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Abstract

The point-feature cartographic label placement problem (PFGL&) NP-hard problem which
appears during the production of maps. The labels must be placediéfimped places avoiding

overlaps and considering cartographic preferences. Due to its highesimgkveral heuristics

have been presented searching for approximated solutions. This paperepr@pageedy

randomized adaptive search procedure (GRASP) for the PFCLP thatad on its associated
conflict graph. The computational results show that this metaheuigssacgood strategy for
PFCLP, generating better solutions than all those reported in tdratdre in reasonable
computational times.
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1. Introduction

The cartographic label placement problem is an important taskitomated cartography and
Geographical Information Systems (GIS). Labels convey infoomabout objects (or features)
in graphical displays like graphs, networks, diagrams, or cartograps (Wolff, 1999). Each
feature that needs to be labeled has a number of positions where its label caedteHbwever,

it is essential that all labels must be placed without overlaps.

This paper is concerned with the placement of labels for poaturfes. The point-feature
cartographic label placement problem (PFCLP) is the problemaoing text labels to point
features on a map, graph or diagram in such a manner so as toizeatienlegibility of the
picture. Figure 1 shows an example of the PFCLP. Note that #nerseveral obscured areas and

consequently we cannot read some names.

Figure 1— An example of a map with some overlapping labels (see arrows) (Ribeiro and,Loren

2006)

For each point there exists a set of possible label positisoskabwn as a set of candidate
positions and the objective is to find a combination of these candidat®p®s$hat produces the
best legibility in a map. This set of potential label positions indicatesdsirability also known
as cartographic standardization (Christensen et al., 1995). Figin@\® a group of 8 candidate
positions for a point, where the numbers indicate the cartograptécenees. Position number 1

is the most preferred.

Figure 2— Set of eight candidate positions for a point (Christensen et al., 1995)
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The PFCLP is an optimization problem shown to be NP-Hard (FormanWagter, 1991;

Marks and Shieber, 1991). Thus, exact solution techniques are not usisavanal heuristics
and metaheuristics have been proposed. Some approaches consider agcaplfligenerated by
the problem presenting the following structure where candidate @usiire associated to

vertices and the potential overlaps (or conflicts) are associated to edges

Let N be the number of points that must be labeledRatite number of candidate positions for
each pointG={V,E} is the corresponding conflict graph wh&fe{vi, v, ..., W} IS the set of

candidate positions arke={(vi, v):i,] LV, i4} the potential conflicts between candidate positions.

Figure 3. Conflict graph for PFCLP. (a) Problem, (b) Conflict graph and (c) Optimatisol

(Ribeiro and Lorena, 2006).

Figure 3(b) shows the conflict graph generated from problem showigure 3(a), and Figure
3(c) shows the optimal solution for this problem. The proportion of cotfiféet labels assesses
the quality of labeling (Ribeiro and Lorena, 2005; Yamamoto et al, 20B88stensen et al,
1995). So, considering the problem shown in Figure 3, the solution provideguire F&(c) has

100% of conflict free labels.

In this paper we consider a greedy randomized adaptive seacgdpre (GRASP) applied to
the conflict graph associated to the PFCLP. GRASP is a meistietor finding approximate
solutions to combinatorial optimization problems (Resende and Ribeiro, 2008as first

introduced by Feo and Resende (1989) in a paper describing a proloabgististic for set

covering problems.



GRASP is an iterative method that has two distinct phasesfirfhene is a constructive phase
that blends greedy and random construction either by using greetlinéssld a restricted
candidate list (RCL) and using randomness to select an elenoenmtthe list, or by using
randomness to build the list and using greediness for the selecésan@® and Ribeiro, 2003).
The second phase is represented by a local search algorithlorirex a neighborhood of the
current solution provided by first phase. The solution resulting from the locehdssromes the

new best solution if the current solution is improved.

The GRASP implementation for PFCLP is tested upon instances pdopo#ee literature and

the computational results were successful compared with the best ones reported.

The paper is organized as follows. Next section presents avrabi@ut the PFCLP, followed by
Section 3 that presents a brief review of the GRASP and destnb&RASP proposed for the
PFCLP. Section 4 presents the computational results and Section Gdesnalith some future

research directions.

2. Literature Review

This paper deals with label placement of point features but énatiite reports feature problems
involving lines and areas such as roads and states. See the nliag laibéography (Wolff and
Strijk, 2005) for further details. The typical input of the PFCLR: idiscrete set of candidate

positions for the points (see Figure 2).

There are three different approaches for PFCLP in thetiiterarlhe first one searches the largest

number of conflict free labels, even not labeling all points. Thablpm can be seen as a
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Maximum Independent Set Problem (MISP) (Zoraster, 1990; Strigd.e®000). The second
approach also searches the maximum number of conflict free,l&losi®ver in this case, all
points must be labeled. This problem is known as Maximum Number ofi@dffee Labels

Problem (MNCFLP) (Ribeiro and Lorena, 2005). This approach has beenbysedveral

researchers such as Christensen et al (1994; 1995), Verner(1&9d@) and Yamamoto and
Lorena (2005). The last approach, first introduced by Ribeiro and L¢2&@h; 2006), the
Minimum Number of Conflicts Problem (MNCP) is considered, whérpaants must be labeled

whereas the number of conflicts is minimized.

On the other hand, there are some more general models, which ladldabéls to move around
their features. They are known as slider models (Klau and M&@eQ; 2003). However, the

model we consider does not take sliding into account.

If the PFCLP is considered as a MISP, substantial reseascheleam done in the literature, and
different algorithms and techniques are presented. Zoraster (1986, 1®A®%1) formulated

mathematically the PFCLP with conflict constraints and if gbants could not be labeled they
are related to dummy candidate positions of high cost. Zorastkaussgrangean relaxation and
obtained some computational results for small-scale data setsowoy Zoraster (1997) used a

Simulated Annealing algorithm for solving PFCLPs in petroleum industry.

Strijk et al. (2000) proposed other mathematical formulations expl@ange cut constraints.
These cuts are based on cliqgues and appeared before in the worksrodiMl Chaudhry (1984)
and Murray and Church (1996). They applied and proposed several heurigticgat&l
Annealing, Diversified Neighborhood Searéhppt and Tabu Search. The last one showed the

better results for their instances.



The Maximum Number of Conflict Free Labels Problem (MNCFuRp examined in several
papers. Hirsch (1982) developed a Dynamic Algorithm of label repulsiberewlabels in
conflicts are moved trying to avoid a conflict. The algorithm definepelling forces for
overlapping labels and computes translation vectors for them. Adieslation, this process is
repeated and hopefully, a labeling with few overlaps appears afteumber of iterations.
Christensen et al. (1994; 1995) proposed an Exhaustive Search Approachtiafjgrositions of
the labels that were previously positioned. Christensen et al. (198b)edposed a Greedy
Algorithm and a Discrete Gradient Descent Algorithm but thegerithms have difficulty of
escaping from local maximum. Verner et al. (1997) applied a @&eikgiorithm with mask such
that if a label is in conflict the changing of positions allewaed by crossover operators.
Yamamoto et al. (2002) proposed a Tabu Search algorithm that praodesresults when
compared with the literature. Schreyer and Raidl (2002) applied AmnZd@ystem but the
results were not interesting when compared to the ones obtainednfgmo et al. (2002).
Yamamoto and Lorena (2005) developed an exact algorithm for smalhagest of PFCLP and
applied the Constructive Genetic Algorithm (CGA) proposed by LoaedaFurtado (2001), to a
set of large-scale instances. The exact algorithm was dpplisnstances of 25 points and the
CGA was applied to instances up to 1000 points. Recently, Yamamdt{(2608) proposed an
algorithm called by FALP that provided better results than CGAgufie same set of instances

proposed by Yamamoto et al. (2002).

The PFCLP considered as a MISP or MNCFLP can generate darglict graphs that become
hard to deal with. Wagner et al. (2001) presented an approach to réaucentlict graph

provided by a PFCLP. They proposed three rules to reduce the sieeanmflict graph without



altering the set of optimal solutions. Moreover, they combined thdes with a heuristic

yielding near-optimal solutions to a set of instances.

Considering now the PFCLP as a MNCP, Ribeiro and Lorena (2005; 2006)rogeosed two O-
1 integer linear programming models and a Lagrangean heuhsti have presented the best
solutions in the literature for the instances proposed by Yamomab (2002). The second

formulation proposed by the authors has a compact number of constmathis reproduced

bellow.
N R
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Where:

* Nis the number of points to be labeled & the set of candidate positions of pajnt

* X is a binary variable such 85N andjZP;;

* w;; is the cartographic preference assigned to each candidate pdsiatiowed us to
prioritize some candidate positions as shown in Figure 2;

« §; is a set of index pairgk,t):k> of candidate positions such tha{; has potential

conflict with x;;



« GC; is a set with all points that contain candidate positions in confith the candidate
positionx;;; and

* Vijc Is a conflict variable between the candidate posiipand the pointLC;;.c>i.

Constraint (2) ensures that each point must be labeled with ndelage position. Constraint (3)
ensures that if vertices with potential conflicts are choserongpose the solution, the object
function described in Equation (1) will be penalized. And Equation (4) iredi¢hat all variables

in the model are binaries.

3. GRASP for the PFCLP

The GRASP (greedy randomized adaptive search procedure)udtistart iterative process of
two phases: a constructive phase, in which a feasible solution is produced, andilotgbbase,
in which a local optimum in the neighborhood of the solution is sought (feRasende, 1995).
These phases are repeated considering a maximum number afrigecatan alternative criterion
to stop the iterative process. Figure 4 shows the GRASP pseudoarodeniinimization

problem. The value of the best solution is storefdamd i GRASP iterations are executed.

Figure 4— A basic GRASP for minimization problem (Resende and Ribeiro, 2005).

Considering the pseudo-code described in Figure 4, the procedures
GreedyRandomizedConstructioand LocalSearch must be defined using the available
information about the problem to be solved. The feasible solution ifviedyaconstructed in the

first phase, one element at a time. The choice of the next @lémbe added is determined by



ordering all candidate elements in a candidate list with re$péts contribution to the objective

function. The list of best candidates is called Restricted Candidate Lik}.(RC

There are several practical applications using GRASP. Bartrem@1989) described a method
for efficiently sequencing the cutting operations associatiéid mwanufacture of discrete parts.
The authors use GRASP to provide a lower bound in a lagrangeartiogladfahe problem. Feo
et al (1991) used GRASP for a difficult single machine schedulinggmolilaguna et al (1991)
combined GRASP and Tabu Search for solving just-in-time schedulingraligbanachines.
Resende and Resende (1997) described a GRASP for routing permatuahtciricuits (PVC)
for frame relay in telecommunications systems. Their objecsti@e to minimize PVC delays
while balancing trunk loads. GRASP was also applied in a conweleixle-scheduling problem
with tight time windows and with additional constraints providing ggéng results (Atkinson,

1998).

GRASP has been also applied in theoretical applications. Feo @9O%4) applied it for
approximately solving the maximum independent set problem obtaining gewitsrdresende
and Ribeiro (1997) proposed a GRASP for graph planarization. Abelb (8999) applied a
GRASP for solving the maximum clique problem and maximum quasi-cpgolelem. They
discuss some graph decomposition schemes that breaks up the originampnaiol several
pieces of manageable dimensions. In this work, the construction phaseerisgsdegrees as a

guide for construction and a change heuristic for the local search.

There are also GRASP enhancements in literature. The re&RM&P, proposed by Prais and
Ribeiro (2000), is a GRASP that does not use a fixed value for the ferameter defining the

RCL length during the constructive phase. Reactive GRASP @jeita the RCL according to
9



the quality of the solutions previously found. Laguna and Marti (1999) incoeddi@iGRASP a
path relinking strategy proposed by Glover (1996) searching foowedroutcomes. Recently,
Resende and Ribeiro (2005) presented several advances and applicatiblesGRASP with
path relinking. For a good review about GRASP and its applicatieesFssta and Resende

(2002), Aiex et al (2003) and Resende and Ribeiro (2003).

The GRASP for the PFCLP proposed in this paper deals with the Mig@®ach proposed by
Ribeiro and Lorena (2005) minimizing the number of conflicts in theesponding conflict

graph.

The constructive phase:

Considering the PFCLP represented by a conflict graph, the cangrheuristic is based in the
vertex degrees, as done in some works of the literature (Ahellg £999; Feo et al., 1994). The
degree of a vertex is the number of incident edges in that vertéxejareasents a measure of

labels in conflict.

Let G=(V,E) be a conflict graph as described in Section 1 wkerea set of vertices (candidate
positions) ancE is a set of edges (conflicts between vertices), and@&t_Lengthoe the size of
the restricted candidate list (RCL). Thus, the pseudo-code otdhstructive phase can be

written as shown in Figure 5.

Figure 5— A constructive heuristic for the PFCLP.

The methodCreateRCLis responsible to create the restricted candidate list, Eassidering the

current conflict graph, it computes a weight for each vertexdbasedegrees, cartographic
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preferences and potential conflicts with the current soluioh and sorts the vertices in an
increase order. After that, only the filRCL_Lengthare considered as restricted. This list is
created using the current graph because the graph is redueachateration of the procedure
shown in Figure 5. When the procedure selects an element to erifee current solution,
actually this element is a candidate position of some pantd a method to reduce the current
graph must be applied. This method, calRedduceActiveVerticeseceives the list of current
vertices represented by Greedyand the selected candidate positgnand removes from

V_Greedyall candidate positions of the poirthat hass as a candidate position.

When the graph is reduced, the remaining graph still presents somses/érat are in potential
conflict with the current solutioisol Thus, to order the candidate position and to select the
restricted list, the metho€reateRCL calculates the weight of each vertex considering the

following equation:

Weight(x) = CartographicPreference(x) + Degree(x) +M* PotentialCotsli§ol,x) (5)

Where:
» CartographicPreference(xeturns the cartographic preference of the vertex
» Degree(x)yeturns the degree of the vertegonsidering the current conflict graph;
» PotentialConflicts(Sol, xjeturns the number of the potential conflicts betweand the
current solutiorot and
M is a coefficient used to penalize the verxek it presents potential conflicts with the

current solutiorol
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The function represented by Equation (5) ensures that if a weftag high degree and several
potential conflicts with the current soluti®ol it will appear at the end of the list when the

vertices are sorted, avoiding conflicts.

Figure 6 shows two iterations of a theoretical example whemadographic preferences are
equal to one. For this exampRCL_Length = 4andM =10 in Equation (5). Note that at first
iteration represented in Figure 6(a), the randomized selectexk weaisv; and consequently all
allowed candidate positions of the point are removed from the cogrféiph. In second iteration
(see Figure 6(b)), the conflict graph is reduced and all velegxees are recalculated. Besides,
the vertexviz has a potential conflict with the vertexselected at iteration one. Thus, this vertex
is penalized appearing at the end of sorted list, consequently rgdtsichances of being

selected.

Figure 6— An example of the constructive heuristic for the PFCLP.

This process is repeated until a feasible solution is providetie IEtonsidered RCL length in
some iteration is greater than the remaining vertices inetheced graph, the algorithm must

consider the total of these remaining vertices as RGgth.

The local search phase:

The second phase of the GRASP for the PFCLP uses a local search heuristestttachange a
candidate position assigned for each pointthe constructive heuristic to another valid position
j[7P;, searching for a solution that reduces the objective functionidedan Equation (1). The

proposed local search heuristic is shown in Figure 7.
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The procedure shown in Figure 7 can be resumed as follows: Liestsifor each point another
valid candidate position. Lines 9 to 18 perform the storage of thelhasge and after check all
possible changes, the best one is performed (see lines 19 and 20¢. th&'talgorithm finds a
new solution, the search is repeated in the neighborhood of thisalation (line 5). Take a
feasible solution tested with the same objective function of the best solution fownalA)iif this

new solution increases the number of conflict free labels.

Figure 7 — Local search heuristic.

The proposed GRASP is very simple to implement but it is dependent parttieer of iterations
and the size of restricted candidate list. Thus, to define thevhk®s for these parameters, it
was applied over standard sets of randomly generated points proposachémoto et al (2002)

available athttp://www.lac.inpe.br/~lorena/instancias.htrithe computational results presented

in next section show that the GRASP produced better results than those reporteideiratueel

4. Computational Results

The GRASP was coded in C++ running on a Pentium IV 2.80 GHz povcasd 512 MB of
RAM memory. The instances proposed by Yamamoto and Lorena (200Zprmamosed of
twenty five instances for each value for the number of pdintsAs done by Zoraster (1990),
Yamamoto et al (2002), Yamamoto and Lorena (2005) and Ribeiro and L@@0®%), for all
problems the cartographic preferences were not considered, i. @retbeences are set to 1 for
all the candidate positions, being the number of those positions equal ttahds lallowed

comparing of the GRASP results to the ones present in the literature.
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After a number of initial experiments the maximum number oétitens (., was fixed in 100.
With more iterations the results did not improved as expected. Thefdlmerestricted candidate
list was set in a range of 2 to 10, and the results are infldesgeificantly for each value in this

range. Also, for greater RCL the solutions are not significantly improved.

Tables 1 to 4 report the main results found varying the RCL lemgtip@rforming the GRASP
10 times. In these tables, the first column indicates the number ik goi be labeled and the
next three columns are average results over 10 runs and theseesvaagalculated over the
average results for twenty five instances for each numbepiots. Thus, the second column
shows the average results over 10 runs for the number of remainieg, éaltpwed by average

results of the number of conflict labels and of the percentagesrdfict free labels that is

N — Numberof Conflict Label
N

calculated a{ S)*100. The fifth through seventh column present

the best average solution provided by the GRASP among 10 runs.

Note that the better results were found when considering 5 andtiéef&CL length. However
the computational times are not satisfactory. Considering onlye3&bhnd 3, the computational
times for the most difficult problems (with 750 and 1000 points) argingafrom 40 to 112
seconds. So, the GRASP approximately elapsed 2 minutes for sdieingrgest instances and

for some applications, this time can be considered high.

Table 1.Average results obtained with GRASP RCL_Length = 2

Table 2. Average results obtained with GRASP RCL_Length =5

14



Table 3.Average results obtained with GRASP RCL_Length =6

Table 4.Average results obtained with GRASP RCL_Length = 10

Trying to decrease these computational times, the reduahgitgie proposed by Wagner et al
(2001) was applied to the conflict graphs before starting our expesnieor all instances with
100 and 250 points the technique produced considerable reductions but the pedatitharat
repeated for the instances with 25, 750 and 1000 points. The GRASP aes@t®wn in Tables

5 to 8. These tables have the same columns presented in Table 1.

Table 5. Average results obtained with GRASP RCL_Length = Aising the reduction

proposed by Wagner et al (2001).

Table 6.Average results obtained with GRASP RCL_Length = fusing the reduction

proposed by Wagner et al (2001).

Table 7.Average results obtained with GRASP RECL_Length = Gising the reduction

proposed by Wagner et al (2001).

Table 8.Average results obtained with GRASP RECL_Length = 1Wsing the reduction

proposed by Wagner et al (2001).

Again the best results are found for RCL length 5 or 6. Overallguléty of the solutions are

improved and the computational times are reduced with the conflighgeduction. Considering
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Tables 6 and 7, for instances with 750 and 1000 points, the computationaldmeesfrom 5 to

26 seconds against 40 and 112 without the reduction, respectively.

Considering Tables 5 to 8 and the columns showing the results fagaveonflict free labels
over 10 GRASP runs, fdRCL_Length = 5the GRASP produced better results for the instances
with 750 points and foRCL_Length = 6it improved the instances with 25 and 1000 points. For

others values for the RCL length the results are close to the best ones found.

Figure 8 summarizes the average results shown at Table85Note that the squares and
triangles indicate that, respectively, the solutions provided by GRABSen RCL length are 5

and 6 outperformed other results.

Figure 8 — Comparison among proportion of conflict free label considering the averags resul

over 10 GRASP runs and the reduction proposed by Wagner et al (2001).

Now the best results found in this paper are compared to the besifdhediterature described
in the works of Yamamoto and Lorena (2005) and Ribeiro and Lorena (2@W¢. I reports the
best average percentages of conflict free labels found usinGRA&P proposed and the best
results found in the literature. For this comparison, we used theésrésuhd with the reduced
graphs and with RCL length defined as 5 and 6. Note that the appsohake different
objectives, however the GRASP found better results to PFCLP thahoa# reported in the
literature. The computational times are not compared since thmputational tests were

performed in different machines.

Table 9. Comparison with the literature.
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5. Conclusions

This paper has presented a greedy randomized adaptive seamtiupeo(GRASP) for the point-
feature cartographic label placement problem. GRASP is a nueistieethat has been applied in

several practical and theoretical applications.

Considering an optimization point of view, the proposed GRASP presentedrestlts than all
reported in the literature using a reduction technique for conflict graphs. Th8RAuUlts were
better than well-known metaheuristics such as Simulated Annealigyy $earch and Genetic
Algorithm. Besides, it improved the best-known solutions in the luszahat were provided by

a lagrangean relaxation.

The research can be continued combining GRASP and path relinking techrdqtieg the
GRASP iterations or in a post-optimization phase. However it essary to study the
application of path relinking in the pool of elite solutions without $iggmt increase in

computational times.
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Figure 1— An example of a map with some overlapping labels (see arrows) (Ribeiro and,Loren

2006)
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Figure 2— Set of eight candidate positions for a point (Christensen et al., 1995)
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Figure 3. Conflict graph for PFCLP. (a) Problem, (b) Conflict graph and (c) Optimatisol

(Ribeiro and Lorena, 2006).
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Data : Nunber of iterations i max

Resul t : Solution x" OX
1f* — o

2 For i=1,...,i max doO

3 X

GreedyRandomizedConstruction()
4 f(x) « LocalSearch(x)
If f(x) <f* Then
f* < f(x)
x* — X
End |f
End For

(€3]

©O©oo~N O

Figure 4 — A basic GRASP for minimization problem (Resende and Ribeiro, 2005).
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Pr ocedur e GreedyRandomizedConstruction()

1Sol ~{}

2V _Greedy ~V

3 Wile V_Greedy #z{} Do

4 CreateRCL(RCL, V_Greedy, Sol)

5 v « ElementRandomizedSelection(RCL)

6 Sol ~Sol [Ov
7 ReduceActiveVertices(V_Greedy, V)
End Wil e

8 Return Sol

Figure 5— A constructive heuristic for the PFCLP.
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Initial Conflic Graph — First Iteration First Step — Constriction Phase

V. \%1
M = 10 in Equation (5)
Vertices 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | 16 17 18 19 20
V. V,
3 4 Cartographic preference | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Degree 4 4 6 6 5 4 4 6 6 6 5 7 5 6 5 4 5 6 4 4
Potencial conflicts ojlojJo]oO 0 0 oo 0 0 0 0 0 0 0 0 0 0 0 0
Ve 5 Vig Vg Va2 Vis
Weight 5 5 7 7 6 5 5 7 7 7 6 8 6 7 6 5 6 7 5 5
V7 g V1 12 V15 Vig
RCL
Sorted vertices 1|26 7| 6[19f20|s[uf]s]ar| s] a] 8] of10[1a[18]12]
Vig Vi7 Selected vertex 1 Sol= {1} Removing the candidate positions: {1, 2, 3, 4}
V. V.
19 20
(a)

Reduced Conflic Graph — Second Iteration ~ Second Step — Construction Phase

(!
s M = 10 in Equation (5)
Potential conflict Vertices 56| 78| 9| 10|10 12|18 [14|15]16]127]| 18] 10|20
\\\ Cartographic preference| 1 | 1 111 1 1 1 1 1 1 1 1 1 1 1 1
\\\ Degree 43| 4a|le| 4| s| 5| 7| 3| 5| 5] a4l 5] 6| 4] 4
Ve Vs Vg Vg Vg .. Vi3 Potencial conflicts oflofo]o] of o]l of of 2| of o] of o] of of o
Weight 5|4|5|7| 5| 6| 6| s8[14| 6| 6| 5[ 6] 7| 5] 5
V7 s V1 1 Vis Vig
RCL
Sorted vertices 6|5|7|9 16|19|20|10|11|14|15|17| 8|18|12|13|
V18 Vl7 Select vertex IT' Sol={1, 5} Removing the candidate positions: {5, 6, 7, 8}
Vig V2o (b)

Figure 6— An example of the constructive heuristic for the PFCLP.




Pr ocedur e LocalSearch(x)

/1 Let:
/1 - OF(Sol) be the objective function described in Equation (1)
/1 - Number ConflictFreelLabel (Sol)be a function that count the nunber of

/1 conflict free |labels presenting in feasible solution Sol
1Sol ~x
2 FoundNewSolution ~ true

3 fCurrent ~ OF(Soal)

4 FreelLabels « NumberConflicFreeLabel(Sol)
5 Wi | e FoundNewSolution Do

6 FoundNewSolution ~ false

7 For i=1,...,N Do

8 CurrentCandidatePosition = Sol[i]

9 For [j [P; Do

10 I f j==Soll[i] Then Conti nue
11 Sol[i] —
12 I f (OF(Sol)<fCurrent) O
(OF(Sol)==fCurrent And NumberConflicFreeLabel(Sol)> FreelLabels) Then
13 fCurrent ~ OF(Soal)
14 FoundNewSolution ~ true
15 BestNeighbor “ ]
16 ChangedPoint i
17 FreeLabels « NumberConflicFreeLabel(Sol)
End | f
End For
18 Sol[i] « CurrentCandidatePosition
End For

19 | f FoundNewSolution Then
20 Sol[ChangedPoint] ~ BestNeighbor
End If
End Wi le

21 x « Sol
22 Return OF(Sol)

Figure 7 — Local search heuristic.




Table 1.Average results obtained with GRASP RCL_Length = 2

imax= 100
General average over 10 runs Best average among 10 runs
Number Number Proport!on Number Proport!on
. Number : of conflict . Number : of conflict .
of points of conflict Time (s) of conflict Time (s)
of edges free labels of edges free labels
labels labels
(%) (%)
25 3.00 5.13 79.50 0.023 3.00 5.13 79.50 0.023
100 0.00 0.00 100 0.003 0.00 0.00 100 0.003
250 0.00 0.00 100 0.029 0.00 0.00 100 0.028
500 0.96 1.80 99.64 8.203 0.96 1.80 99.64 8.199
750 9.84 18.88 97.48 40.41( 9.84 18.88 97.48 40.386
1000 43.12 80.80 91.92 112.52 43.12 80.80 91.92 2.512
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Table 2. Average results obtained with GRASP RCL_Length =5

imax= 100
General average over 10 runs Best average among 10 runs
Number Number Proport!on Number Proport!on
. Number : of conflict . Number ; of conflict .

of points of conflict Time (s) of conflict Time (s)

of edges free labels of edges free labels

labels o labels
(%) (%)

25 2.75 4.66 81.35 0.023 2.75 4.62 81.50 0.022
100 0.00 0.00 100.00 0.004 0.00 0.00 100.00 0.002
250 0.00 0.00 100.00 0.038 0.00 0.00 100.00 0.0B4
500 0.85 1.66 99.67 8.119 0.840 1.64 99.67 7.767
750 9.39 17.86 97.62 40.364 9.24 17.84 97.62 40.870

1000 42.98 81.43 91.86 116.856 42.4( 81.08 91.89 2.491
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Table 3.Average results obtained with GRASP RCL_Length =6

imax= 100
General average over 10 runs Best average among 10 runs
Number Number Proport!on Number Proport!on
. Number : of conflict . Number : of conflict .
of points of conflict Time (s) of conflict Time (s)
of edges free labels of edges free labels
labels labels
(%) (%)
25 2.79 4.80 80.80 0.026 2.75 4.62 81.50 0.025
100 0.00 0.00 100.00 0.004 0.00 0.00 100.0 0.002
250 0.00 0.00 100.00 0.049 0.00 0.00 100.0 0.036
500 0.848 1.66 99.67 9.055 0.84 1.64 99.67, 8.2b8
750 9.36 17.84 97.62 42.25 9.20 17.68 97.64 40.363
1000 42.84 80.99 91.90 112.46 42.29 79.56 92.04 4572
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Table 4.Average results obtained with GRASP RCL_Length = 10.

imax= 100
General average over 10 runs Best average among 10 runs
Number Number Proport!on Number Proport!on
. Number : of conflict . Number : of conflict .
of points of conflict Time (s) of conflict Time (s)
of edges free labels of edges free labels
labels labels
(%) (%)

25 2.80 4.70 81.20 0.026 2.75 4.62 81.50 0.0215
100 0.00 0.00 100.00 0.003 0.00 0.00 100.00 0.002
250 0.00 0.00 100.00 0.052 0.00 0.00 100.00 0.034
500 0.90 1.72 99.66 8.831 0.88 1.60 99.68 8.149
750 9.87 18.92 97.48 40.397 9.72 18.68 97.51 40.401

1000 43.44 81.78 91.82 116.117 42.76 81.08 91.89 6.556
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Table 5. Average results obtained with GRASP RCL_Length = Aising the reduction

proposed by Wagner et al (2001).

imax= 100
General average over 10 runs Best average among 10 runs
Number Number Proport!on Number Proport!on
. Number : of conflict . Number : of conflict .
of points of conflict Time (s) of conflict Time (s)
of edges free labels of edges free labels
labels labels
(%) (%)
25 3.00 5.63 77.50 0.016 3.00 5.63 77.50 0.011
100 0.00 0.00 100.00 0.000 0.00 0.00 100.0 0.000
250 0.00 0.00 100.00 0.003 0.00 0.00 100.0 0.001
500 0.92 1.76 99.65 0.337 0.92 1.76 99.65 0.385
750 9.96 19.04 97.46 5.210 9.96 19.04 97.46 5.207
1000 43.12 81.28 91.87 26.828 43.17 81.28 91.87 6736.
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Table 6. Average results obtained with GRASP RCL_Length = fusing the reduction

proposed by Wagner et al (2001).

imax= 100
General average over 10 runs Best average among 10 runs
Number Number Proport!on Number Proport!on
. Number : of conflict . Number : of conflict .
of points of conflict Time (s) of conflict Time (s)
of edges free labels of edges free labels
labels labels
(%) (%)
25 2.75 4.68 81.25 0.018 2.75 4.625 81.50 0.015
100 0.00 0.00 100.00 0.000 0.00 0.00 100.00 0.000
250 0.00 0.00 100.00 0.002 0.00 0.00 100.00 0.000
500 0.85 1.65 99.67 0.362 0.84 1.64 99.67 0.346
750 9.13 17.28 97.70 5.214 9.04 16.96 97.74 5.2[16
1000 42.09 79.82 92.02 26.82 41.92 79.28 92.07 126.7
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Table 7.Average results obtained with GRASP RCL_Length = @&ising the reduction

proposed by Wagner et al (2001).

imax= 100
General average over 10 runs Best average among 10 runs
Number Number Proport!on Number Proport!on
. Number : of conflict . Number : of conflict .
of points of conflict Time (s) of conflict Time (s)
of edges free labels of edges free labels
labels labels
(%) (%)
25 2.78 4.625 81.50 0.016 2.75 4.62" 81.50 0.0114
100 0.00 0.00 100.00 0.000 0.00 0.00 100.00 0.000
250 0.00 0.00 100.00 0.000 0.00 0.00 100.00 0.000
500 0.84 1.656 99.67 0.371 0.84 1.64 99.67, 0.345
750 9.14 17.35 97.69 5.220 9.00 17.12 97.72 5.2[16
1000 41.88 79.388 92.06 26.788 41.6( 77.96 92.20 .6886
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Table 8.Average results obtained with GRASP RCL_Length = 1Wsing the reduction

proposed by Wagner et al (2001).

imax= 100
General average over 10 runs Best average among 10 runs
Number Number Proport!on Number Proport!on
. Number : of conflict . Number ; of conflict .

of points of conflict Time (s) of conflict Time (s)

of edges free labels of edges free labels

labels o labels
(%) (%)

25 2.75 4.79 80.85 0.017 2.75 475 81.00 0.0
100 0.00 0.00 100.00 0.000 0.00 0.00 100.00 0.0
250 0.00 0.00 100.00 0.000 0.00 0.00 100.00 0.0
500 0.86 1.68 99.66 0.376 0.84 1.64 99.67 0.3
750 9.42 18.03 97.60 5.230 9.40 17.88 97.62 5.2
1000 42.58 80.42 91.96 26.796 42.2( 79.68 92.03 6926.
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Comparison among average results over 10 GRASP runs

100,00% K-
v
2 95,00% Ny,
<
S \
S 90,00% -
[&]
(D]
o
5 85,00% -
[
.g —e—RCL_Lenght = 2
5 —-0---RCL_Lenght = 5
g. 80,00% — & —RCL_Lenght =6
a ---%-- RCL_Lenght = 10
75,00%
25 100 250 500 750 1000
Problem

Figure 8— Comparison among proportion of conflict free label considering the averags resul

over 10 GRASP runs and the reduction proposed by Wagner et al (2001).
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Table 9. Comparison with the literature

Proportion of conflict free labels
Algorithm Problems

100 | 250 | 500 | 750 | 1000
GRASRsest, ReL Length = 6 100.00 100.00 | 99.67 97.72 92.20
GRASP\verage, RCL Length = 6 100.00 100.00 | 99.67 97.69 92.06
GRASRsest, ReL Length = 5 100.00 100.00 | 99.67 97.70 92.02
GRASP\verage, RCL Length = 5 100.00 100.00 | 99.67 97.74 92.07
LagClus (Ribeiro and Lorena, 2006) 100.00 100.00  99.6797.65 91.42
CGAgest(Yamamoto and Lorena, 2005) 100.0(¢ 100.00 99.60D 97.10 90.70
FALP (Yamamoto et al., 2005) 100.00 100.00  99.5( ®6.7) 90.12
CGAnverage(Yamamoto and Lorena, 2005) 100.00 100.00 99.60 96.80 90.40
Tabu Search (Yamamoto et al, 2002) 100.00 10000 99.30 8096) 90.00
GA with masking (Verner et al, 1997) 100.0( 99.98 98.79 95.99 88.96
GA (Verner et al, 1997) 100.00f 98.40 92.59 82.34 65.70
Simulated Annealing (Christensen et al, 1995) 100.00 099.9 98.30 92.30 82.09
Zoraster (Zoraster, 1990) 100.0Q 99.79 96.21 79.78 653.0
Hirsh (Hirsh, 1982) 100.00 | 99.58 95.70 82.04 60.24
3-opt Gradient Descent (Christensen et al, 1995) 100J00 7699.] 97.34 89.44 77.83
2-opt Gradient Descent (Christensen et al, 1995) 100J00 3699. 95.62 85.60 73.37
Gradient Descent (Christensen et al, 1995) 98.64 95.47 .4686| 72.40 58.29
Greedy Algorithm (Christensen et al, 1995) 95.12 88.82 5.1¥ 58.57 43.41
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