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Abstract 
We consider in this paper a new lagrangean relaxation with clusters for the 
Manufacturer’s Pallet Loading Problem (MPLP). The relaxation is based on the MPLP 
formulated as a Maximum Independent Set Problem (MISP) and represented in a conflict 
graph that can be partitioned in clusters. The edges inter clusters are relaxed in a 
lagrangean fashion. Computational tests attain the optimality for some instances 
considered difficult for a lagrangean relaxation. Our results show that this relaxation can 
be a successful approach for hard combinatorial problems modeled in conflict graphs. 
Moreover, we propose a column generation approach for the MPLP derived from the idea 
behind the lagrangean relaxation proposed. 
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1. Introduction 

The Pallet Loading Problem (PLP) is a well-known optimization problem and consists in 

arranging the maximum number of boxes onto a pallet without overlapping. The boxes can 

be rotated by 90o and the edges must be orthogonal to the pallets’ edges. According to 

Dyckhoff [15], this problem is classified as 2/B/O/C (Two-dimensional, Selection of items, 

One object, Identical items), therefore, this problem allows a special case of cut and 

packing problems. 

 

The PLP frequently appears in goods and logistics distribution. Any increase in the number 

of boxes packed onto the pallet can represent a decrease in logistics costs (Pureza and 

Morabito [35]). In the literature, there are two types of PLP (Hodgson [22]): The 

Manufacturer’s Pallet Loading Problem (MPLP) and Distributor’s Pallet Loading Problem 

(DPLP). The MPLP considers boxes with identical dimensions and the DPLP deals with 

boxes of different dimensions. In both cases, the boxes are packed in horizontal layers. 

Figure 1 shows an example of how the boxes can be arranged according to the problem 

type.  

 

Figure 1 – Types of PLP: (a) Manufacturer’s Pallet Loading Problem - MPLP and (b) 

Distributor’s Pallet Loading Problem - DPLP (Morabito and Morales [31]). 

 

In this paper we consider the MPLP, where given a fixed layer height h, the problem 

consists in arranging the maximum number of identical boxes (l,w) onto the pallet (L,W). 

The boxes faces (l,w) can be packed in two different orientations in each layer: (l,w) and 

(w,l). 



Several optimization methods have been developed to MPLP. The exact algorithms work, 

basically, with a tree search structure (Dowsland [14]; Bhattacharya et al. [8]; and Alvarez-

Valdez et al. [3]). Heuristics can be constructive, dividing the pallet in blocks (Young-Gun 

and Maing-Kyu [40]), recursive methods (Morabito and Morales [31]) and techniques 

based in identified structures known as G4 (Scheithauer and Terno [37]) and L (Lins et al. 

[28] and Birgin et al. [9]). Some other works applied metaheuristics, such as Tabu Search 

(Pureza and Morabito [35] and Alvarez-Valdes et al. [2]) and Genetic Algorithms (Herbert 

and Dowsland [19]).  

 

There are also upper bounds that consider the problem’s geometry, and they allowed us to 

state the solution quality of relaxations and heuristics. Letchford and Amaral [27] presented 

a good review of the known upper bounds for the MPLP and conducted a detailed analysis 

to determine which bounds dominate others. They compared the area bound, Barnes bound 

(Barnes [6]), Isermann bound (Isermann [24]) and the packing bound that is a linear 

relaxation of the formulation proposed by Beasley [7]. Their results have shown that the 

linear relaxation dominates the other examined bounds. More details can be obtained in 

Letchford and Amaral [27]. 

 

The MPLP can also be seen as a Maximum Independent Set Problem (MISP) (Dowsland 

[14]). The MPLP can be represented by a conflict graph where each vertex indicates the 

left-lower-corner of a box placed on the pallet, and the edges represent the possible 

overlapping between these vertices. 

 



Some problems represented in conflict graphs are well-adapted for a previous partitioning 

phase (clustering). This feature generates small scale sub-graphs (clusters) that are similar 

to the original one. Thus, if we remove the edges that are connecting all sub-graphs, the 

sub-problems can be independently solved providing bounds for the original problem. 

Besides, these edges correspond to constraints, and if they are relaxed in a lagrangean way, 

the bound can be improved and used to efficiently search optimal solutions. 

 

Thus, this paper explores this characteristic. The conflict graph for the MPLP is generated 

and partitioned in clusters. The edges connecting these clusters are relaxed in a lagrangean 

way. Each cluster is a sub-problem and can be solved independently by some commercial 

solver. The bound is obtained and the lagrangean multipliers are updated using a 

subgradient method. Again, the sub-problems are solved independently, and so on until 

some stopping test is reached. 

 

This lagrangean relaxation is called lagrangean relaxation with clusters, or simply LagClus. 

It was applied in point-feature cartographic label problems with better results than all 

reported in the literature (Ribeiro and Lorena [36]). The LagClus application to MPLP 

could ensure the optimality for instances that are considered difficult for lagrangean and 

linear relaxations. 

 

Moreover, given that sub-problems generate solutions for each cluster independently, we 

also present a column generation approach for the MPLP. We present a Dantzig-Wolfe 

decomposition for the MPLP and some results for instances reported in the literature. The 



results show that the restricted master problem, obtained at the final of the column 

generation process, provided the optimal solution for all tests. 

 

The structure of the paper is as follows. In Section 2, we present the MPLP and MISP 

formulation and a brief literature review of the MISP. In Section 3 we present the 

lagrangean relaxation with clusters proposed for the Beasley’s MPLP formulation. In 

Section 4 we show the Dantzig-Wolfe decomposition proposed for MPLP using an analogy 

with MISP. In Section 5 we present computational results of these two proposed 

approaches, and finally, some comments are discussed in Section 6. 

 

2. The MPLP and MISP formulation 

As mentioned by several works in the literature (Morabito and Morales [31]; Morabito and 

Farago [29]; Alvarez-Valdes et al. [3]), the MPLP can be formulated using a particular case 

of the Beasley’s [7] formulation for the two-dimensional non-guillotine cutting problem. 

Let L and W be the pallet length and width, respectively, such that L≥W, and, l and w, the 

box length and width, respectively, such that l≥w and l≤Min(L,W). To represent all possible 

ways to packing a box, let be (l1,w1)=(l,w) and (l2,w2)=(w,l). Thus, these possible positions 

can be represented by (l i,wi)i=1,2 that indicates the box length and width considering the 

orientation i.  

 

To represent the boxes position onto the pallet, let X and Y be two sets that are used to 

define the coordinates (p,q) of the box left-lower-corner. These sets can be described by:  
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These sets were introduced by Christofides and Whitlock [13] and they are called normal 

sets. The restriction of the boxes positions to these sets does not imply in loss of generality. 

 

Let a be a function that describe overlapping constraints between boxes. This function can 

be obtained in advance for each vertex (p,q) in relation to some other vertex (r,s), for each 

orientation i, where p∈X|p≤L-l i, q∈Y|q≤W-wi, r∈X, s∈Y, and i=1,2. Thus, this function can 

be expressed by: 
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Now, let xipq∈{0,1} be a decision binary variable for all p∈X|p≤L-l i, q∈Y|q≤W-wi, and 

i=1,2. If xipq=1, one box is placed in pallet coordinates (p,q) with orientation i, otherwise, 

xipq=0. 

 

Then the MPLP can be formulated as (Beasley [7]): 

{ }{ } 





= ∑∑ ∑
=

−≤∈ −≤∈

2

1
| |

)(
i

lLpXp wWqYq ipq
i i

xMaxMPLPv    (4) 

Subject to: 



 { }{ } YsXrxa
i

lLpXp wWqYq ipqipqrs
i i

∈∈∀≤∑∑ ∑
=

−≤∈ −≤∈   and     ,1
2

1
| |

  (5) 

 { } iiipq wWqYqlLpXpix −≤∈−≤∈=∀∈ | and ,| ,2...1  1,0    (6) 

 

The constraints set (5) avoids overlapping between positions. Each individual constraint 

ensures that a particular “square” is covered by at most one box. The constraints set (6) 

ensures that all variables are binaries. 

 

As mentioned before in Section 1, this problem can also be formulated as a Maximum 

Independent Set Problem (MISP). It is a classic problem, quite studied in the literature. The 

MISP normally appears embedded in applications and arises in several fields such as in 

coding theory, combinatorial auctions, computer vision and protein chemistry (see Bomze 

et al. [10]). 

 

Due to MISP wide application area, there are several approaches proposed in the literature. 

Exact techniques include explicit enumeration of maximal independent sets (Bron and 

Kerbosch [11]), Branch-and-Bound (Balas and Xue [4]; Östergard [33]), Branch-and-Price 

(Hicks et al. [21]) and continuous formulations under Branch-and-Bound (Barnes [5]). 

Besides, several heuristics were proposed such as vertices contraction algorithms (Hertz 

[20]), and the greedy heuristic of Kopf and Ruhe [26]. There are still local search heuristics 

that try improving some solution given by another method, for example, by a greedy 

metaheuristic (see Feo et al [16]). 

 



There are also several applications of metaheuristics for solving the MISP. Aarts and Korst 

[1] have used a Simulated Annealing, Bui and Eppley [12] Genetic Algorithms, and 

Gendreau et al. [17] have applied Tabu Search. 

 

Among all works related before, the Branch-and-Price of Hicks et al. [21] is interesting and 

the idea behind our work is based in this paper. They have worked with the Maximum 

Weight Independent Set Problem (MWISP) that differs of the MISP because the MWISP 

considers weight in the edges. The authors generated a conflict graph for the MWISP and 

partitioned it. All sub-graphs (sub-problems) are considered in a Branch-and-Price 

algorithm, where each sub-problem generates columns for a Restricted Master Problem 

(RMP). Their results were good for several instances reported in the literature for the 

MWISP. 

 

So, the MISP can be modeled as following. Let G=(V,E) be a graph where V is a set of 

vertices v, and E a set of edges (u,v) such that u,v∈V and u≠v. Consider that there are no 

weights assigned to the vertices or edges. Thus, the MISP consists in obtain a subset V’⊆V 

such that all pairs of vertices of V’ are not adjacent, that is, if r,s∈V’, then (r,s)∉E. 

Therefore, the MISP can be formulated by: 
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If xv=1 the vertex v is in the independent set, otherwise, xv=0. The constraints set (8) 

ensures that two adjacent vertices cannot be simultaneously in the independent set. The 

constraint set (9) indicates that all variables xv are binaries. 

 

The formulation (7)–(9) for the MISP can be used for the MPLP as mentioned by 

Dowsland [14], however it produces more constraints than in formulation defined in (4)-

(6). It happens because the Beasley’s [7] formulation uses cliques, reducing the number of 

constraints. For instance, consider a pallet with dimensions (L,W)=(5,4) and boxes 

(l,w)=(3,2). Figure 2(a) shows the formulation produced by model (4)-(6), Figure 2(b) 

shows the conflict graph obtained from formulation shown in Figure 2(a), and  Figure 2(c) 

shows the formulation produced by (7)-(9). As expected, formulation (7)–(9) produces 

more constraints than formulation (4)-(6), but all constraints are considered implicitly in 

MPLP formulation. 

 

Figure 2 – Comparison between MPLP and MISP formulation. (a) MPLP formulation, (b) 

conflict graph, and (c) MISP formulation. 

 

3. The Lagrangean relaxation with clusters (LagClus) 

The LagClus takes advantage that some conflict graphs are well-adapted for previous 

partitioning phase. So, from Beasley’s [7] formulation, a conflict graph can be obtained as 

we showed at Figure 2(b).   



The LagClus can be applied to the MPLP by following the steps: 

a) Create the conflict graph from MPLP formulation and apply a graph partitioning 

heuristic to divide the conflict graph in P  clusters. This step generates P  sub-

graphs (sub-problems); 

b) Relax the constraints present in MPLP formulation that correspond to vertices in 

different clusters. In each relaxed clique, verify if there are pairs of vertices that are 

in the same cluster, and if they exist, add to respective cluster one adjacent 

constraint between each pair found; 

c) The Lagrangean relaxation obtained is divided in P  sub-problems and solved.  

 

Note what happens at step b). If some clique constraint is relaxed, it must be decomposed 

and each one of their edges must be analyzed. If some edge is connecting two vertices in 

the same cluster, it must be appended to the respective cluster. This procedure is essential 

to become the relaxation stronger and to avoid invalid solution for some cluster. 

 

The example in the Figure 3 explains the partitioning phases. Figure 3(a) has two well-

defined clusters. Figure 3(b) shows all edges connecting the clusters that are relaxed in 

LagClus, and Figure 3(c) shows the two sub-graphs (or two sub-problems) similar to the 

original problem that can be separated and solved independently.  

 

Figure 3 – Lagrangean relaxation with clusters. (a) Conflict graph, (b) edges 

connecting the clusters, and (c) clusters or sub-problems. 

 



For the computational tests, we have implemented a subgradient algorithm to solve the 

Lagrangean dual (Parker and Rardin [34]; Narciso and Lorena [32]). The step size control 

in the algorithm was the one proposed by Held and Karp [18], beginning with 2 and halving 

it whenever the upper bound does not decrease for 15 successive iterations. The stopping 

tests used are: step less or equal than 0.005; difference between the best lower and upper 

bounds less than 1; and the length of the subgradient vector equal to zero. The lagrangean 

multipliers are initialized with zero. 

 

Figure 4 – Verify and improvement heuristic used in LagClus process. 

 

Before the first iteration of the subgradient algorithm, we used a simpler form of the block 

heuristic proposed by Smith and De Cani [38] to generate an initial solution. This solution 

is used in step size definition and can be substituted by a solution provided by the LagClus, 

made feasible to MPLP. This heuristic, called VI, identifies all vertices present in relaxed 

solution that are in conflict, removing from this solution the vertex with the largest number 

of vertices in conflict. This process is repeated until the heuristic produces a feasible 

solution to MPLP. After that, it tries to introduce other vertices in this solution aiming to 

get the maximum number of independent vertices. These other vertices are the remaining 

vertices, not including the first vertices removed from the relaxed solution. The VI heuristic 

is shown in Figure 4. The step sizes of the subgradient algorithm are updated considering 

the LagClus solutions and the feasible solutions obtained with VI or the block heuristic.  

 

 

 



4. Dantzig-Wolfe decomposition and column generation approach for the MPLP 

The classic implementation of a column generation approach uses a coordinator problem 

and sub-problems that generate columns. The coordinator problem or Restricted Master 

Problem (RMP), guides the sub-problems by their dual variables for search new columns 

that introduce new information for the RMP. 

 

Using the LagClus idea of partitioning, the Dantzig-Wolfe decomposition proposed by 

Hicks et al. [21] to MWISP can be reformulated to MISP, and consequently to MPLP. Let 

P  be the number of clusters formed after the conflict graph partitioning, as shown at Figure 

3(b). Thus, the MISP can be rewritten as: 
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Where: 

• xp is a decision variables vector assigned to the cluster p; 



• Ap is a binary matrix with dimensions M x |V| that represents the variable 

coefficients xp assigned to cluster p and also appearing at the M adjacent 

constraints between cluster; 

• Dp is a binary matrix with dimensions |E|-M x |V| that represents the variable 

coefficients xp assigned to adjacent constraints that are inside the cluster p; 

• the pn
B is a vector of binary variables assigned to cluster p of dimension np. 

 

Note that if we remove the constraint set defined by Equation (12), it allows us to divide the 

problem in P  distinct sub-problems as shown at Figure 3(c).  

 

Now, applying the Dantzig-Wolfe decomposition (DW) for the linear relaxation (LP) of the 

problem (10)-(13), we have the following problem: 
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 Where: 

• Jp is a set of extreme points of the cluster (sub-problem) p; 



• 
jp

x is a vector of dimension |Vp| that represents the extreme point PJj ∈∈∈∈ ; 

• jpλ  is a decision variable that represents the extreme point pJj ∈∈∈∈ . 

 

The sub-problems {{{{ }}}}Pp ...1∈∈∈∈  are MISPs defined by 
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Where ∆  is an M-dimensional vector of dual variables corresponding to constraints set 

(16). 

 

Considering the restricted master problem (RMP) of the decomposition above, i. e., a 

restricted number of columns, a new column provided by a sub-problem p is an improving 

column, if 0)( >− p
pMISPv β , where pβ  is a dual variable associated with the pth 

convexity constraint (17). 

 

The LagClus proposed in Section 3 can also be obtained directly from RMP model of (14)-

(17) using the formulation: 
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We used a RSF (Recursive-Smallest-First) heuristic, proposed by Yamamoto and Lorena 

[39] for point-feature cartographic label problem, to generate the initial pool of columns 

that is composed only by feasible solutions for the MPLP. Originally, RSF begins choosing 

the smallest vertex degree, and turns inactive this vertex and its adjacent vertices. 

Considering the list of active vertices, the degree for each vertex is calculated and the 

algorithm is repeated upon this new set of vertices until there are no more active vertices. 

The selected vertices form an independent set and a feasible solution for the MPLP. 

 

We have modified the original RSF to generate different solutions for MPLP, and, 

consequently, generate a good initial set of columns. Instead of starting the RSF choosing 

the smallest vertex degree, we randomly select one vertex, and the algorithm continues as 

the original version. This process is repeated until a number of desired solutions. Let ND be 

this number, then, the number of columns appended to RMP is PND*  because each cluster 

generates one column. 

 

To give a better idea of the decomposition and column generation approach described 

above, Figure 5 shows a diagram with flows and the main steps used.  Note that the shadow 

area represents the iteration necessary to produce improved columns. 

 

Figure 5 – Diagram of the steps used for the column generation approach 

 

 

 



5. Computational results 

There are several works that present instances of MPLP, as in Dowsland [14], Letchford 

and Amaral [27], Morabito and Morales [31], Alvarez-Valdez et al. [2] and Pureza and 

Morabito [35]. Other works propose instances obtained from real problems arising in 

carriers, such as in Morabito et al. [30] and in Morabito and Farago [29]. In this work, we 

present results for some of these instances that are divided in three groups. The first one has 

10 instances (L1-L10) proposed by Letchford and Amaral [27] and they are considered 

difficult for lagrangean and linear relaxation approaches. The second has 10 randomly 

selected instances (L11-L10) from COVER II proposed by Dowsland [14], and the last has 

10 randomly selected instances (L21-L30) obtained from COVER III, proposed by 

Alvarez-Valdez et al. [2], that do not present known optimal solutions.  

 

The code in C++ and the tests are performed in a computer with Pentium IV processor and 

512 MB of RAM memory. The sub-problems, either for LagClus or for sub-problems and 

RMP, were solved by CPLEX 7.5 (ILOG [23]). For the graph partitioning task, we have 

used the METIS (Karypis and Kumar [25]) that is a well-known heuristic for graph 

partitioning problems. Given a conflict graph G and a pre-defined number P  of clusters, 

the METIS divides the graph in P clusters minimizing the number of edges with 

terminations in different clusters.  

 

Tables 1, 2 and 3 report results for LagClus using the instances defined before. The 

columns are: 

• Instance – Name of the instance; 



• L and W – Pallet length and width, respectively; 

• l and w – Box length and width, respectively; 

• Optimal solution – Known optimal solution; 

• Best known solution– Best feasible solution reported in literature; 

• Area Bound – Area bound given by ( ) ( ) wlWL */*  (where  z  denotes rounding 

down to the nearest integer); 

• Barnes bound – Bound provided by Barnes [6]; 

• LP bounds – Linear relaxation of model (4) –(6) solved by CPLEX; 

• Lower bound – Lower bound found by VI heuristic or block heuristic; 

• Upper bound – Upper bound provided by LagClus; 

• GAP LB (%) – Percentage deviation gap from the optimal/best known solution to 

the best lower bound:  

(((( ))))
100*

solution Bestolution/s ptimalO

bound Lowersolution Bestolution/s ptimalO
LB Gap

−−−−==== ; 

• GAP UB (%) – Percentage deviation gap from the optimal/best known solution to 

the best upper bound:  

(((( ))))
100*

solution Bestolution/s ptimalO

solution Bestolution/s ptimalObound Upper
UB Gap

−−−−==== ; 

• Time – Time in seconds elapsed by LagClas reaching some of the stop conditions; 

• Iterations – Number of iterations used by LagClus.  

The number of clusters for all sets was previously obtained. We analyzed the tradeoff 

between the quality of the upper bounds and the computational times. We used number of 

clusters that provide good upper bounds with an acceptable time. 

 



As can be seen at Tables 1, 2 e 3, the lower bounds provided are very close to the optimal 

or to the best known solution. In worst case, our results differ in one box. The LagClus 

upper bounds are almost the same as the LP bounds, and the computational times are 

comparable. 

 

Table 1 presents all results for instances L1-L10 with 2 clusters. These instances are 

considered difficult for a lagrangean relaxation, but the LagClus was able to prove the 

optimal solution for one instance (L7) and for the others, the dual bound are very close to 

the optimal solution (almost 1 box). 

 

Table 1 – Computational results for 10 examples proposed by Letchford and Amaral [27], 

considered difficult for a lagrangean relaxation. 

 

Table 2 reports results for instances L11-L20 and for this group we have used 5 clusters. 

The LagClus was able to verify the optimality in 60% of instances: L13, L14, L16, L18, 

L19 and L20. Confirming the results shown in Table 1, the dual bounds are very close to 

the optimal solution. 

 

Table 2 – Computational results for 10 instances randomly obtained from COVER II 

(Dowsland [14]). 

 

Table 3 presents all results provided for the last ten instances with 15 clusters. Differently 

from the results in Table 1 and 2, the LagClus was not able to find the optimality of the 

lower bound. In fact, this means that the last group is hard to solve. Table 2 has shown that 



the LagClus is a stronger relaxation, but it did not found optimal solutions for these last 10 

instances. 

 

Table 3 – Computational results for 10 randomly examples obtained from COVER III 

(Alvarez-Valdez [2]), upon all instances that do not present optimal solution known. 

 

To show the relation between the quality of the upper bounds and the time consuming 

requirements, we decided to modify the number of clusters. The instance L7 was used for 

tests and the results are shown at Table 4. As expected, when the number of clusters is 

increased, the LagClus provided poor upper bounds but the time reduces. 

 

Table 4 – Computational results for instance L7 varying the number of clusters. 

 

The results found using the column generation approach for instances L1-L10 are shown at 

Table 5. The columns are: 

• Instance – Instance name; 

• Initial number of columns – Initial number of columns considered in RMP; 

• Initial RMP – Initial value provided by RMP; 

• Final number of columns – Final number of columns considered in RMP; 

• Final RMP – Final value provided by RMP; 

• Time CG (s) – Time consumed at the column generation process; 

• Solution (IP) – Value obtained by RMP solved using integer variables; 

• Time IP (s) – Time consumed for solving the integer RMP. 



 

We considered the same partitioning done as shown at Table 1, 2 and 3. In this work, we 

preferred stop the column generation approach when no more columns are appended to the 

RMP, that is, when no improving column is found, and we also did not use tests to remove 

unproductive columns from the RMP. 

 

The results shown at Table 5 validate the Dantzig-Wolfe decomposition, although the 

computational times were high in some cases. Indeed, the last RMP solved considering 

only integer variables, provided the optimal solutions in reasonable times (less than 5,10s 

for all instances). 

 

Table 5 – Computational results using the column generation approach. 

 

Figure 6 shows the column generation approach behavior and the LagClus bound obtained 

in Equation (22). Note that the RMP and LagClus bounds tend to be equivalent and are 

close to the area/Barnes bound. 

 

Figure 6 – LagClus and RMP behavior. 

 

The column generation results for the last two groups L11-L30 were in course, but can be 

obtained in reasonable times only after removing unproductive columns or to stop the 

column generation process using the converging RMP and LagClus bounds. They will be 

reported in a further work.  

 



 

6. Conclusions 

This work has presented a new lagrangean relaxation and a new column generation 

approach for the manufacturer’s pallet loading problem. The LagClus deals the MPLP as a 

Maximum Independent Set Problem (MISP) presenting a conflict graph that can be 

partitioned in clusters. The partitioning also permits a column generation approach to 

MPLP.  

 

The LagClus reaches to the optimality of some solutions and provided goods bounds for 

instances considered difficult for a lagrangean relaxation. The column generation has also 

presented good results for some instances as shown at Table 4, and we have demonstrated 

that the LagClus can be obtained using the dual variables provided by the column 

generation approach. 

 

Continued efforts are intended for a column generation algorithm to solve large scale 

MPLP instances. Besides, a desired complement to our studies will be a Branch-and-Price 

algorithm for the MPLP. 
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Figure 1 – Types of PLP: (a) Manufacturer’s Pallet Loading Problem - MPLP and (b) 
Distributor’s Pallet Loading Problem - DPLP (Morabito and Morales [31]). 
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MPLP
v(MPLP) = Max (x100 + x102 + 
x120 + x122 + x200 + x220 + x230)

Subject to:
x100 + x200 ≤ 1
x102 + x200 ≤ 1
x100 + x120 + x220 ≤ 1
x102 + x122 + x220 ≤ 1
x120 + x220 + x230 ≤ 1
x122 + x220 + x230 ≤ 1
x100 , x102, x120, x122, x200, x220,
x230 ∈ {0,1}

MISP
v(MISP) = Max (x100 + x102 + x120
+ x122 + x200 + x220 + x230)

Subject to:
x100 + x120 ≤ 1
x100 + x200 ≤ 1
x100 + x220 ≤ 1
x102 + x122 ≤ 1
x102 + x200 ≤ 1
x102 + x220 ≤ 1
x120 + x220 ≤ 1
x120 + x230 ≤ 1
x122 + x220 ≤ 1
x122 + x230 ≤ 1
x220 + x230 ≤ 1
x100 , x102, x120, x122, x200, x220,
x230 ∈ {0,1}

(a) (b) (c)  

Figure 2 – Comparison between MPLP and MISP formulation. (a) MPLP formulation, (b) 
conflict graph, and (c) MISP formulation. 
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Figure 3 – Lagrangean relaxation with clusters. (a) Conflict graph, (b) edges 
connecting the clusters, and (c) clusters or sub-problems. 

 



Verify and Improvement Heuristic - VI
1. Make feasible solution vector equal to the relaxed 

solution given by LagClus;
2. While not obtain a feasible solution Do

3. For each vertex i in feasible solution vector, 
define the number of vertices j that are in 
conflict with i;
4. Sort in decrease order the feasible solution 
vector according to number of conflicts;
5. Remove the first vertex from de feasible 
solution vector;

6. End while;
7. Verify among the other vertices not present in 

feasible solution and not present in that set 
removed from the feasible solution in step 2, if 
there are vertices that can be inserted in 
feasible solution.

 

Figure 4 – Verify and improvement heuristic used in LagClus process. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 – Diagram of the steps used for the column generation approach
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Generating the initial pool of 
columns for the Restricted 

Master Problem (RMP) 
with the RSF heuristic

Solving the sub-problems 
defined in (18)-(20) generating 

columns and obtaining the 
LagClus using the equation (21)

Are there columns with 
positive reduced cost?

End

Yes

No

Column Generation Approach

Solving the RMP



Table 1 – Computational results for 10 examples proposed by Letchford and Amaral [2], considered difficult for a lagrangean 
relaxation. 

 
                

Linear 
Relaxation LagClus 

Instance L W l w Optimal 
solution 

Area 
bound 

Barnes 
bound LP 

bound 
Time 

(s) 
Lower 
bound 

Upper 
bound 

GAP 
LB 
(%) 

GAP 
UB 
(%) 

Time 
(s) Iterations 

                

L1 32 22 5 4 34 35 35 35.0000 0.27 34 35.0022 0.00 2.95 25.00 145 
L2 32 27 5 4 42 43 43 43.0000 0.26 42 43.0023 0.00 2.39 88.00 145 
L3 40 26 7 4 36 37 37 37.0000 0.15 36 37.0020 0.00 2.78 98.00 145 
L4 40 33 7 4 46 47 47 47.0000 0.82 46 47.0023 0.00 2.18 276.00 145 
L5 53 26 7 4 48 49 49 49.0000 0.59 48 49.0110 0.00 2.11 318.00 145 
L6 37 30 8 3 45 46 46 46.0000 0.73 45 46.0334 0.00 2.30 202.00 145 
L7 81 39 9 7 49 50 50 50.0000 1.34 49 49.9936 0.00 2.03 257.00 67 
L8 100 64 17 10 36 37 37 37.0000 0.25 36 37.0022 0.00 2.78 114.00 145 
L9 100 82 22 8 45 46 46 46.0000 1.90 45 46.0250 0.00 2.28 404.00 145 
L10 100 83 22 8 45 47 46 46.0000 1.86 45 46.0250 0.00 2.28 403.00 145 

                

 
The columns contain: 

• Instance – Name of the instance; 
• L and W – Pallet length and width, respectively; 
• l and w – Box length and width, respectively; 
• Optimal solution – Known optimal solution; 
• Area Bound – Area bound given by ( ) ( ) wlWL */*  

(where  z  denotes rounding down to the nearest 

integer); 
• Linear relaxation – Bound and Time in seconds; 
• Barnes bound – Bound provided by Barnes [6]; 
• Lower bound – Lower bound by VI or block heuristic; 
• Upper bound – Upper bound provided by LagClus; 

• GAP LB (%) – Percentage deviation from the optimal 
solution to the best lower bound:  

(((( ))))
100*

olutions ptimalO

bound Lowerolutions ptimalO
LB Gap

−−−−====  

• GAP UB (%) – Percentage deviation from the 
optimal/best known solution to the best upper bound:  

(((( ))))
100*

olutions ptimalO

olutions ptimalObound Upper
UB Gap

−−−−====  

• Time – Time in seconds elapsed by LagClas reaching 
some of the stop conditions; 

• Iterations – Number of iterations used by LagClus.  



Table 2 – Computational results for 10 instances randomly obtained from COVER II (Dowsland, 1987). 
 

                

Linear 
Relaxation LagClus 

Instance L W l w Optimal 
solution 

Area 
bound 

Barnes 
bound LP 

bound 
Time 

(s) 
Lower 
bound 

Upper 
bound 

GAP 
LB 
(%) 

GAP 
UB 
(%) 

Time 
(s) Iterations 

                

L11 57 53 7 5 85 86 86 86.1379 68.09 85 86.3574 0.00 1.60 418.00 145 
L12 84 75 11 6 94 95 95 95.1678 72.56 94 95.6230 0.00 1.73 1192.00 145 
L13 151 131 19 11 94 94 94 95.1667 209.39 93 94.4966 1.06 0.53 2755.00 145 
L14 61 38 6 5 77 77 77 77.0698 22.01 76 77.2440 1.30 0.32 144.00 145 
L15 100 53 9 7 83 84 84 83.9025 55.14 83 84.1221 0.00 1.35 365.00 145 
L16 120 80 14 11 61 62 62 61.7500 6.03 61 61.9986 0.00 1.64 41.00 115 
L17 51 38 11 3 57 58 58 57.7500 5.73 57 58.3649 0.00 2.39 118.00 145 
L18 120 83 17 6 97 97 97 97.5000 90.68 97 97.9876 0.00 1.02 273.00 55 
L19 131 86 16 7 100 100 100 100.1432 230.52 100 100.9866 0.00 0.99 195.00 35 
L20 98 93 17 7 75 76 76 75.0000 89.97 75 75.9902 0.00 1.57 482.00 135 

                

 
The columns contain: 

• Instance – Name of the instance; 
• L and W – Pallet length and width, respectively; 
• l and w – Box length and width, respectively; 
• Optimal solution – Known optimal solution; 
• Area Bound – Area bound given by ( ) ( ) wlWL */*  

(where  z  denotes rounding down to the nearest 

integer); 
• Linear relaxation – Bound and Time in seconds; 
• Barnes bound – Bound provided by Barnes [6]; 
• Lower bound – Lower bound by VI or block heuristic; 
• Upper bound – Upper bound provided by LagClus; 

• GAP LB (%) – Percentage deviation from the optimal 
solution to the best lower bound:  

(((( ))))
100*

olutions ptimalO

bound Lowerolutions ptimalO
LB Gap

−−−−====  

• GAP UB (%) – Percentage deviation from the optimal 
solution to the best upper bound:  

(((( ))))
100*

olutions ptimalO

olutions ptimalObound Upper
UB Gap

−−−−====  

• Time – Time in seconds elapsed by LagClas reaching 
some of the stop conditions; 

• Iterations – Number of iterations used by LagClus.  



Table 3 – Computational results for 10 randomly examples obtained from COVER III (Alvarez-Valdez et al. [2]), upon all instances 
that do not present optimal solution known. 

 
                

Linear Relaxation LagClus 

Instance L W l w Optimal 
solution 

Area 
bound 

Barnes 
bound LP 

bound 
Time 

(s) 
Lower 
bound 

Upper 
bound 

GAP 
LB 
(%) 

GAP 
UB 
(%) 

Time 
(s) Iterations 

                

L21 99 88 12 5 144 145 145 145.0000 1370.07 144 145.8324 0.00 1.27 998.00 145 
L22 99 75 13 5 113 114 114 114.0000 233.54 113 114.7045 0.00 1.51 342.00 145 
L23 97 95 9 7 145 146 146 146.1436 1184.67 145 146.8228 0.00 1.26 620.00 145 
L24 98 98 10 7 136 137 137 137.1338 1480.91 136 137.6772 0.00 1.23 468.00 145 
L25 98 88 10 7 122 123 123 123.1186 594.73 122 123.6647 0.00 1.36 357.00 145 
L26 97 96 11 6 140 141 141 141.0000 891.98 140 141.8625 0.00 1.33 932.00 145 
L27 96 87 8 7 148 149 149 149.0000 1232.13 148 149.9519 0.00 1.32 638.00 145 
L28 99 70 15 4 114 115 115 115.0000 520.66 114 116.1673 0.00 1.90 348.00 145 
L29 91 70 12 5 105 106 106 106.0000 136.84 105 106.5183 0.00 1.45 156.00 145 
L30 93 84 11 6 117 118 118 118.0000 248.46 117 118.9239 0.00 1.64 387.00 145 

                

 
The columns contain: 

• Instance – Name of the instance; 
• L and W – Pallet length and width, respectively; 
• l and w – Box length and width, respectively; 
• Best solution – Best feasible solution reported in 

literature; 
• Area Bound – Area bound given by ( ) ( ) wlWL */*  

(where  z  denotes rounding down to the nearest 

integer); 
• Barnes bound – Bound provided by Barnes [6]; 
• Linear relaxation – Bound and Time in seconds; 
• Lower bound – Lower bound by VI  or block heuristic; 

• Upper bound – Upper bound provided by LagClus; 
• GAP LB (%) – Percentage deviation from the best 

known solution to the best lower bound:  
(((( ))))

100*
solution Best

bound Lowersolution Best
LB Gap

−−−−====  

• GAP UB (%) – Percentage deviation from the best 
known solution to the best upper bound:  

(((( ))))
100*

solution Best

solution Bestbound Upper
UB Gap

−−−−====  

• Time – Time in seconds elapsed by LagClas reaching 
some of the stop conditions; 

• Iterations – Number of iterations used by LagClus.  



Table 4 – Computational results for instance L7 varying the number of clusters. 
 

Number of 
clusters 

Iterations VI heuristic  LagClus Time (s) 
 

2 67 49 49,9936 257 
3 145 49 50,0612 86 
4 145 49 50,0429 31 
5 145 49 50,1019 33 
6 145 49 50,1316 27 
7 145 49 50,1360 18 
8 145 49 50,1512 18 
9 145 49 50,1241 19 
10 145 49 50,1229 22 
11 145 49 50,1785 21 
12 145 49 50,2020 21 
13 145 49 50,2199 16 
14 145 49 50,1731 18 
15 145 49 50,2645 15 

 

 
 
The columns contain: 

• Number of clusters – Number of clusters used in LagClus; 
• VI heuristic -  Result obtained by VI heuristic described in Figure 4 or block heuristic; 
• LagClus – Upper bound provided by LagClus; 
• Iterations – Number of iterations used by LagClus; 
• Time – Time in seconds elapsed by LagClas reaching some of the stop conditions. 



Table 5 – Computational results using the column generation approach. 
 

Column generation approach Solving the last RMP 
as integer Instance 

Initial number 
of columns 

Initial 
RMP 

Final number 
of columns 

Final 
RMP 

Time CG 
(s) 

Solution 
(IP) 

Time IP 
(s) 

 

L1 500 34.00 626 35.00 17 34 0.00 
L2 500 41.00 674 43.00 45 42 0.20 
L3 500 35.16 697 37.00 62 36 0,00 
L4 500 45.00 680 47.00 183 46 2.00 
L5 500 47.20 691 49.00 286 48 1.00 
L6 500 44.00 829 46.00 194 45 0.00 
L7 500 49.00 815 49.85 2166 49 1.00 
L8 500 36.00 645 37.00 27 36 0.00 
L9 500 44.00 813 46.00 331 45 4.01 
L10 500 44.00 813 46.00 326 45 5.10 

 

 
 
The columns contain: 

• Instance – Instance name; 
• Initial number of columns – Initial number of columns considered in RMP; 
• Initial RMP – Initial value provided by RMP; 
• Final number of columns – Final number of columns considered in RMP; 
• Final RMP – Final value provided by RMP; 
• Time CG (s) – Time consumed at the column generation process; 
• Solution (IP) – Value obtained by RMP solved using integer variables; 
• Time IP (s) – Time consumed for solving the integer RMP. 
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Figure 6 – LagClus  and RMP behavior. 

 


