
LAGRANGEAN RELAXATION WITH CLUSTERS AND COLUMN
GENERATION FOR THE MANUFACTURER’S PALLET LOADING PROBLE M

Glaydston Mattos Ribeiro1

Luiz Antonio Nogueira Lorena2*

LAC – Computer and Applied Mathematics Laboratory
INPE – Brazilian Space Research Institute

12.227-010, São José dos Campos – SP
Tel: +55 12 3945-6555 FAX: +55 12 3945-6357

E-mail: {glaydston1, lorena2}@lac.inpe.br

Abstract
We consider in this paper a new lagrangean relaxation with clusters for the
Manufacturer’s Pallet Loading Problem (MPLP). The relaxation is based on the MPLP
formulated as a Maximum Independent Set Problem (MISP) and represented in a conflict
graph that can be partitioned in clusters. The edges inter clusters are relaxed in a
lagrangean fashion. Computational tests attain the optimality for some instances
considered difficult for a lagrangean relaxation. Our results show that this relaxation can
be a successful approach for hard combinatorial problems modeled in conflict graphs.
Moreover, we propose a column generation approach for the MPLP derived from the idea
behind the lagrangean relaxation proposed.

Keywords: Pallet loading; Lagrangean relaxation; Column generation;

* Corresponding author

1. Introduction

The Pallet Loading Problem (PLP) is a well-known optimization problem and consists in

arranging the maximum number of boxes onto a pallet without overlapping. The boxes can

be rotated by 90o and the edges must be orthogonal to the pallets’ edges. According to

Dyckhoff [15], this problem is classified as 2/B/O/C (Two-dimensional, Selection of items,

One object, Identical items), therefore, this problem allows a special case of cut and

packing problems.

The PLP frequently appears in goods and logistics distribution. Any increase in the number

of boxes packed onto the pallet can represent a decrease in logistics costs (Pureza and

Morabito [35]). In the literature, there are two types of PLP (Hodgson [22]): The

Manufacturer’s Pallet Loading Problem (MPLP) and Distributor’s Pallet Loading Problem

(DPLP). The MPLP considers boxes with identical dimensions and the DPLP deals with

boxes of different dimensions. In both cases, the boxes are packed in horizontal layers.

Figure 1 shows an example of how the boxes can be arranged according to the problem

type.

Figure 1 – Types of PLP: (a) Manufacturer’s Pallet Loading Problem - MPLP and (b)

Distributor’s Pallet Loading Problem - DPLP (Morabito and Morales [31]).

In this paper we consider the MPLP, where given a fixed layer height h, the problem

consists in arranging the maximum number of identical boxes (l,w) onto the pallet (L,W).

The boxes faces (l,w) can be packed in two different orientations in each layer: (l,w) and

(w,l).

Several optimization methods have been developed to MPLP. The exact algorithms work,

basically, with a tree search structure (Dowsland [14]; Bhattacharya et al. [8]; and Alvarez-

Valdez et al. [3]). Heuristics can be constructive, dividing the pallet in blocks (Young-Gun

and Maing-Kyu [40]), recursive methods (Morabito and Morales [31]) and techniques

based in identified structures known as G4 (Scheithauer and Terno [37]) and L (Lins et al.

[28] and Birgin et al. [9]). Some other works applied metaheuristics, such as Tabu Search

(Pureza and Morabito [35] and Alvarez-Valdes et al. [2]) and Genetic Algorithms (Herbert

and Dowsland [19]).

There are also upper bounds that consider the problem’s geometry, and they allowed us to

state the solution quality of relaxations and heuristics. Letchford and Amaral [27] presented

a good review of the known upper bounds for the MPLP and conducted a detailed analysis

to determine which bounds dominate others. They compared the area bound, Barnes bound

(Barnes [6]), Isermann bound (Isermann [24]) and the packing bound that is a linear

relaxation of the formulation proposed by Beasley [7]. Their results have shown that the

linear relaxation dominates the other examined bounds. More details can be obtained in

Letchford and Amaral [27].

The MPLP can also be seen as a Maximum Independent Set Problem (MISP) (Dowsland

[14]). The MPLP can be represented by a conflict graph where each vertex indicates the

left-lower-corner of a box placed on the pallet, and the edges represent the possible

overlapping between these vertices.

Some problems represented in conflict graphs are well-adapted for a previous partitioning

phase (clustering). This feature generates small scale sub-graphs (clusters) that are similar

to the original one. Thus, if we remove the edges that are connecting all sub-graphs, the

sub-problems can be independently solved providing bounds for the original problem.

Besides, these edges correspond to constraints, and if they are relaxed in a lagrangean way,

the bound can be improved and used to efficiently search optimal solutions.

Thus, this paper explores this characteristic. The conflict graph for the MPLP is generated

and partitioned in clusters. The edges connecting these clusters are relaxed in a lagrangean

way. Each cluster is a sub-problem and can be solved independently by some commercial

solver. The bound is obtained and the lagrangean multipliers are updated using a

subgradient method. Again, the sub-problems are solved independently, and so on until

some stopping test is reached.

This lagrangean relaxation is called lagrangean relaxation with clusters, or simply LagClus.

It was applied in point-feature cartographic label problems with better results than all

reported in the literature (Ribeiro and Lorena [36]). The LagClus application to MPLP

could ensure the optimality for instances that are considered difficult for lagrangean and

linear relaxations.

Moreover, given that sub-problems generate solutions for each cluster independently, we

also present a column generation approach for the MPLP. We present a Dantzig-Wolfe

decomposition for the MPLP and some results for instances reported in the literature. The

results show that the restricted master problem, obtained at the final of the column

generation process, provided the optimal solution for all tests.

The structure of the paper is as follows. In Section 2, we present the MPLP and MISP

formulation and a brief literature review of the MISP. In Section 3 we present the

lagrangean relaxation with clusters proposed for the Beasley’s MPLP formulation. In

Section 4 we show the Dantzig-Wolfe decomposition proposed for MPLP using an analogy

with MISP. In Section 5 we present computational results of these two proposed

approaches, and finally, some comments are discussed in Section 6.

2. The MPLP and MISP formulation

As mentioned by several works in the literature (Morabito and Morales [31]; Morabito and

Farago [29]; Alvarez-Valdes et al. [3]), the MPLP can be formulated using a particular case

of the Beasley’s [7] formulation for the two-dimensional non-guillotine cutting problem.

Let L and W be the pallet length and width, respectively, such that L≥W, and, l and w, the

box length and width, respectively, such that l≥w and l≤Min(L,W). To represent all possible

ways to packing a box, let be (l1,w1)=(l,w) and (l2,w2)=(w,l). Thus, these possible positions

can be represented by (l i,wi)i=1,2 that indicates the box length and width considering the

orientation i.

To represent the boxes position onto the pallet, let X and Y be two sets that are used to

define the coordinates (p,q) of the box left-lower-corner. These sets can be described by:

=≥−≤≤=∈= ∑
=

+ 2,1 ,integer and 0 ,0 ,|
2

1

ibwLpblpZpX i
i

ii (1)

=≥−≤≤=∈= ∑
=

+ 2,1 ,integer and 0 ,0 ,|
2

1

ibwWqbwqZqY i
i

ii (2)

These sets were introduced by Christofides and Whitlock [13] and they are called normal

sets. The restriction of the boxes positions to these sets does not imply in loss of generality.

Let a be a function that describe overlapping constraints between boxes. This function can

be obtained in advance for each vertex (p,q) in relation to some other vertex (r,s), for each

orientation i, where p∈X|p≤L-l i, q∈Y|q≤W-wi, r∈X, s∈Y, and i=1,2. Thus, this function can

be expressed by:

 −−−−≤≤≤≤−−−−++++≤≤≤≤≤≤≤≤≤≤≤≤−−−−≤≤≤≤−−−−++++≤≤≤≤≤≤≤≤≤≤≤≤

====
Otherwise

Wwqsq and Llprp If
a ii

ipqrs ,0

110110,1
 (3)

Now, let xipq∈{0,1} be a decision binary variable for all p∈X|p≤L-l i, q∈Y|q≤W-wi, and

i=1,2. If xipq=1, one box is placed in pallet coordinates (p,q) with orientation i, otherwise,

xipq=0.

Then the MPLP can be formulated as (Beasley [7]):

{ }{ }

= ∑∑ ∑
=

−≤∈ −≤∈

2

1
| |

)(
i

lLpXp wWqYq ipq
i i

xMaxMPLPv (4)

Subject to:

 { }{ } YsXrxa
i

lLpXp wWqYq ipqipqrs
i i

∈∈∀≤∑∑ ∑
=

−≤∈ −≤∈ and ,1
2

1
| |

 (5)

 { } iiipq wWqYqlLpXpix −≤∈−≤∈=∀∈ | and ,| ,2...1 1,0 (6)

The constraints set (5) avoids overlapping between positions. Each individual constraint

ensures that a particular “square” is covered by at most one box. The constraints set (6)

ensures that all variables are binaries.

As mentioned before in Section 1, this problem can also be formulated as a Maximum

Independent Set Problem (MISP). It is a classic problem, quite studied in the literature. The

MISP normally appears embedded in applications and arises in several fields such as in

coding theory, combinatorial auctions, computer vision and protein chemistry (see Bomze

et al. [10]).

Due to MISP wide application area, there are several approaches proposed in the literature.

Exact techniques include explicit enumeration of maximal independent sets (Bron and

Kerbosch [11]), Branch-and-Bound (Balas and Xue [4]; Östergard [33]), Branch-and-Price

(Hicks et al. [21]) and continuous formulations under Branch-and-Bound (Barnes [5]).

Besides, several heuristics were proposed such as vertices contraction algorithms (Hertz

[20]), and the greedy heuristic of Kopf and Ruhe [26]. There are still local search heuristics

that try improving some solution given by another method, for example, by a greedy

metaheuristic (see Feo et al [16]).

There are also several applications of metaheuristics for solving the MISP. Aarts and Korst

[1] have used a Simulated Annealing, Bui and Eppley [12] Genetic Algorithms, and

Gendreau et al. [17] have applied Tabu Search.

Among all works related before, the Branch-and-Price of Hicks et al. [21] is interesting and

the idea behind our work is based in this paper. They have worked with the Maximum

Weight Independent Set Problem (MWISP) that differs of the MISP because the MWISP

considers weight in the edges. The authors generated a conflict graph for the MWISP and

partitioned it. All sub-graphs (sub-problems) are considered in a Branch-and-Price

algorithm, where each sub-problem generates columns for a Restricted Master Problem

(RMP). Their results were good for several instances reported in the literature for the

MWISP.

So, the MISP can be modeled as following. Let G=(V,E) be a graph where V is a set of

vertices v, and E a set of edges (u,v) such that u,v∈V and u≠v. Consider that there are no

weights assigned to the vertices or edges. Thus, the MISP consists in obtain a subset V’⊆V

such that all pairs of vertices of V’ are not adjacent, that is, if r,s∈V’, then (r,s)∉E.

Therefore, the MISP can be formulated by:

()

= ∑
∈Vv

vxMaxMISPv (7)

Subject to:

(((()))) Evu, xx vu ∈∈∈∈∀∀∀∀≤≤≤≤++++ 1 (8)

{{{{ }}}} Vu xu ∈∈∈∈∀∀∀∀∈∈∈∈ 1,0 (9)

If xv=1 the vertex v is in the independent set, otherwise, xv=0. The constraints set (8)

ensures that two adjacent vertices cannot be simultaneously in the independent set. The

constraint set (9) indicates that all variables xv are binaries.

The formulation (7)–(9) for the MISP can be used for the MPLP as mentioned by

Dowsland [14], however it produces more constraints than in formulation defined in (4)-

(6). It happens because the Beasley’s [7] formulation uses cliques, reducing the number of

constraints. For instance, consider a pallet with dimensions (L,W)=(5,4) and boxes

(l,w)=(3,2). Figure 2(a) shows the formulation produced by model (4)-(6), Figure 2(b)

shows the conflict graph obtained from formulation shown in Figure 2(a), and Figure 2(c)

shows the formulation produced by (7)-(9). As expected, formulation (7)–(9) produces

more constraints than formulation (4)-(6), but all constraints are considered implicitly in

MPLP formulation.

Figure 2 – Comparison between MPLP and MISP formulation. (a) MPLP formulation, (b)

conflict graph, and (c) MISP formulation.

3. The Lagrangean relaxation with clusters (LagClus)

The LagClus takes advantage that some conflict graphs are well-adapted for previous

partitioning phase. So, from Beasley’s [7] formulation, a conflict graph can be obtained as

we showed at Figure 2(b).

The LagClus can be applied to the MPLP by following the steps:

a) Create the conflict graph from MPLP formulation and apply a graph partitioning

heuristic to divide the conflict graph in P clusters. This step generates P sub-

graphs (sub-problems);

b) Relax the constraints present in MPLP formulation that correspond to vertices in

different clusters. In each relaxed clique, verify if there are pairs of vertices that are

in the same cluster, and if they exist, add to respective cluster one adjacent

constraint between each pair found;

c) The Lagrangean relaxation obtained is divided in P sub-problems and solved.

Note what happens at step b). If some clique constraint is relaxed, it must be decomposed

and each one of their edges must be analyzed. If some edge is connecting two vertices in

the same cluster, it must be appended to the respective cluster. This procedure is essential

to become the relaxation stronger and to avoid invalid solution for some cluster.

The example in the Figure 3 explains the partitioning phases. Figure 3(a) has two well-

defined clusters. Figure 3(b) shows all edges connecting the clusters that are relaxed in

LagClus, and Figure 3(c) shows the two sub-graphs (or two sub-problems) similar to the

original problem that can be separated and solved independently.

Figure 3 – Lagrangean relaxation with clusters. (a) Conflict graph, (b) edges

connecting the clusters, and (c) clusters or sub-problems.

For the computational tests, we have implemented a subgradient algorithm to solve the

Lagrangean dual (Parker and Rardin [34]; Narciso and Lorena [32]). The step size control

in the algorithm was the one proposed by Held and Karp [18], beginning with 2 and halving

it whenever the upper bound does not decrease for 15 successive iterations. The stopping

tests used are: step less or equal than 0.005; difference between the best lower and upper

bounds less than 1; and the length of the subgradient vector equal to zero. The lagrangean

multipliers are initialized with zero.

Figure 4 – Verify and improvement heuristic used in LagClus process.

Before the first iteration of the subgradient algorithm, we used a simpler form of the block

heuristic proposed by Smith and De Cani [38] to generate an initial solution. This solution

is used in step size definition and can be substituted by a solution provided by the LagClus,

made feasible to MPLP. This heuristic, called VI, identifies all vertices present in relaxed

solution that are in conflict, removing from this solution the vertex with the largest number

of vertices in conflict. This process is repeated until the heuristic produces a feasible

solution to MPLP. After that, it tries to introduce other vertices in this solution aiming to

get the maximum number of independent vertices. These other vertices are the remaining

vertices, not including the first vertices removed from the relaxed solution. The VI heuristic

is shown in Figure 4. The step sizes of the subgradient algorithm are updated considering

the LagClus solutions and the feasible solutions obtained with VI or the block heuristic.

4. Dantzig-Wolfe decomposition and column generation approach for the MPLP

The classic implementation of a column generation approach uses a coordinator problem

and sub-problems that generate columns. The coordinator problem or Restricted Master

Problem (RMP), guides the sub-problems by their dual variables for search new columns

that introduce new information for the RMP.

Using the LagClus idea of partitioning, the Dantzig-Wolfe decomposition proposed by

Hicks et al. [21] to MWISP can be reformulated to MISP, and consequently to MPLP. Let

P be the number of clusters formed after the conflict graph partitioning, as shown at Figure

3(b). Thus, the MISP can be rewritten as:

 ()

= ∑
=

P

p

pxMaxMISPv
1

 (10)

 Subject to:

 1111≤≤≤≤++++++++++++ PPxAxAxA L

2211 (11)

1111

1111
1111

≤≤≤≤

≤≤≤≤
≤≤≤≤

≤≤≤≤

PPxD

 xD

 xD

ML

22

11

 (12)

 Bx Bx PnPn ∈∈∈∈∈∈∈∈ LL
11 (13)

Where:

• xp is a decision variables vector assigned to the cluster p;

• Ap is a binary matrix with dimensions M x |V| that represents the variable

coefficients xp assigned to cluster p and also appearing at the M adjacent

constraints between cluster;

• Dp is a binary matrix with dimensions |E|-M x |V| that represents the variable

coefficients xp assigned to adjacent constraints that are inside the cluster p;

• the pn
B is a vector of binary variables assigned to cluster p of dimension np.

Note that if we remove the constraint set defined by Equation (12), it allows us to divide the

problem in P distinct sub-problems as shown at Figure 3(c).

Now, applying the Dantzig-Wolfe decomposition (DW) for the linear relaxation (LP) of the

problem (10)-(13), we have the following problem:

(((())))

==== ∑∑

==== ∈∈∈∈

P

p Jj

jp
jpLPDW

p

xMaxMISPv
1

λ (14)

Subject to:

 1
1

≤≤≤≤

∑ ∑
==== ∈∈∈∈

P

p Jj

jp
pjp

p

xAλ (15)

 {{{{ }}}}Pp

pJj
jp ...11 ∈∈∈∈∀∀∀∀====∑

∈∈∈∈
λ (16)

 {{{{ }}}} pjp Jj and Pp ∈∈∈∈∈∈∈∈∀∀∀∀≥≥≥≥ ...10λ (17)

 Where:

• Jp is a set of extreme points of the cluster (sub-problem) p;

•
jp

x is a vector of dimension |Vp| that represents the extreme point PJj ∈∈∈∈ ;

• jpλ is a decision variable that represents the extreme point pJj ∈∈∈∈ .

The sub-problems {{{{ }}}}Pp ...1∈∈∈∈ are MISPs defined by

 ()

 ∆−=

jpT
p

p xAMaxMISPv 1)((18)

 Subject to:

 1≤≤≤≤
jpp xD (19)

 pnjp
Bx ∈∈∈∈ (20)

Where ∆ is an M-dimensional vector of dual variables corresponding to constraints set

(16).

Considering the restricted master problem (RMP) of the decomposition above, i. e., a

restricted number of columns, a new column provided by a sub-problem p is an improving

column, if 0)(>− p
pMISPv β , where pβ is a dual variable associated with the pth

convexity constraint (17).

The LagClus proposed in Section 3 can also be obtained directly from RMP model of (14)-

(17) using the formulation:

{ } ∑∑
∆∈=

∆ +=
i

i

P

p

pMISPvMISPLv
δ

δ
1

)()((21)

We used a RSF (Recursive-Smallest-First) heuristic, proposed by Yamamoto and Lorena

[39] for point-feature cartographic label problem, to generate the initial pool of columns

that is composed only by feasible solutions for the MPLP. Originally, RSF begins choosing

the smallest vertex degree, and turns inactive this vertex and its adjacent vertices.

Considering the list of active vertices, the degree for each vertex is calculated and the

algorithm is repeated upon this new set of vertices until there are no more active vertices.

The selected vertices form an independent set and a feasible solution for the MPLP.

We have modified the original RSF to generate different solutions for MPLP, and,

consequently, generate a good initial set of columns. Instead of starting the RSF choosing

the smallest vertex degree, we randomly select one vertex, and the algorithm continues as

the original version. This process is repeated until a number of desired solutions. Let ND be

this number, then, the number of columns appended to RMP is PND* because each cluster

generates one column.

To give a better idea of the decomposition and column generation approach described

above, Figure 5 shows a diagram with flows and the main steps used. Note that the shadow

area represents the iteration necessary to produce improved columns.

Figure 5 – Diagram of the steps used for the column generation approach

5. Computational results

There are several works that present instances of MPLP, as in Dowsland [14], Letchford

and Amaral [27], Morabito and Morales [31], Alvarez-Valdez et al. [2] and Pureza and

Morabito [35]. Other works propose instances obtained from real problems arising in

carriers, such as in Morabito et al. [30] and in Morabito and Farago [29]. In this work, we

present results for some of these instances that are divided in three groups. The first one has

10 instances (L1-L10) proposed by Letchford and Amaral [27] and they are considered

difficult for lagrangean and linear relaxation approaches. The second has 10 randomly

selected instances (L11-L10) from COVER II proposed by Dowsland [14], and the last has

10 randomly selected instances (L21-L30) obtained from COVER III, proposed by

Alvarez-Valdez et al. [2], that do not present known optimal solutions.

The code in C++ and the tests are performed in a computer with Pentium IV processor and

512 MB of RAM memory. The sub-problems, either for LagClus or for sub-problems and

RMP, were solved by CPLEX 7.5 (ILOG [23]). For the graph partitioning task, we have

used the METIS (Karypis and Kumar [25]) that is a well-known heuristic for graph

partitioning problems. Given a conflict graph G and a pre-defined number P of clusters,

the METIS divides the graph in P clusters minimizing the number of edges with

terminations in different clusters.

Tables 1, 2 and 3 report results for LagClus using the instances defined before. The

columns are:

• Instance – Name of the instance;

• L and W – Pallet length and width, respectively;

• l and w – Box length and width, respectively;

• Optimal solution – Known optimal solution;

• Best known solution– Best feasible solution reported in literature;

• Area Bound – Area bound given by () () wlWL */* (where z denotes rounding

down to the nearest integer);

• Barnes bound – Bound provided by Barnes [6];

• LP bounds – Linear relaxation of model (4) –(6) solved by CPLEX;

• Lower bound – Lower bound found by VI heuristic or block heuristic;

• Upper bound – Upper bound provided by LagClus;

• GAP LB (%) – Percentage deviation gap from the optimal/best known solution to

the best lower bound:

(((())))
100*

solution Bestolution/s ptimalO

bound Lowersolution Bestolution/s ptimalO
LB Gap

−−−−==== ;

• GAP UB (%) – Percentage deviation gap from the optimal/best known solution to

the best upper bound:

(((())))
100*

solution Bestolution/s ptimalO

solution Bestolution/s ptimalObound Upper
UB Gap

−−−−==== ;

• Time – Time in seconds elapsed by LagClas reaching some of the stop conditions;

• Iterations – Number of iterations used by LagClus.

The number of clusters for all sets was previously obtained. We analyzed the tradeoff

between the quality of the upper bounds and the computational times. We used number of

clusters that provide good upper bounds with an acceptable time.

As can be seen at Tables 1, 2 e 3, the lower bounds provided are very close to the optimal

or to the best known solution. In worst case, our results differ in one box. The LagClus

upper bounds are almost the same as the LP bounds, and the computational times are

comparable.

Table 1 presents all results for instances L1-L10 with 2 clusters. These instances are

considered difficult for a lagrangean relaxation, but the LagClus was able to prove the

optimal solution for one instance (L7) and for the others, the dual bound are very close to

the optimal solution (almost 1 box).

Table 1 – Computational results for 10 examples proposed by Letchford and Amaral [27],

considered difficult for a lagrangean relaxation.

Table 2 reports results for instances L11-L20 and for this group we have used 5 clusters.

The LagClus was able to verify the optimality in 60% of instances: L13, L14, L16, L18,

L19 and L20. Confirming the results shown in Table 1, the dual bounds are very close to

the optimal solution.

Table 2 – Computational results for 10 instances randomly obtained from COVER II

(Dowsland [14]).

Table 3 presents all results provided for the last ten instances with 15 clusters. Differently

from the results in Table 1 and 2, the LagClus was not able to find the optimality of the

lower bound. In fact, this means that the last group is hard to solve. Table 2 has shown that

the LagClus is a stronger relaxation, but it did not found optimal solutions for these last 10

instances.

Table 3 – Computational results for 10 randomly examples obtained from COVER III

(Alvarez-Valdez [2]), upon all instances that do not present optimal solution known.

To show the relation between the quality of the upper bounds and the time consuming

requirements, we decided to modify the number of clusters. The instance L7 was used for

tests and the results are shown at Table 4. As expected, when the number of clusters is

increased, the LagClus provided poor upper bounds but the time reduces.

Table 4 – Computational results for instance L7 varying the number of clusters.

The results found using the column generation approach for instances L1-L10 are shown at

Table 5. The columns are:

• Instance – Instance name;

• Initial number of columns – Initial number of columns considered in RMP;

• Initial RMP – Initial value provided by RMP;

• Final number of columns – Final number of columns considered in RMP;

• Final RMP – Final value provided by RMP;

• Time CG (s) – Time consumed at the column generation process;

• Solution (IP) – Value obtained by RMP solved using integer variables;

• Time IP (s) – Time consumed for solving the integer RMP.

We considered the same partitioning done as shown at Table 1, 2 and 3. In this work, we

preferred stop the column generation approach when no more columns are appended to the

RMP, that is, when no improving column is found, and we also did not use tests to remove

unproductive columns from the RMP.

The results shown at Table 5 validate the Dantzig-Wolfe decomposition, although the

computational times were high in some cases. Indeed, the last RMP solved considering

only integer variables, provided the optimal solutions in reasonable times (less than 5,10s

for all instances).

Table 5 – Computational results using the column generation approach.

Figure 6 shows the column generation approach behavior and the LagClus bound obtained

in Equation (22). Note that the RMP and LagClus bounds tend to be equivalent and are

close to the area/Barnes bound.

Figure 6 – LagClus and RMP behavior.

The column generation results for the last two groups L11-L30 were in course, but can be

obtained in reasonable times only after removing unproductive columns or to stop the

column generation process using the converging RMP and LagClus bounds. They will be

reported in a further work.

6. Conclusions

This work has presented a new lagrangean relaxation and a new column generation

approach for the manufacturer’s pallet loading problem. The LagClus deals the MPLP as a

Maximum Independent Set Problem (MISP) presenting a conflict graph that can be

partitioned in clusters. The partitioning also permits a column generation approach to

MPLP.

The LagClus reaches to the optimality of some solutions and provided goods bounds for

instances considered difficult for a lagrangean relaxation. The column generation has also

presented good results for some instances as shown at Table 4, and we have demonstrated

that the LagClus can be obtained using the dual variables provided by the column

generation approach.

Continued efforts are intended for a column generation algorithm to solve large scale

MPLP instances. Besides, a desired complement to our studies will be a Branch-and-Price

algorithm for the MPLP.

Acknowledgments: The authors acknowledge Conselho Nacional de Desenvolvimento

Científico e Tecnológico (CNPq) for partial financial research support. The authors thank the

anonymous referees for their useful suggestions and comments.

References
1) Aarts, E. and Korst, J. Simulated Annealing and Boltzmann Machines. Chichester, UK: J. Wiley &

Sons, 1989.
2) Alvarez-Valdez, R.; Parreño, F. and Tamarit, J. M. A tabu search algorithm for pallet loading problem.

OR Spectrum, 27(1): 43-61, 2005.

3) Alvarez-Valdez, R.; Parreño, F. and Tamarit, J. M. A branch-and-cut algorithm for the pallet loading
problem. Computer and Operations Research, 32(11): 3007-3029, 2005.

4) Balas, E. and Xue, J. Weighted and unweighted maximum clique algorithms with upper bounds from
fractional coloring. Algorithmica , 15(5): 397-412, 1996.

5) Barnes, E. R. A branch-and-bound procedure for the largest clique in a graph. In: Pardalos, P. M. (ed.)
Approximation and Complexity in Numerical Optimizat ion: Continuous and Discrete Problems.
Boston: Kluwer Academic Publishers, 2000.

6) Barnes, F. W. Packing the maximum number of m x n tiles in a large p x q rectangle. Discrete
Mathematics, 26: 93-100, 1979.

7) Beasley, J. An exact two-dimensional non guillotine cutting tree search procedure. Operations
Research, 33: 49-64, 1985.

8) Bhattacharya, R.; Roy, R.; and Bhattacharya, S. An exact depth-first algorithm for the pallet loading
problem. European Journal of Operational Research, 110: 610-625, 1998.

9) Birgin, E. G.; Morabito, R. and Nishihara, F. H. A note on an L-approach for solving the manufacturer’s
pallet loading problem. Journal of the Operational Research Society, 2005. To Appear.

10) Bomze, I. M.; Budinich, M.; Pardalos, P. M. and Pelilo, M. The maximum clique problem. In: Du, D. and
Pardalos, P. M. (eds) Handbook of Combinatorial Optimization. Boston: Kluwer Academic
Publishers, 1999.

11) Bron, C. and Kerbosch, J. Finding all cliques of an undirected graph. Communications of the ACM,
16(9): 575-577, 1973.

12) Bui, T. N. and Eppley, P. H. A hybrid genetic algorithm for the maximum clique problem. In:
Proceedings 6th International Conference on Genetic Algorithms. Annals, p. 478-484, 1995.

13) Christofides, N. and Whitlock. C. An algorithm for two-dimensional cutting problems. Operations
Research, 25: 30-44, 1977.

14) Dowsland, K. An exact algorithm for the pallet loading problem. European Journal of Operational
Research, 31: 78-84, 1987.

15) Dyckhoff, H. A typology of cutting and packing problems. European Journal of Operational
Research, 44: 145-159, 1990.

16) Feo, T. A.; Resende, M. G. C. and Smith, S. H. A greedy randomized adaptive search procedure for
maximum independent set. Operations Research, 42: 860-878, 2000.

17) Gendreau, M.; Salvail, L. and Soriano, P. Solving maximum clique problem using a tabu search
approach. Annals of Operations Research, 41: 385-403, 1999.

18) Held, M. and Karp, R. M. The traveling salesman problem and minimum spanning trees: part II.
Mathematical Programming, 1: 6-25, 1971.

19) Herbert, A. and Dowsland, K. A family of genetic algorithm for the pallet loading problem. In: Osman, I.
H. and Kelly, J. P., editors. Metaheuristics: theory and applications. Dordrecht: Kluwer Academic
Publishers, p. 378-406, 1996.

20) Hertz, A. A fast algorithm for coloring Meyniel graphs. Journal of Combinatorial Theory B, 50(2):
231-240, 1990.

21) Hicks, I. V.; Warren, J. S.; Warrier, D. and Wilhenlm, W. E. A branch-and-price approach for the
maximum weight independent set problem. Texas A & M University: Department of Industrial
Engineering, 2004. Available at http://ie.tamu.edu/People/faculty/Hicks. Accessed January 22th, 2004.

22) Hodgson, T. A combined approach to the pallet loading problem. IIE Transactions, 14(3): 176-182,
1982.

23) ILOG CPLEX 7.5 Reference Manual. 7.5v. 610p. ©Copyright by ILOG, France, 2001.
24) Isermann, H. Ein planungssytem zur optimierung der palettenbeladung mit kongruenten rechteckigen

versandgebinden. OR Spectrum, 9: 235-249, 1987.
25) Karypis, G. and Kumar, V. Multilevel k-way partitioning scheme for irregular graphs. Journal of

Parallel and Distributed Computing, 48(1): 96-129, 1998.
26) Kopf, R. and Ruhe, G. A computational study of the weighted independent set problem for general

graphs. Found. Control Engi., 12(4): 167-180, 1987.
27) Letchford, A.N. and Amaral, A. Analysis of upper bounds for the pallet loading problem. European

Journal of Operational Research, 3(132): 582-593, 2001.
28) Lins, L.; Lins, S. and Morabito, R. An L-approach for packing (l,w)-rectangles into rectangular and L-

shaped pieces. Journal of the Operational Research Society, 54: 777-789, 2003.

29) Morabito, R. and Farago, R. A tight lagrangean relaxation bound for the manufacturer’s pallet loading
problem. Studia Informatica Universalis, 2(1): 57-76, 2002.

30) Morabito, R.; Morales, S. R. and Widmer, J. A. Loading optimization of palletized products on trucks.
Transportation Research Part E, 36: 285-296, 2000.

31) Morabito, R. and Morales, S. R. A simple and effective heuristic to solve the manufacturer’s pallet
loading problema. Journal of the Operational Research Society, 49: 819-828, 1998.

32) Narciso, M. G. and Lorena, L. A. N. Lagrangean/Surrogate relaxation for generalized assignment
problems. European Journal of Operational Research, 114: 165-177, 1999.

33) Östergard, P. R. J. A fast algorithm for the maximum clique problem. Discrete Applied Mathematics,
120: 197-207, 2002.

34) Parker, R. G. and Rardin, R. L. Discrete Optimization. New York: Academic Press, 1988.
35) Pureza, V. and Morabito, R. Some experiments with a simple tabu search algorithm for the

manufacturer’s pallet loading problem. Computers and Operations Research, 33(3):804-819, 2006.
36) Ribeiro, G. M. and Lorena, L. A. N. Lagrangean relaxation with clusters for point-feature cartographic

label placement problems. ECCO XVII post conference special issues, 2005. Submitted.
37) Scheithauer, G. and Terno, J. The G4-heuristic for the pallet loading problem. Journal of the

Operational Research Society, 47: 511-522, 1996.
38) Smith, A. and De Cani, P. An algorithm to optimize the layout of boxes in pallets. Journal of the

Operational Research Society, 31: 573-578, 1980.
39) Yamamoto, M. and Lorena, L. A. N. A constructive genetic approach to point-feature cartographic label

placement. In: Ibaraki, T.; Nonobe, K.; Yagiura, M. (eds) Metaheuristics: Progress as Real Problem
Solvers. Netherlands: Kluwer Academic Publishers, pages 285-300, 2005.

40) Young-Gun, G. and Maing-Kyu, K. A fast algorithm for two-dimensional pallet loading problems of
large size. European Journal of the Operational Research, 134: 193-202, 2001.

Identical boxes

Pallet

Different orientations

Different boxes

Pallet

(a) (b)

Figure 1 – Types of PLP: (a) Manufacturer’s Pallet Loading Problem - MPLP and (b)
Distributor’s Pallet Loading Problem - DPLP (Morabito and Morales [31]).

Conflict Graph

x102x100

x220

x120

x122

x200

x230

x102x100

x220

x120

x122

x200

x230

MPLP
v(MPLP) = Max (x100 + x102 +
x120 + x122 + x200 + x220 + x230)

Subject to:
x100 + x200 ≤ 1
x102 + x200 ≤ 1
x100 + x120 + x220 ≤ 1
x102 + x122 + x220 ≤ 1
x120 + x220 + x230 ≤ 1
x122 + x220 + x230 ≤ 1
x100 , x102, x120, x122, x200, x220,
x230 ∈ {0,1}

MISP
v(MISP) = Max (x100 + x102 + x120
+ x122 + x200 + x220 + x230)

Subject to:
x100 + x120 ≤ 1
x100 + x200 ≤ 1
x100 + x220 ≤ 1
x102 + x122 ≤ 1
x102 + x200 ≤ 1
x102 + x220 ≤ 1
x120 + x220 ≤ 1
x120 + x230 ≤ 1
x122 + x220 ≤ 1
x122 + x230 ≤ 1
x220 + x230 ≤ 1
x100 , x102, x120, x122, x200, x220,
x230 ∈ {0,1}

(a) (b) (c)

Figure 2 – Comparison between MPLP and MISP formulation. (a) MPLP formulation, (b)
conflict graph, and (c) MISP formulation.

(a) (b)

(c)

(a) (b)

(c)

Figure 3 – Lagrangean relaxation with clusters. (a) Conflict graph, (b) edges
connecting the clusters, and (c) clusters or sub-problems.

Verify and Improvement Heuristic - VI
1. Make feasible solution vector equal to the relaxed

solution given by LagClus;
2. While not obtain a feasible solution Do

3. For each vertex i in feasible solution vector,
define the number of vertices j that are in
conflict with i;
4. Sort in decrease order the feasible solution
vector according to number of conflicts;
5. Remove the first vertex from de feasible
solution vector;

6. End while;
7. Verify among the other vertices not present in

feasible solution and not present in that set
removed from the feasible solution in step 2, if
there are vertices that can be inserted in
feasible solution.

Figure 4 – Verify and improvement heuristic used in LagClus process.

Figure 5 – Diagram of the steps used for the column generation approach

Start

MISP
Formulation (10)-(13)

Applying the Dantzig-Wolfe
decomposition (DW)

MISPDW

Formulation (14)-(17)

Generating the initial pool of
columns for the Restricted

Master Problem (RMP)
with the RSF heuristic

Solving the sub-problems
defined in (18)-(20) generating

columns and obtaining the
LagClus using the equation (21)

Are there columns with
positive reduced cost?

End

Yes

No

Column Generation Approach

Solving the RMP

Table 1 – Computational results for 10 examples proposed by Letchford and Amaral [2], considered difficult for a lagrangean
relaxation.

Linear
Relaxation LagClus

Instance L W l w Optimal
solution

Area
bound

Barnes
bound LP

bound
Time

(s)
Lower
bound

Upper
bound

GAP
LB
(%)

GAP
UB
(%)

Time
(s) Iterations

L1 32 22 5 4 34 35 35 35.0000 0.27 34 35.0022 0.00 2.95 25.00 145
L2 32 27 5 4 42 43 43 43.0000 0.26 42 43.0023 0.00 2.39 88.00 145
L3 40 26 7 4 36 37 37 37.0000 0.15 36 37.0020 0.00 2.78 98.00 145
L4 40 33 7 4 46 47 47 47.0000 0.82 46 47.0023 0.00 2.18 276.00 145
L5 53 26 7 4 48 49 49 49.0000 0.59 48 49.0110 0.00 2.11 318.00 145
L6 37 30 8 3 45 46 46 46.0000 0.73 45 46.0334 0.00 2.30 202.00 145
L7 81 39 9 7 49 50 50 50.0000 1.34 49 49.9936 0.00 2.03 257.00 67
L8 100 64 17 10 36 37 37 37.0000 0.25 36 37.0022 0.00 2.78 114.00 145
L9 100 82 22 8 45 46 46 46.0000 1.90 45 46.0250 0.00 2.28 404.00 145
L10 100 83 22 8 45 47 46 46.0000 1.86 45 46.0250 0.00 2.28 403.00 145

The columns contain:

• Instance – Name of the instance;
• L and W – Pallet length and width, respectively;
• l and w – Box length and width, respectively;
• Optimal solution – Known optimal solution;
• Area Bound – Area bound given by () () wlWL */*

(where z denotes rounding down to the nearest

integer);
• Linear relaxation – Bound and Time in seconds;
• Barnes bound – Bound provided by Barnes [6];
• Lower bound – Lower bound by VI or block heuristic;
• Upper bound – Upper bound provided by LagClus;

• GAP LB (%) – Percentage deviation from the optimal
solution to the best lower bound:

(((())))
100*

olutions ptimalO

bound Lowerolutions ptimalO
LB Gap

−−−−====

• GAP UB (%) – Percentage deviation from the
optimal/best known solution to the best upper bound:

(((())))
100*

olutions ptimalO

olutions ptimalObound Upper
UB Gap

−−−−====

• Time – Time in seconds elapsed by LagClas reaching
some of the stop conditions;

• Iterations – Number of iterations used by LagClus.

Table 2 – Computational results for 10 instances randomly obtained from COVER II (Dowsland, 1987).

Linear
Relaxation LagClus

Instance L W l w Optimal
solution

Area
bound

Barnes
bound LP

bound
Time

(s)
Lower
bound

Upper
bound

GAP
LB
(%)

GAP
UB
(%)

Time
(s) Iterations

L11 57 53 7 5 85 86 86 86.1379 68.09 85 86.3574 0.00 1.60 418.00 145
L12 84 75 11 6 94 95 95 95.1678 72.56 94 95.6230 0.00 1.73 1192.00 145
L13 151 131 19 11 94 94 94 95.1667 209.39 93 94.4966 1.06 0.53 2755.00 145
L14 61 38 6 5 77 77 77 77.0698 22.01 76 77.2440 1.30 0.32 144.00 145
L15 100 53 9 7 83 84 84 83.9025 55.14 83 84.1221 0.00 1.35 365.00 145
L16 120 80 14 11 61 62 62 61.7500 6.03 61 61.9986 0.00 1.64 41.00 115
L17 51 38 11 3 57 58 58 57.7500 5.73 57 58.3649 0.00 2.39 118.00 145
L18 120 83 17 6 97 97 97 97.5000 90.68 97 97.9876 0.00 1.02 273.00 55
L19 131 86 16 7 100 100 100 100.1432 230.52 100 100.9866 0.00 0.99 195.00 35
L20 98 93 17 7 75 76 76 75.0000 89.97 75 75.9902 0.00 1.57 482.00 135

The columns contain:

• Instance – Name of the instance;
• L and W – Pallet length and width, respectively;
• l and w – Box length and width, respectively;
• Optimal solution – Known optimal solution;
• Area Bound – Area bound given by () () wlWL */*

(where z denotes rounding down to the nearest

integer);
• Linear relaxation – Bound and Time in seconds;
• Barnes bound – Bound provided by Barnes [6];
• Lower bound – Lower bound by VI or block heuristic;
• Upper bound – Upper bound provided by LagClus;

• GAP LB (%) – Percentage deviation from the optimal
solution to the best lower bound:

(((())))
100*

olutions ptimalO

bound Lowerolutions ptimalO
LB Gap

−−−−====

• GAP UB (%) – Percentage deviation from the optimal
solution to the best upper bound:

(((())))
100*

olutions ptimalO

olutions ptimalObound Upper
UB Gap

−−−−====

• Time – Time in seconds elapsed by LagClas reaching
some of the stop conditions;

• Iterations – Number of iterations used by LagClus.

Table 3 – Computational results for 10 randomly examples obtained from COVER III (Alvarez-Valdez et al. [2]), upon all instances
that do not present optimal solution known.

Linear Relaxation LagClus

Instance L W l w Optimal
solution

Area
bound

Barnes
bound LP

bound
Time

(s)
Lower
bound

Upper
bound

GAP
LB
(%)

GAP
UB
(%)

Time
(s) Iterations

L21 99 88 12 5 144 145 145 145.0000 1370.07 144 145.8324 0.00 1.27 998.00 145
L22 99 75 13 5 113 114 114 114.0000 233.54 113 114.7045 0.00 1.51 342.00 145
L23 97 95 9 7 145 146 146 146.1436 1184.67 145 146.8228 0.00 1.26 620.00 145
L24 98 98 10 7 136 137 137 137.1338 1480.91 136 137.6772 0.00 1.23 468.00 145
L25 98 88 10 7 122 123 123 123.1186 594.73 122 123.6647 0.00 1.36 357.00 145
L26 97 96 11 6 140 141 141 141.0000 891.98 140 141.8625 0.00 1.33 932.00 145
L27 96 87 8 7 148 149 149 149.0000 1232.13 148 149.9519 0.00 1.32 638.00 145
L28 99 70 15 4 114 115 115 115.0000 520.66 114 116.1673 0.00 1.90 348.00 145
L29 91 70 12 5 105 106 106 106.0000 136.84 105 106.5183 0.00 1.45 156.00 145
L30 93 84 11 6 117 118 118 118.0000 248.46 117 118.9239 0.00 1.64 387.00 145

The columns contain:

• Instance – Name of the instance;
• L and W – Pallet length and width, respectively;
• l and w – Box length and width, respectively;
• Best solution – Best feasible solution reported in

literature;
• Area Bound – Area bound given by () () wlWL */*

(where z denotes rounding down to the nearest

integer);
• Barnes bound – Bound provided by Barnes [6];
• Linear relaxation – Bound and Time in seconds;
• Lower bound – Lower bound by VI or block heuristic;

• Upper bound – Upper bound provided by LagClus;
• GAP LB (%) – Percentage deviation from the best

known solution to the best lower bound:
(((())))

100*
solution Best

bound Lowersolution Best
LB Gap

−−−−====

• GAP UB (%) – Percentage deviation from the best
known solution to the best upper bound:

(((())))
100*

solution Best

solution Bestbound Upper
UB Gap

−−−−====

• Time – Time in seconds elapsed by LagClas reaching
some of the stop conditions;

• Iterations – Number of iterations used by LagClus.

Table 4 – Computational results for instance L7 varying the number of clusters.

Number of
clusters

Iterations VI heuristic LagClus Time (s)

2 67 49 49,9936 257
3 145 49 50,0612 86
4 145 49 50,0429 31
5 145 49 50,1019 33
6 145 49 50,1316 27
7 145 49 50,1360 18
8 145 49 50,1512 18
9 145 49 50,1241 19
10 145 49 50,1229 22
11 145 49 50,1785 21
12 145 49 50,2020 21
13 145 49 50,2199 16
14 145 49 50,1731 18
15 145 49 50,2645 15

The columns contain:

• Number of clusters – Number of clusters used in LagClus;
• VI heuristic - Result obtained by VI heuristic described in Figure 4 or block heuristic;
• LagClus – Upper bound provided by LagClus;
• Iterations – Number of iterations used by LagClus;
• Time – Time in seconds elapsed by LagClas reaching some of the stop conditions.

Table 5 – Computational results using the column generation approach.

Column generation approach Solving the last RMP
as integer Instance

Initial number
of columns

Initial
RMP

Final number
of columns

Final
RMP

Time CG
(s)

Solution
(IP)

Time IP
(s)

L1 500 34.00 626 35.00 17 34 0.00
L2 500 41.00 674 43.00 45 42 0.20
L3 500 35.16 697 37.00 62 36 0,00
L4 500 45.00 680 47.00 183 46 2.00
L5 500 47.20 691 49.00 286 48 1.00
L6 500 44.00 829 46.00 194 45 0.00
L7 500 49.00 815 49.85 2166 49 1.00
L8 500 36.00 645 37.00 27 36 0.00
L9 500 44.00 813 46.00 331 45 4.01
L10 500 44.00 813 46.00 326 45 5.10

The columns contain:

• Instance – Instance name;
• Initial number of columns – Initial number of columns considered in RMP;
• Initial RMP – Initial value provided by RMP;
• Final number of columns – Final number of columns considered in RMP;
• Final RMP – Final value provided by RMP;
• Time CG (s) – Time consumed at the column generation process;
• Solution (IP) – Value obtained by RMP solved using integer variables;
• Time IP (s) – Time consumed for solving the integer RMP.

Instance L7

44

46

48

50

52

54

56

58

2 22 42 62 82 102 122 142

Iterations

O
b

je
ct

 F
u

n
ct

io
n

Area/Barnes bound

LagClus

RMP

Detail

49,7

49,8

49,9

50

50,1

122 127 132 137 142 147 152 157

Figure 6 – LagClus and RMP behavior.

