (line 12) if this 

new solution increases the number of conflict free labels. 

 

Figure 7 – Local search heuristic. 

 

The proposed GRASP is very simple to implement but it is dependent on the number of iterations 

and the size of restricted candidate list. Thus, to define the best values for these parameters, it 

was applied over standard sets of randomly generated points proposed by Yamamoto et al (2002) 

available at http://www.lac.inpe.br/~lorena/instancias.html. The computational results presented 

in next section show that the GRASP produced better results than those reported in the literature. 

 

4. Computational Results 

 

The GRASP was coded in C++ running on a Pentium IV 2.80 GHz processor and 512 MB of 

RAM memory. The instances proposed by Yamamoto and Lorena (2002) are composed of 

twenty five instances for each value for the number of points N.  As done by Zoraster (1990), 

Yamamoto et al (2002), Yamamoto and Lorena (2005) and Ribeiro and Lorena (2005), for all 

problems the cartographic preferences were not considered, i. e.,  the preferences are set  to 1 for 

all the candidate positions, being the number of those positions equal to 4. It thus allowed 

comparing of the GRASP results to the ones present in the literature.  
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After a number of initial experiments the maximum number of iterations (imax) was fixed in 100. 

With more iterations the results did not improved as expected. The size of the restricted candidate 

list was set in a range of 2 to 10, and the results are influenced significantly for each value in this 

range. Also, for greater RCL the solutions are not significantly improved.  

 

 Tables 1 to 4 report the main results found varying the RCL length and performing the GRASP 

10 times. In these tables, the first column indicates the number of points to be labeled and the 

next three columns are average results over 10 runs and these averages are calculated over the 

average results for twenty five instances for each number of points. Thus, the second column 

shows the average results over 10 runs for the number of remaining edges, followed by average 

results of the number of conflict labels and of the percentages of conflict free labels that is 

calculated as 100*


 −−−−
N

Labels Conflict of NumberN
. The fifth through seventh column present 

the best average solution provided by the GRASP among 10 runs. 

 

Note that the better results were found when considering 5 and 6 for the RCL length. However 

the computational times are not satisfactory. Considering only Tables 2 and 3, the computational 

times for the most difficult problems (with 750 and 1000 points) are varying from 40 to 112 

seconds. So, the GRASP approximately elapsed 2 minutes for solving the largest instances and 

for some applications, this time can be considered high. 

 

Table 1. Average results obtained with GRASP for RCL_Length = 2. 

  

Table 2. Average results obtained with GRASP for RCL_Length = 5. 
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Table 3. Average results obtained with GRASP for RCL_Length = 6. 

 

Table 4. Average results obtained with GRASP for RCL_Length = 10.  

 

Trying to decrease these computational times, the reducing technique proposed by Wagner et al 

(2001) was applied to the conflict graphs before starting our experiments. For all instances with 

100 and 250 points the technique produced considerable reductions but the performance did not 

repeated for the instances with 25, 750 and 1000 points. The GRASP results are shown in Tables 

5 to 8. These tables have the same columns presented in Table 1. 

 

Table 5. Average results obtained with GRASP for RCL_Length = 2 using the reduction 

proposed by Wagner et al (2001). 

  

Table 6. Average results obtained with GRASP for RCL_Length = 5 using the reduction 

proposed by Wagner et al (2001). 

  

Table 7. Average results obtained with GRASP for RCL_Length = 6 using the reduction 

proposed by Wagner et al (2001). 

 

Table 8. Average results obtained with GRASP for RCL_Length = 10 using the reduction 

proposed by Wagner et al (2001). 

 

Again the best results are found for RCL length 5 or 6. Overall, the quality of the solutions are 

improved and the computational times are reduced with the conflict graph reduction. Considering 
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Tables 6 and 7, for instances with 750 and 1000 points, the computational times varied from 5 to 

26 seconds against 40 and 112 without the reduction, respectively.  

 

Considering Tables 5 to 8 and the columns showing the results for average conflict free labels 

over 10 GRASP runs, for RCL_Length = 5, the GRASP produced better results for the instances 

with 750 points and for  RCL_Length = 6, it improved the instances with 25 and 1000 points. For 

others values for the RCL length the results are close to the best ones found.  

 

Figure 8 summarizes the average results shown at Tables 5 to 8. Note that the squares and 

triangles indicate that, respectively, the solutions provided by GRASP when RCL length are 5 

and 6 outperformed other results.  

 

Figure 8 – Comparison among proportion of conflict free label considering the average results 

over 10 GRASP runs and the reduction proposed by Wagner et al (2001). 

 

Now the best results found in this paper are compared to the best ones of the literature described 

in the works of Yamamoto and Lorena (2005) and Ribeiro and Lorena (2006). Table 9 reports the 

best average percentages of conflict free labels found using the GRASP proposed and the best 

results found in the literature. For this comparison, we used the results found with the reduced 

graphs and with RCL length defined as 5 and 6. Note that the approaches have different 

objectives, however the GRASP found better results to PFCLP than all those reported in the 

literature. The computational times are not compared since the computational tests were 

performed in different machines. 

 

Table 9. Comparison with the literature. 
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5. Conclusions 

 

This paper has presented a greedy randomized adaptive search procedure (GRASP) for the point-

feature cartographic label placement problem. GRASP is a metaheuristic that has been applied in 

several practical and theoretical applications. 

 

Considering an optimization point of view, the proposed GRASP presented better results than all 

reported in the literature using a reduction technique for conflict graphs. The GRASP results were 

better than well-known metaheuristics such as Simulated Annealing, Tabu Search and Genetic 

Algorithm. Besides, it improved the best-known solutions in the literature that were provided by 

a lagrangean relaxation. 

 

The research can be continued combining GRASP and path relinking techniques, during the 

GRASP iterations or in a post-optimization phase. However it is necessary to study the 

application of path relinking in the pool of elite solutions without significant increase in 

computational times. 
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Figure 1 – An example of a map with some overlapping labels (see arrows) (Ribeiro and Lorena, 

2006) 
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Figure 2 – Set of eight candidate positions for a point (Christensen et al., 1995)  
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Figure 3. Conflict graph for PFCLP. (a) Problem, (b) Conflict graph and (c) Optimal solution 

(Ribeiro and Lorena, 2006). 
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Figure 4 – A basic GRASP for minimization problem (Resende and Ribeiro, 2005). 

Data : Number of iterations i max 

Result : Solution x *  ∈ X 

1 f* ← ∞ 
2 For i=1,...,i max do 

3  x ← 
GreedyRandomizedConstruction() 
4  f(x) ← LocalSearch(x) 
5  If f(x) < f* Then 

6    f* ← f(x) 
7    x* ← x 
8  End If 
9 End For 
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Figure 5 – A constructive heuristic for the PFCLP. 

Procedure GreedyRandomizedConstruction() 
 
1 Sol ← {} 
2 V_Greedy ← V 
3 While V_Greedy ≠ {}  Do 
4  CreateRCL(RCL, V_Greedy, Sol) 
5  v ← ElementRandomizedSelection(RCL) 
6  Sol ← Sol ∪ v 
7  ReduceActiveVertices(V_Greedy, v) 
  End While 
 
8 Return Sol  



 

v1v2

v4v3

v9
v10

v12v11

v17v18

v20v19

v5v6

v8v7

v13v14

v16
v15

Removing the candidate positions: {1, 2, 3, 4}Sol= {1}1Selected vertex

1218141098431715131152019167621Sorted vertices

RCL

55765676867775567755Weight

00000000000000000000Potencial conflicts

44654565756664456644Degree

11111111111111111111Cartographic preference

2019181716151413121110987654321Vertices

M = 10 in Equation (5)

Removing the candidate positions: {1, 2, 3, 4}Sol= {1}1Selected vertex

1218141098431715131152019167621Sorted vertices

RCL

55765676867775567755Weight

00000000000000000000Potencial conflicts

44654565756664456644Degree

11111111111111111111Cartographic preference

2019181716151413121110987654321Vertices

M = 10 in Equation (5)

Initial Conflic Graph – First Iteration First Step – Construction Phase

v1

v9
v10

v12v11

v17v18

v20v19

v5v6

v8v7

v13v14

v16
v15

Reduced Conflic Graph – Second Iteration

Removing the candidate positions: {5, 6, 7, 8}Sol = {1, 5}5Select vertex

131218817151411102019169756Sorted vertices

RCL

55765661486657545Weight

0000000100000000Potencial conflicts

4465455375546434Degree

1111111111111111Cartographic preference

201918171615141312111098765Vertices

M = 10 in Equation (5)

Removing the candidate positions: {5, 6, 7, 8}Sol = {1, 5}5Select vertex

131218817151411102019169756Sorted vertices

RCL

55765661486657545Weight

0000000100000000Potencial conflicts

4465455375546434Degree

1111111111111111Cartographic preference

201918171615141312111098765Vertices

M = 10 in Equation (5)

Potential conflict

Second Step – Construction Phase

(a)

(b)
 

Figure 6 – An example of the constructive heuristic for the PFCLP. 



 

 

Figure 7 – Local search heuristic. 

Procedure LocalSearch(x) 
 
// Let: 
// - OF(Sol) be the objective function described in Equation (1) 
// - NumberConflictFreeLabel(Sol)be a function that count the number of    
//     conflict free labels presenting in feasible solution Sol 
 
1 Sol ← x 
2 FoundNewSolution ← true 
3 fCurrent ← OF(Sol) 
4 FreeLabels ← NumberConflicFreeLabel(Sol) 
5 While FoundNewSolution Do 

6  FoundNewSolution ← false 
7  For i=1,…, N Do 
8    CurrentCandidatePosition = Sol[i] 
9    For ∀j ∈Pi  Do 
10 If j==Sol[i] Then Continue 

11      Sol[i] ← j 
12      If (OF(Sol)<fCurrent) Or  
       (OF(Sol)==fCurrent And NumberConflicFreeLabel(Sol)> FreeLabels) Then 

13        fCurrent ← OF(Sol)  
14        FoundNewSolution ← true 
15        BestNeighbor ← j 
16        ChangedPoint ← i 
17        FreeLabels ← NumberConflicFreeLabel(Sol) 
        End If 
      End For 

18    Sol[i] ← CurrentCandidatePosition 
    End For 
19  If FoundNewSolution Then 

20    Sol[ChangedPoint] ← BestNeighbor  
    End If 
   End While 
 
21 x ← Sol 
22 Return OF(Sol)   
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Table 1. Average results obtained with GRASP for RCL_Length = 2. 

         

imax = 100 
General average over 10 runs Best average among 10 runs 

Number 
of points Number 

of edges 

Number 
of conflict 

labels 

Proportion 
of conflict 
free labels 

(%) 

Time (s) 
Number 
of edges 

Number 
of conflict 

labels 

Proportion 
of conflict 
free labels 

(%) 

Time (s) 

         

25 3.00 5.13 79.50 0.023 3.00 5.13 79.50 0.023 
100 0.00 0.00 100 0.003 0.00 0.00 100 0.003 
250 0.00 0.00 100 0.029 0.00 0.00 100 0.028 
500 0.96 1.80 99.64 8.203 0.96 1.80 99.64 8.199 
750 9.84 18.88 97.48 40.410 9.84 18.88 97.48 40.386 
1000 43.12 80.80 91.92 112.522 43.12 80.80 91.92 112.512 
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Table 2. Average results obtained with GRASP for RCL_Length = 5. 

         

imax = 100 
General average over 10 runs Best average among 10 runs 

Number 
of points Number 

of edges 

Number 
of conflict 

labels 

Proportion 
of conflict 
free labels 

(%) 

Time (s) 
Number 
of edges 

Number 
of conflict 

labels 

Proportion 
of conflict 
free labels 

(%) 

Time (s) 

         

25 2.75 4.66 81.35 0.023 2.75 4.62 81.50 0.022 
100 0.00 0.00 100.00 0.004 0.00 0.00 100.00 0.002 
250 0.00 0.00 100.00 0.038 0.00 0.00 100.00 0.034 
500 0.85 1.66 99.67 8.119 0.840 1.64 99.67 7.757 
750 9.39 17.86 97.62 40.364 9.24 17.84 97.62 40.370 
1000 42.98 81.43 91.86 116.856 42.40 81.08 91.89 112.49 
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Table 3. Average results obtained with GRASP for RCL_Length = 6. 

         

imax = 100 
General average over 10 runs Best average among 10 runs 

Number 
of points Number 

of edges 

Number 
of conflict 

labels 

Proportion 
of conflict 
free labels 

(%) 

Time (s) 
Number 
of edges 

Number 
of conflict 

labels 

Proportion 
of conflict 
free labels 

(%) 

Time (s) 

         

25 2.79 4.80 80.80 0.026 2.75 4.62 81.50 0.025 
100 0.00 0.00 100.00 0.004 0.00 0.00 100.00 0.002 
250 0.00 0.00 100.00 0.049 0.00 0.00 100.00 0.036 
500 0.848 1.66 99.67 9.055 0.84 1.64 99.67 8.268 
750 9.36 17.84 97.62 42.25 9.20 17.68 97.64 40.363 
1000 42.84 80.99 91.90 112.46 42.28 79.56 92.04 112.457 

         

 



 32 

Table 4. Average results obtained with GRASP for RCL_Length = 10. 

         

imax = 100 
General average over 10 runs Best average among 10 runs 

Number 
of points Number 

of edges 

Number 
of conflict 

labels 

Proportion 
of conflict 
free labels 

(%) 

Time (s) 
Number 
of edges 

Number 
of conflict 

labels 

Proportion 
of conflict 
free labels 

(%) 

Time (s) 

         

25 2.80 4.70 81.20 0.026 2.75 4.62 81.50 0.0215 
100 0.00 0.00 100.00 0.003 0.00 0.00 100.00 0.002 
250 0.00 0.00 100.00 0.052 0.00 0.00 100.00 0.034 
500 0.90 1.72 99.66 8.831 0.88 1.60 99.68 8.149 
750 9.87 18.92 97.48 40.397 9.72 18.68 97.51 40.401 
1000 43.44 81.78 91.82 116.117 42.76 81.08 91.89 116.556 
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Table 5. Average results obtained with GRASP for RCL_Length = 2 using the reduction 

proposed by Wagner et al (2001). 

         

imax = 100 
General average over 10 runs Best average among 10 runs 

Number 
of points Number 

of edges 

Number 
of conflict 

labels 

Proportion 
of conflict 
free labels 

(%) 

Time (s) 
Number 
of edges 

Number 
of conflict 

labels 

Proportion 
of conflict 
free labels 

(%) 

Time (s) 

         

25 3.00 5.63 77.50 0.016 3.00 5.63 77.50 0.011 
100 0.00 0.00 100.00 0.000 0.00 0.00 100.00 0.000 
250 0.00 0.00 100.00 0.003 0.00 0.00 100.00 0.001 
500 0.92 1.76 99.65 0.337 0.92 1.76 99.65 0.335 
750 9.96 19.04 97.46 5.210 9.96 19.04 97.46 5.207 
1000 43.12 81.28 91.87 26.823 43.12 81.28 91.87 26.673 
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Table 6. Average results obtained with GRASP for RCL_Length = 5 using the reduction 

proposed by Wagner et al (2001). 

         

imax = 100 
General average over 10 runs Best average among 10 runs 

Number 
of points Number 

of edges 

Number 
of conflict 

labels 

Proportion 
of conflict 
free labels 

(%) 

Time (s) 
Number 
of edges 

Number 
of conflict 

labels 

Proportion 
of conflict 
free labels 

(%) 

Time (s) 

         

25 2.75 4.68 81.25 0.018 2.75 4.625 81.50 0.015 
100 0.00 0.00 100.00 0.000 0.00 0.00 100.00 0.000 
250 0.00 0.00 100.00 0.002 0.00 0.00 100.00 0.000 
500 0.85 1.65 99.67 0.362 0.84 1.64 99.67 0.346 
750 9.13 17.28 97.70 5.214 9.04 16.96 97.74 5.216 
1000 42.09 79.82 92.02 26.82 41.92 79.28 92.07 26.718 
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Table 7. Average results obtained with GRASP for RCL_Length = 6 using the reduction 

proposed by Wagner et al (2001). 

         

imax = 100 
General average over 10 runs Best average among 10 runs 

Number 
of points Number 

of edges 

Number 
of conflict 

labels 

Proportion 
of conflict 
free labels 

(%) 

Time (s) 
Number 
of edges 

Number 
of conflict 

labels 

Proportion 
of conflict 
free labels 

(%) 

Time (s) 

         

25 2.78 4.625 81.50 0.016 2.75 4.625 81.50 0.014 
100 0.00 0.00 100.00 0.000 0.00 0.00 100.00 0.000 
250 0.00 0.00 100.00 0.000 0.00 0.00 100.00 0.000 
500 0.84 1.656 99.67 0.371 0.84 1.64 99.67 0.345 
750 9.14 17.35 97.69 5.220 9.00 17.12 97.72 5.216 
1000 41.88 79.388 92.06 26.788 41.60 77.96 92.20 26.688 
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Table 8. Average results obtained with GRASP for RCL_Length = 10 using the reduction 

proposed by Wagner et al (2001). 

         

imax = 100 
General average over 10 runs Best average among 10 runs 

Number 
of points Number 

of edges 

Number 
of conflict 

labels 

Proportion 
of conflict 
free labels 

(%) 

Time (s) 
Number 
of edges 

Number 
of conflict 

labels 

Proportion 
of conflict 
free labels 

(%) 

Time (s) 

         

25 2.75 4.79 80.85 0.017 2.75 4.75 81.00 0.016 
100 0.00 0.00 100.00 0.000 0.00 0.00 100.00 0.000 
250 0.00 0.00 100.00 0.000 0.00 0.00 100.00 0.000 
500 0.86 1.68 99.66 0.376 0.84 1.64 99.67 0.347 
750 9.42 18.03 97.60 5.230 9.40 17.88 97.62 5.217 
1000 42.58 80.42 91.96 26.796 42.20 79.68 92.03 26.691 
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Comparison among average results over 10 GRASP runs
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Figure 8 – Comparison among proportion of conflict free label considering the average results 

over 10 GRASP runs and the reduction proposed by Wagner et al (2001). 
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Table 9. Comparison with the literature 
  

Proportion of conflict free labels 
Problems Algorithm 

100 250 500 750 1000 
      

GRASPBest, RCL Length = 6 100.00 100.00 99.67 97.72 92.20 
GRASPAverage, RCL Length = 6 100.00 100.00 99.67 97.69 92.06 
GRASPBest, RCL Length = 5 100.00 100.00 99.67 97.70 92.02 
GRASPAverage, RCL Length = 5 100.00 100.00 99.67 97.74 92.07 
LagClus (Ribeiro and Lorena, 2006) 100.00 100.00 99.67 97.65 91.42 
CGABest

 (Yamamoto and Lorena, 2005) 100.00 100.00 99.60 97.10 90.70 
FALP (Yamamoto et al., 2005) 100.00 100.00 99.50 96.70 90.12 
CGAAverage (Yamamoto and Lorena, 2005) 100.00 100.00 99.60 96.80 90.40 
Tabu Search (Yamamoto et al, 2002) 100.00 100.00 99.30 96.80 90.00 
GA with masking (Verner et al, 1997) 100.00 99.98 98.79 95.99 88.96 
GA (Verner et al, 1997) 100.00 98.40 92.59 82.38 65.70 
Simulated Annealing (Christensen et al, 1995) 100.00 99.90 98.30 92.30 82.09 
Zoraster (Zoraster, 1990) 100.00 99.79 96.21 79.78 53.06 
Hirsh (Hirsh, 1982) 100.00 99.58 95.70 82.04 60.24 
3-opt Gradient Descent (Christensen et al, 1995) 100.00 99.76 97.34 89.44 77.83 
2-opt Gradient Descent (Christensen et al, 1995) 100.00 99.36 95.62 85.60 73.37 
Gradient Descent (Christensen et al, 1995) 98.64 95.47 86.46 72.40 58.29 
Greedy Algorithm (Christensen et al, 1995) 95.12 88.82 75.15 58.57 43.41 
      

 


