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Abstract 

This paper presents two new mathematical formulations for the Point-Feature Cartographic  

Label Placement Problem (PFCLP ) and a new Lagrangean relaxation with clusters (LagClus) to 

provide bounds to these formulations. The PFCLP can be represented by a conflict graph and the 

relaxation divides the graph in small sub problems (clusters) that are easily solved. The edges 

connecting clusters are relaxed in a Lagrangean way and a subgradient algorithm improves the 

bounds. The LagClus was successfully applied to a set of instances up to 1000 points providing 

the best results of those reported in the literature. 
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1. Introduction 

The point- feature cartographic label placement problem (PFCLP) can be considered as a 

combinatorial optimization problem. The problem is to place point labels in positions in a way 

that a map without overlaps is obtained (See Figure 1).   

Cartographic standardization [4] determines possible locations for the labels. Defining these 

positions, this problem can be modeled as a combinatorial optimization problem. Figure 2 shows 

a set of 8 possible positions for a label, which are called candidate positions. The numbers 

indicate the cartographic preference, and the upper right is the best cartographic position.  

Consider the problem with 4 candidate positions for each point shown in Figure 3(a). It can be 

easily represented by a conflict graph. Let N be the number of points that must be labeled and P 

the number of candidate positions for each point.  G={V,A} is the corresponding conflict graph, 

where V={v1, v2, …,vN*P} is the set of candidate positions (vertices) and A={(vi, vj): i, j ∈ V, i≠j} 

the conflicts (edges). Figure 3(b) presents the conflict graph obtained from Figure 3(a), and 

Figure 3(c) shows the optimal solution for this problem. Usually in the literature, proportions of 

conflict free labels assess the quality of labeling. In the case shown at Figure 3(c), we have 100% 

of conflict  free labels.     

The approaches studied in literature have different but connected objectives. The PFCLP can 

be modeled as a Maximal Independent Vertex Set Problem (MIVSP) [25] or as a Maximum 

Number of Conflict Free Labels Problem (MNCFLP) [4]. Both approaches count the final 

number of positioned conflicts free labels, but in MIVSP points with inevitable overlaps are not 

labeled, while all points must be labeled in MNCFLP. 
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The MNCFLP is more useful under the cartographic point of view than the MIVSP, but the 

map visibility is not fully explored. Figure 4 shows two possible solutions for a problem with 

four points. While both solutions are equivalent for MNCFLP presenting all labeled points in 

conflict, solution (b) has better visibility than solution (a). Besides, if we only count the number 

of conflicts (edges) in their graphs, solution (b) is better than (a). 

Considering the visibility questions in a map, the aim of this paper is to propose a new 

approach for the PFCLP, contributing with two integer linear programming models for the 

Minimum Number of Conflicts Problem (MNCP), and also presenting a Lagrangean heuristic 

that is applied after decomposition of the conflict graph in clusters, obtaining better results than 

those reported in the literature for a set of instances up to 1000 points. The MNCP, like the 

MNCFLP, labels all points in a map. 

The rest of the paper is organized as follows: in the next section, a brief review is shown 

about PFCLP, followed by the two proposed mathematical models. In Section 4 the relaxations 

are shown, followed by the computation results and conclusions.    

  

2. Literature Review 

Considering the PFCLP as a Maximal Independent Vertex Set Problem (MIVSP), a 

substantial research exists in algorithms and techniques to reduce the number of the generated 

constraints. The MIVSP has several applications in different fields such as in location of military 

defenses [3], Cut and Packing [1], pallet loading [7], DNA sequence [15], allocation models [9], 

anti-covering [19], forest planning [20] [6], harvest scheduling [10] and cellular networks [2]. 
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Specifically considering the MIVSP as a PFCLP, Zoraster [30] [31] [32] formulated 

mathematically the PFCLP working with conflict constraints and dummy candidate positions of 

high cost if candidate positions could not be labeled. He also proposed a Lagrangean relaxation 

for the problem and obtained some computational results on small-scale instances. 

Strijk et al [25] proposed other mathematical formulation exploring some cut constraints. 

These cuts are based on cliques and appeared before in the works of Moon and Chaudhry [18] 

and Murray and Church [21]. They also applied and proposed many heuristics: Simulated 

Annealing, Diversified Neighborhood Search, k-opt and Tabu Search. The last one showed the 

better results for their instances.  

The Maximum Number of Conflict Free Labels Problem (MNCFLP) was examined in several 

papers. Hirsh [13] developed a Dynamic Algorithm of label repulsion, where labels in conflicts 

are moved trying to remove a conflict. Christensen et al [4] [5] proposed an Exhaustive Search 

Approach, alternating positions of the labels that were previously positioned. Christensen et al 

[5] also proposed a Greedy Algorithm and a Discrete Gradient Descent Algorithm. These 

algorithms have difficulty of escaping from local maximum. Verner et al [26] applied a Genetic 

Algorithm with mask such that if a label is in conflict the changing of positions are allowed by 

crossover operators. 

Yamamoto et al [27] proposed a Tabu Search Algorithm that provides very good results when 

compared with the literature. Schreyer and Raidl [24] applied Ant Colony System but the results 

found were not interesting when compared to the ones obtained by Yamamoto et al [27]. 

Yamamoto and Lorena [28] developed an exact algorithm for small instances of MNCFLP and 

applied the Constructive Genetic Algorithm (CGA) proposed by Lorena and Furtado [17] to a set 
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of large-scale instances. The exact algorithm was applied to instances of 25 points and the CGA 

was applied to instances up to 1000 points, providing the best results of the literature.         

 

3. Mathematical Formulation Based on Candidate Positions  

The first mathematical formulation proposed for the Minimum Number of Conflicts Problem 

(MNCP) looks at the candidate positions to construct the conflict graph. The objective is to 

minimize the number of conflicts considering that for each point i correspond a number Pi of 

candidate positions. Each candidate position is represented by a binary variable xi,j, i∈{1,…,N},  

j∈{1,…,Pi}, and N is the number of points that will be labeled. If xi,j = 1 the candidate position j 

of the point i will be used (it will receive the label of point i), otherwise, xi,j = 0. Besides, for 

each possible candidate position of point i is associated a cost (a penalty) represented by wi,j. 

For each candidate position xi,j corresponds a set Si,j of index pairs of candidate positions 

conflicting with xi,j. Si,j is the set of index pairs (k,t) of candidate positions xk,t conflicting with xi,j. 

For all jiStk ,),( ∈∈ , where k∈{1,…,N}:k>i and t∈{1,…,Pk}, corresponds a binary variable tkjiy ,,,  

representing the conflict (an edge in the conflict graph G). 

Now, considering the information above, the objective function of the Minimum Number of 

Conflicts Problem (MNCP1) can be represented by: 

∑∑∑∑ ∑∑
== == ∈∈ 













++==

N

i

P

j Stk
tkjijiji

i

ji

yxw  MinMNCPv
1 1 ),(

,,,,,

,

)1(       (1) 



 6

However, for each point i only one candidate position should be selected. Consequently, only 

one of the candidate positions from Pi will be receiving the value 1. This set of constraints can be 

written as:  

Ni      x
iP

j
ji ....11

1
, ==∀∀==∑∑
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         (2) 

Considering the conflicts, placing a label in a candidate position should be taken into account 

the potential overlaps, and thereby a new constraint set is necessary. This set of constraints 

considers each position jix , , its respective conflict positions tkx ,  and one conflict variable tkjiy ,,, , 

expressed as: 
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Thus, the first formulation to MNCP is the following binary integer linear programming 

problem: 
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Constraint (7) ensures that all decision variables of the problem are binaries. When the 

objective function is minimized the conflict variables should be eliminated or minimized (if 

elimination is not possible). The formulation (4)-(7) is similar to the one proposed by Zoraster 

[31], however it allows positioning all labels minimizing the number of conflicts. 

This formulation was initially tested using CPLEX 7.5 [14] on a set of standard problems 

available at http://www.lac.inpe.br/~lorena/instancias.html that are standard sets of randomly 

generated points: grid size of 792 by 612 units, fixed size label of 30 by 7 units and page size of 

11 by 8.5 inch [28]. CPLEX uses fast algorithms and techniques, including cuts, heuristics and a 

variety of branching and node selection strategies. So, the optimal solution could be found in few 

seconds for the instances up to 500 points. For the larger instances with 750 and 1000 points, that 

are approximately solved by Yamamoto et al [27] and Yamamoto and Lorena [28], the optimal 

solutions were found in 9 of 25 instances in the problems with 750 points, and none for problems 

with 1000 points. CPLEX was running in several hours until reaching an out of memory state for 

a 512 MB RAM memory Pentium IV 2.66 GHz machine. 

 

 

 



 8

4. Mathematical Formulation Based on Candidate Positions and Points  

The second mathematical formulation proposed for the PFCLP considers the conflict graph 

formed by all candidate positions and its conflicts with points. It was inspired in the work of 

Murray and Church [21].  Given that for each point i only one candidate position will be used 

(constraints (5)), the conflict constraints (constraints (6)) will represent conflicts of candidate 

positions and points instead of others candidate positions.  

In addition to the variables and sets above mentioned, let Ci,j be a set with all points that 

contain candidate positions in conflict with the candidate position xi,j, and yi,j,c a conflict variable 

between the candidate position xi,j and the point c∈ Ci,j: c>i. So, the constraints (6) can be 

reformulated by the following constraints: 

i
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As the constraints defined in (8) considers conflict variables that indicate conflicts between 

candidate positions and points, the objective function (4) must be replaced by: 
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Thus, the MNCP can be reformulated as: 
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Table 1 reports the average number of constraints generated by MNCP1 and MNCP2 

formulations for the instances proposed by Yamamoto and Lorena [28], considering 4 candidate 

positions for each point. In the first column we can see the number of points, followed by the 

number of instances and the average number of constraints generated by MNCP1 and MNCP2. 

MNCP2 reduces significantly the number of constraints.  

The MNCP2 formulation is also tested running CPLEX on the set of instances proposed in 

[28], obtaining 12 optimal solutions of 25 for instances with 750 points. It shows that the 

MNCP2 model appears to be better than MNCP1. But, again with 1000 points, no optimal 

solution was found in several hours until CPLEX reaches an out of memory state.  

So, to find good lower and upper bounds, we applied a Lagrangean heuristic, observing the 

particular case of wi,j=1 in both models. In this case, MNCP1 and MNCP2 have a trivial lower 

bound equal to N, when all points are labeled without conflicts.  

 

4. Lagrangean Relaxation with Clusters 

We examine in this section a Lagrangean relaxation formed after the decomposition of the 

graph G in clusters. The relaxation was proposed observing that the conflict graph for PFCLP is 
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usually sparse and well adapted for a previous clustering phase. For example, for MNCP1 model, 

the graph shown in Figure 5 (a) can be partitioned in two clusters (b). In this partition some 

constraints represented by edges inter clusters are ignored (c) and the two smaller problems (d) 

can be independently solved. Zoraster [33] also partitioned the data with other objective in a 

Simulated Annealing algorithm for solving point feature label placement problems on petroleum 

industry.  

Thus, based on this idea and considering the MNCP1 formulation, we propose a new 

Lagrangean relaxation with clusters following the steps: 

i. Apply a graph partitioning heuristic to divide G in m parts, forming m clusters. The problem 

now can be written through the objective function defined in (4) subject to (5) and (6), where 

the conflict constraints (6) can be divided in two groups: one with conflict constraints 

corresponding to edges intra clusters and other formed by conflict constraints that correspond 

to edges connecting the clusters.  

ii. Two distinct multipliers relax, in the Lagrangean way, the constraints (5) and the conflict 

constraints corresponding to edges inter clusters. 

iii. The resultant  Lagrangean relaxation is decomposed in m sub-problems and solved. This 

Lagrangean relaxation will be denoted by LagClus hereafter. 

 

Relaxing constraints (5) the solution cannot be feasible to P and the following heuristics CH 

and IH are used to obtain and improve a feasible solution.   

 
Constructive Heuristic - CH 

Fill a feasible solution array with zeroes; 
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For i=1 to N 

Find in relaxed solution all positions different from zero for the point i. 

Select for feasible solution in the position i the candidate position j with smallest number of 

conflicts with elements in feasible solution. In case of tie, select the position corresponding to set 

Si,j with smallest cardinality.       

If none candidate position j for the point i is in relaxed solution, choose the candidate position 

corresponding to the candidate position set Si,j with smallest cardinality.       

End For. 

 

Improvement Heuristic - IH 

For each element of feasible solution, store in a conflict array the number of conflicts for each 

position.  

For i=1 to the length of the conflict array; 

If Conflict array[i] ≠ 0 

Seek among the possible candidate positions j, the one that presents the smallest 

number of conflicts with the current feasible solution.  

If there is some candidate position j with the number of the conflicts smaller than Conflict 

array[i], change Feasible Solution [i] with candidate position j.     

End For. 

 
The Lagrangean sub-problems can be solved by CPLEX in reasonable times. The 

partitioning of graph G was realized using METIS [16], a well-known heuristic for Graph 

Partitioning Problems. Given a conflict graph G and a pre-defined number m of clusters, the 

METIS divides the graph in m clusters minimizing the number of edges with terminations in 

different clusters. Recently Hicks et al [12] found good results applying this technique to 

Maximum Weight Independent Set Problems. 

A subgradient algorithm is used to solve the Lagrangean dual [23].  The subgradient method 

is similar to the one proposed by Held and Karp [11] and updates the multipliers considering step 
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sizes based on the relaxed solutions and the feasible solutions obtained with the heuristics CH 

and IH. We implemented the algorithm described by Narciso and Lorena [22]. 

Now, as the MNCP2 model considers conflicts between candidate positions and points, we 

apply the LagClus in an alternative mode. Figure 6 shows an example where the graph (b) is 

obtained from problem (a). We transform it in a point graph and a graph partitioning heuristic is 

applied (Figure 6 (c)). Starting from (c), we rebuild the original problem (d). At the end, the 

edges with terminations in different clusters (e) are relaxed in the Lagrangean mode generating 

smaller sub-problems that can be independently solved (f). 

Therefore for the MNCP2, the LagClus follows the steps: 

i. Apply a graph partitioning heuristic to divide G in m parts (G is a graph of conflicts between 

candidate positions and points, like Figure 6(c)), forming m clusters. The problem now can 

be written through the objective function defined in (10) subject to (11) and (12), where the 

conflict constraints (12) can be divided in two groups: one with conflict constraints 

corresponding to edges intra clusters and other formed by conflict constraints that correspond 

to edges connecting the clusters.  

ii. Distinct non-negative multipliers relax in the Lagrangean way the conflict constraints 

corresponding to edges inter clusters. 

iii. The resultant  Lagrangean relaxation is decomposed in m sub-problems and solved. 

 

Observe that the constraints (5) are not relaxed, so all relaxed solution are feasible to PMNC, 

and thus we use only the IH heuristic in the subgradient algorithm, that is the same explained 

before. 



 13

5. Computational Results 

The computational tests are performed on instances proposed by Yamamoto and Lorena [28] 

that are available at http://www.lac.inpe.br/~lorena/instancias.html that were used in previous 

works (See Yamamoto and Lorena [28]). The code in C++ and the tests were done in a computer 

with Pentium IV 2.66 GHz processor and 512 MB of RAM memory. As done by Zoraster [31], 

Yamamoto et al [27] and Yamamoto and Lorena [28], for all problems the cartographic 

preferences were not considered. It allowed us to compare our results to the ones present in the 

literature considering the cost or penalty equal to 1 for all the candidate positions, being the 

number of those positions equal to 4: wi,j=1 ∀i=1…N and ∀j=1…4. We believe that the LagClus  

can provide better results for 8 candidate positions, but with the corresponding increase in 

computational times. 

Tables 2 and 3 report the average results obtained for MNCP1 and MNCP2 models with 

CPLEX. The columns are the same in both tables. The first column shows the number of points, 

followed by the lower bound, upper bound and the gap = (Lower bound-Upper bound)/Upper 

bound*100. The fifth column presents the time in seconds, followed by the number of labels in 

conflict and by the proportion of free labels. We can see that for problems up to 500 points the 

results are the same, except the time that was smaller for MNCP2 model. For the others problems 

(750 and 1000 points), CPLEX obtained better solutions with the MNCP2 than the MNCP1 

formulation. It optimally solved 9 of 25 instances with 750 points with MNCP1 and 12 with 

MNCP2. For problems with 1000 points no optimal solution was found. 

Tables 4 and 5 report the average results obtained with LagClus. They have one more column 

than Tables 2 and 3, which notify the number of clusters used. These numbers were empirically 
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obtained. We can see that the results found for MNCP2 are better than the results for MNCP1. 

For the instances with 750 points, the LagClus for MNCP2 found 21 optimal solutions of 25 

instances while for MNCP1 no optimal solution was found. For problems with 1000 points, the 

LagClus for MNCP1 and MNCP2 did not found optimal solutions, but the bounds found for 

MNCP2 are better than those found by the CPLEX. 

Trying to obtain optimal solutions for instances with 1000 points, the number of clusters was 

reduced to 20 for MNCP2, and to see what happens if the number of clusters increases, we make 

another experiment with 30 clusters. The new results are reported in Table 6. As expected, when 

the number of clusters is reduced the time increases, but the solutions are better than the ones 

reported before. The opposite behavior is obtained when the number of clusters is increased. It 

indicates that with more constrained sub-problems the LagClus has better quality results.  

The best results found in this paper are compared to the best results of literature described in 

the works of Yamamoto et al [27], Yamamoto [29] and Yamamoto and Lorena [28]. Table 7 

compares the best average percentages of conflict free labels found using the models proposed 

(relaxations) with the best results found in the literature. Observe that those approaches have 

different objectives: the MNCFLP maximizes the number of conflict free labels and MNCP 

minimize the number of conflicts considering visibility questions, and the LagClus found better 

results to PFCLP than all reported in the literature considering the number of conflict free labels 

as a common objective. The computational times are not compared since the computational tests 

were realized in different machines. 

Now, to assess the quality provided by LagClus when there are cartographic preferences  

assigned to a candidate position, we elaborated another experiment with MNCP2 formulation but 
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considering that wi,j=j ∀i=1…N and ∀j=1…4. Thus, in this case there are some positions that are 

prioritized. The average results are reported in Table 8. The columns are the same shown at 

Table 6 with an additional column showing the size of the problem. Note that we have reduced 

gaps except for instances with 25 points. Moreover, the proportion of free labels is reduced 

compared to results of Tables 5 and 6, mainly due to the penalties assigned to candidate 

positions.  

 

6. Conclusion 

This paper presented two new mathematical formulations for Point-feature Cartographic 

Label Placement problem aiming a better map legibility. The objective is to minimize the 

number of existing overlaps in a labeling of all points on a map. Based on these formulations we 

proposed a Lagrangean relaxation with initial partition in clusters. For many instances the results 

found are very close to the optimal solutions and better than those reported in the literature.  

We believe that this work contributes for cartographic point labeling problems and can 

insight solutions to other related problems that can be formulated on conflict graphs. 
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Figure 1. An example of a map with some overlapping labels (see arrows)  
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Figure 2. Set of 8 candidate positions for one point [5]. 
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Figure 3. Conflict graph for PFCLP. (a) Problem, (b) Conflict graph and (c) Optimal solution.  

 
 

 
Figure 4. Possible solutions for a problem with 4 points. 
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Figure 5 - Partitioning the conflict graph for MNCP1 model. 
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Figure 6 - Partitioning the conflict graph for MNCP2 model. 
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Table 1. Average number of constraints generated by MNCP1 and MNCP2  
Number of 

points  
Number of  
instances 

MNCP1 MNCP2 

    

25 8 357 96 
100 25 202 153 
250 25 864 530 
500 25 2909 1412 
750 25 6181 2481 

1000 25 10700 3643 
 

Table 2. Average results for MNCP1 model with CPLEX [14]. 
MNCP1 

Problem 
Lower 
bound 

Upper 
bound GAP Time (s) 

Labels in 
conflict 

Proportion of 
free labels  

       

25 27.75 27.75 0.00% 1.60 4.88 100.00% 
100 100.00 100.00 0.00% 0.02 0.00 100.00% 
250 250.00 250.00 0.00% 0.06 0.00 100.00% 
500 500.84 500.84 0.00% 3.12 1.68 99.67% 
750 756.13 759.36 0.42% 6586.88 18.40 97.55% 

1000 1005.76 1048.88 4.11% 5258.98 90.76 90.92% 
 

Table 3. Average results for MNCP2 model with CPLEX [14]. 
MNCP2 

Problem Lower 
bound 

Upper 
bound GAP Time (s) Labels in 

conflict 
Proportion of 

free labels  
       

25 27.75 27.75 0.00% 0.20 4.88 80.50% 
100 100.00 100.00 0.00% 0.03 0.00 100.00% 
250 250.00 250.00 0.00% 0.06 0.00 100.00% 
500 500.84 500.84 0.00% 0.74 1.68 99.67% 
750 757.25 759.12 0.25% 9625.92 17.84 97.62% 

1000 1010.37 1051.92 3.94% 6683.80 97.12 90.29% 
 

Table 4. Average results with LagClus for MNCP1 

Problem Number of 
Clusters 

Lower 
bound 

Upper 
bound 

GAP Time (s) Labels in 
conflict 

Proportion 
of free 
labels  

        

25 2 25.13 27.88 9.69% 23.88 5.63 77.50% 
100 4 100.00 100. 00 0.00% 0.16 0.00 100. 00% 
250 10 250.00 250. 00 0.00% 2.36 0.00 100. 00% 
500 20 498.43 501. 52 0.61% 82.72 3.08 99.38% 
750 25 749.41 767. 08 2.30% 337.80 33.56 95.53% 

1000 60 1002.11 1070.60 6.39% 817.00 135.32 86.47% 
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Table 5. Average results with LagClus for MNCP2 

Problem Number of 
Clusters 

Lower 
bound 

Upper 
bound GAP Time (s) Labels in 

conflict 

Proportion 
of free 
labels  

        

25 2 25.62 28.13 8.67% 3.50 6.00 76.00% 
100 2 100.00 100. 00 0.00% 0.12 0.00 100. 00% 
250 2 250.00 250. 00 0.00% 0.12 0.00 100. 00% 
500 2 500.84 500. 84 0.00% 0.40 1.68 99.67% 
750 10 758.09 758. 96 0.12% 53.84 17.60 97.65% 

1000 25 1030.07 1047.32 1.64% 3445.40 90.16 90.98% 
 
 

Table 6. Average results obtained with LagClus for MNCP2 on problems with 1000 points. 
Number of 
Clusters  

Lower 
Bound 

Upper 
Bound GAP 

Time 
(s) 

Labels in 
conflict 

Proportion of 
free labels  

       

20 1031.23 1044.80 1.30% 3842.84 85.80 91.42% 
25 1030.07 1047.32 1.64% 3445.40 90.16 90.98% 
30 1026.81 1049.16 2.13% 734. 80 93.56 90.64% 

 
Table 7. Comparison with the literature 

Proportion of free labels  
Problems  Algorithm 

100 250 500 750 1000 
      

LagClus 100.00 100.00 99.67 97.65 91.42/90.98/90.64 
PMNC Exact – CPLEX 100.00 100.00 99.67 97.62 90.92 
CGABest

 [28]  100.00 100.00 99.60 97.10 90.70 
CGAAverage [28] 100.00 100.00 99.60 96.80 90.40 
Tabu Search [27] 100.00 100.00 99.30 96.80 90.00 
GA with masking [26] 100.00 99.98 98.79 95.99 88.96 
GA [26]  100.00 98.40 92.59 82.38 65.70 
Simulated Annealing [5] 100.00 99.90 98.30 92.30 82.09 
Zoraster [31]  100.00 99.79 96.21 79.78 53.06 
Hirsh [13] 100.00 99.58 95.70 82.04 60.24 
3-opt Gradient Descent [5] 100.00 99.76 97.34 89.44 77.83 
2-opt Gradient Descent [5] 100.00 99.36 95.62 85.60 73.37 
Gradient Descent [5] 98.64 95.47 86.46 72.40 58.29 
Greedy Algorithm [5] 95.12 88.82 75.15 58.57 43.41 
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Table 8. Average results obtained with LagClus for MNCP2 considering penalty for the candidate 
positions. 

Problem Number of 
Clusters  

Lower 
bound 

Upper 
bound 

GAP Time(s) Labels in 
conflict 

Proportion 
of free 
labels  

        

25 2 38.217 43.750 12.65% 2.750 18.000 28.00% 
100 2 106.60 106.60 0.00% 0.00 9.12 90.88% 
250 2 286.80 286.80 0.00% 0.16 52.00 79.20% 
500 2 638.80 638.80 0.00% 0.24 163.00 67.40% 
750 10 1049.47 1050.68 0.12% 30.36 335.56 55.26% 

1000 20 1509.32 1528.08 1.23% 248.28 545.32 45.47% 
1000 25 1504.27 1529.24 1.63% 267.96 549.44 45.06% 
1000 30 1499.16 1530.40 2.04% 183.32 552.66 44.73% 

 


