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Abstract 

This paper proposes a column generation approach for the Point-Feature 

Cartographic Label Placement problem (PFCLP). The column generation is based on 

a Lagrangean relaxation with clusters proposed for problems modeled by conflict 

graphs. The PFCLP can be represented by a conflict graph where vertices are 

positions for each label and edges are potential overlaps between labels (vertices). 

The conflict graph is decomposed into clusters forming a block diagonal matrix with 

coupling constraints that is known as a restricted master problem (RMP) in a 

Dantzig-Wolfe decomposition context. The clusters’ sub-problems are similar to the 

PFCLP and are used to generate new improved columns to RMP.  This approach was 

tested on PFCLP instances presented in the literature providing in reasonable times 

better solutions than all those known and determining optimal solutions for some 

difficult large-scale instances. 
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1. Introduction 

 

The cartographic label placement problem is an important task in automated 

cartography and Geographical Information Systems (GIS). Labels convey information 

about objects (or features) in graphical displays like graphs, networks, diagrams, or 

cartographic maps (Wolff, 1999).  

 

Features can be points (Cities), lines (Railways) or areas (States). However, the point-

feature labeling is considered a hard problem to be solved in an automated process, 

and has consequently received more attention by researchers (Wolff and Strijk, 2006). 

One of these problems can be described as placing point labels at predefined positions 

generating a map without overlaps (See Figure 1). In the literature, this problem is 

known as the Point-Feature Cartographic Label Placement problem (PFCLP) and has 

been shown to be NP-Hard (Formann and Wagner, 1991; Marks and Shieber, 1991). 

Thus, exact techniques are not common and metaheuristics/heuristics dominate the 

solution process (Wolff and Strijk, 2006). 

 

Figure 1 - An example of a map with some overlapping labels (see arrows)  

 

In PFCLP, each point has a list of candidate positions where labels can be placed. 

This list is defined according to a cartographic standardization (Christensen et al., 

1995). Figure 2 (a) shows 8 candidate positions for a point, where the numbers 

indicate the cartographic preferences in an increasing order. 

 

Figure 2 - Set of 8 candidate positions for one point (Christensen et al., 1995). 



 

Placing labels in candidate positions can generate overlaps (conflicts) compromising 

the map visibility. Thus, due to these potential overlaps, a PFCLP with N points can 

be represented through a graph G={V,E}, where V is a set of the candidate positions 

(vertices) and E a set of edges representing overlaps or conflicts. Figure 3(b) shows a 

conflict graph of the example shown in Figure 3(a). This example has four points 

(districts at Espírito Santo State – Brazil), each one with 4 candidate positions. The 

candidate position v3 has potential conflicts with positions v1, v2, v4 and v6; v4 has 

potential conflicts with v1, v2, v3, v5 and v6; and so on. Figure 3(c) shows a solution 

composed by v1, v5, v9 and v15 that is optimal for this problem because it does not 

present overlaps between labels. 

 

Figure 3 - Candidate positions (a), conflicts graph (b) and an optimal solution (c). 

 

Starting from this conflict graph representation three different approaches are usually 

considered for PFCLP. The problem can be considered as a Maximum Independent 

Vertex Set Problem (MIVSP) (Zoraster, 1990; Strijk et al., 2000), as a Maximum 

Number of Conflict Free Labels Problem (MNCFLP) (Christensen et al., 1994; 1995) 

and as a Minimum Number of Conflicts Problem (MNCP) (Ribeiro and Lorena, 

2006a; 2006c).  In all these approaches, the optimal value refers to the number of 

points in the final solution whose labels are not conflicting. However, the constraints 

requiring the labeling of a point are treated differently. 

 

Figure 4 – Clusters provided by a conflict graph of a map labeling problem on 250 

points. Adapted of Strijk et al. (2000) 



 

Besides, the conflict graph generates clusters of candidate positions (Ribeiro and 

Lorena, 2006a). For example, Figure 4 shows a conflict graph generated by a problem 

with 250 points where each one has four candidate positions. The black vertices 

represent the maximum independent set (Strijk et al., 2000). It is easy to see that this 

graph is sparse and presents well-defined clusters of candidate positions (see stippled 

lines). Ribeiro and Lorena (2006a) relax in a Lagrangean way the edges that are 

connecting the clusters rising to sub-problems that are independently solved. This 

relaxation was called Lagrangean relaxation with clusters (LagClus). 

 

Taking into account the idea behind the LagClus, this paper presents a column 

generation approach for the PFCLP. The original graph is partitioned into clusters 

forming blocks of constraints and the edges that are connecting the clusters form 

coupling constraints that are all used in a Restricted Master Problem (RMP). This 

column generation based on clusters was tested upon instances proposed in the 

literature and their results were successful compared with the best ones known. It 

provides better solutions than all those reported in the literature in reasonable 

computational times. 

 

The structure of the paper is as follows. Section 2 has a brief review of the PFCLP. 

Section 3 presents the Lagrangean relaxation with clusters with the main steps. The 

column generation approach for the PFCLP is presented in Section 4. Section 5 

presents our computational results and the final remarks are presented in Section 6. 

 

 



2. Literature Review 

 

The Maximal Independent Vertex Set Problem (MIVSP) presents a substantial 

research considering algorithms and heuristics in different fields. Specifically 

considering the MIVSP as a PFCLP, Zoraster (1986, 1990 and 1991) formulated 

mathematically the PFCLP working with conflict constraints and dummy candidate 

positions of high cost if the points could not be labeled. He also proposed a 

Lagrangean relaxation for the problem and obtained some computational results on 

small-scale instances. Strijk et al. (2000) proposed new mathematical formulations 

and examined a Tabu Search algorithm, obtaining interesting results for their 

instances. The authors explored some kind of constraints that are known as cut 

constraints, presented previously by Murray and Church (1996) and Moon and 

Chaudhry (1984).  

 

The Maximum Number of Conflict Free Labels Problem (MNCFLP) was examined in 

several works. Christensen et al. (1994; 1995) proposed an Exhaustive Search 

Approach that alternates positions of the labels previously positioned, to find a better 

solution. Christensen et al. (1995) also proposed a Greedy Algorithm and a Discrete 

Gradient Descent Algorithm. These algorithms have difficulty to escape from local 

maxima. Hirsch (1982) developed a Dynamic Algorithm of label repulsion, where 

labels in conflicts are moved trying to remove all conflicts. Verner et al. (1997) 

applied a Genetic Algorithm with mask such that if a label is in conflict, the changing 

of positions is allowed by crossover operators. 

 

Yamamoto et al. (2002) proposed a Tabu Search algorithm for the MNCFLP that 



provides good results compared to other methods from the literature. Schreyer and 

Raidl (2002) applied Ant Colony System but the results were not interesting when 

compared to the ones obtained by Yamamoto et al. (2002). Yamamoto and Lorena 

(2005) developed an exact algorithm for small instances of the PFCLP and applied the 

Constructive Genetic Algorithm (CGA) proposed by Lorena and Furtado (2001) to a 

set of large-scale instances. The exact algorithm was applied to instances of 25 points 

and the CGA was applied to instances up to 1000 points, providing better results than 

Yamamoto’s Tabu Search.   

 

Although the MNCFLP presents several different algorithms, it does not have a 

mathematical formulation like the model proposed by Zoraster (1991). However, 

almost all heuristics proposed for solving the MNCFLP uses the conflict graph as a 

base for their mechanism.  

 

The PFCLP, considered as a MIVSP or MNCFLP, can generate large conflict graphs 

that become hard to deal with it. Wagner et al. (2001) presented an approach to reduce 

the conflict graph provided by a PFCLP. The authors proposed three rules to reduce 

the size of the conflict graph without altering the set of optimal solutions. Moreover, 

they combined these rules with heuristic yielding near-optimal solutions. These rules 

are presented bellow: 

• If p has a candidate position pi, without any conflicts, declare pi to be part of 

the solution, and eliminate all other candidates of p (see Figure 5(a)); 

• If p has a candidate position pi that is only in conflict with some qk, and q has a 

candidate position qj (j ≠ k) that is only overlapped by pl (l ≠ i), then add pi and 

qj to the solution and eliminate all other candidates of p and q (see Figure 



5(b)); 

• If p has only one candidate position pi left, and the candidates overlapping pi 

form a clique, then declare pi to be part of the solution and eliminate all 

candidates that overlap pi (see Figure 5(c)). 

These rules are applied exhaustively. After eliminating a candidate pi, we must check 

recursively whether the rules can be applied in the neighborhood of pi.  

 

Figure 5 – Rules to reduce the conflict graph (Wagner et al., 2001). 

 

Considering now the PFCLP as a MNCP, Ribeiro and Lorena (2006a; 2006c) have 

proposed two models based on integer linear programming and also a Lagrangean 

heuristic that have presented the best-known solutions in the literature for the 

instances proposed by Yamamoto et al. (2002). The second formulation proposed by 

the authors reduces the number of constraints generated by the first model. This 

formulation is described bellow.   ++++==== ∑∑ ∑
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Where: 

• N is the number of  points to be labeled and Pi is the set of candidate positions 

of point i; 

• xij is a binary variable such as i∈N and j∈Pi; 

• wij is the cartographic preference assigned to each candidate position. It 

allowed us to prioritize some candidate positions as described in Figure 2(b); 

• Sij is a set of index pairs (k,t):k>i of candidate positions such that xkt has 

potential conflict with xij; 

• Cij is a set of all points that contain candidate positions in conflict with the 

candidate position xij; and 

• yijc is a conflict variable between the candidate position xij and the point 

c∈Cij:c>i . 

Constraint (2) ensures that each point must be labeled with one candidate position. 

Constraint (3) ensures that if vertices with potential conflicts are chosen to compose 

the solution, the objective function described in Equation (1) will be penalized. And 

Equation (4) indicates that all variables in the model are binaries. 

 

In an opposite way, there are some models where the labels can move around of its 

feature. They are known as slider models (Doddi et al., 1997; van Kreveld et al., 

1998; Klau and Mutzel, 2000; 2003), but the present work does not take into account 

sliding. 

 



3. Lagrangean Relaxation with Clusters (LagClus) 

 

The LagClus (Ribeiro and Lorena, 2006a; 2006b; 2006c) is a stronger relaxation that 

can be useful for several theoretical and practical large-scale problems. The first 

application of the LagClus was performed on point-feature instances. Later, Ribeiro 

and Lorena (2006b) applied this relaxation on pallet loading instances obtaining good 

results for instances that are considered difficult for a Lagrangean relaxation. Besides, 

the authors proposed a column generation for that problem using the cluster relaxation 

idea. Another interesting application was performed on woodpulp stowage context 

(Ribeiro and Lorena, 2005). This problem consists of arranging items into holds of 

dedicated maritime international ships. Recently, Côrrea et al. (2006) applied the 

LagClus to uncapacitated facility location instances providing better bounds than the 

ones presented in the literature for a set of difficult instances. 

 

For the PFCLP, the best solutions provided by LagClus uses a point graph instead the 

original conflict graph. Figure 6 shows an example where the original conflict graph 

(b) is obtained from problem (a). The original graph is transformed in a point graph 

collapsing the cliques and a graph partitioning heuristic is applied (Figure 6 (c)). 

Starting from (c), the cliques and the original graph are restored (d). At the end, the 

edges with terminations in different clusters (e) are relaxed in a Lagrangean way 

generating small sub-problems that are independently solved (f). 

 

Therefore LagClus follows these steps (Ribeiro and Lorena, 2006a): 

i. Apply a graph partitioning heuristic to divide G into P  clusters. The PFCLP 

can be written through the objective function defined in (1) subject to (2)-(4) 



where the conflict constraints (3) is now divided into two groups: one with 

conflict constraints corresponding to edges intra clusters and other formed by 

conflict constraints that correspond to edges connecting the clusters.  

ii. Using distinct non-negative multipliers, relax in a Lagrangean way, the conflict 

constraints corresponding to edges connecting the clusters. 

iii. The resultant Lagrangean relaxation is decomposed into P  sub-problems and 

solved.   

 

Figure 6 - Partitioning the conflict graph. (Ribeiro and Lorena, 2006a). 

 

Observe that the constraints (2) are not relaxed and appear in clusters, so all relaxed 

solutions are feasible to PFCLP. Thus, Ribeiro and Lorena (2006a) also used an 

improvement heuristic that receives a relaxed solution obtained during a subgradient 

algorithm, and tries to improve it.  

 

Ribeiro and Lorena (2006a) also performed experiments partitioning the original 

graph, but the best solutions were found partitioning the point graph. For more details, 

see Ribeiro and Lorena (2006a; 2006c). 

 

4. A Column Generation Approach for the PFCLP 

 

The model (1)-(4) can be rewritten using the decomposition of the original graph into 

clusters. Let P  be the number of clusters obtained after the partitioning of the conflict 

graph G=(V,E). Thus, G is partitioned in ( ) ),(),...,,(,, 222111 PPP
EVGEVGEVG  and set 
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clusters.   

 

Thus, the PFCLP formulation (1)-(4) can be rewritten as: 
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Where:  

• px is a vector of decision variables (candidate positions) assigned to cluster p; 

• py is a vector of variables assigned to conflict constraints defined by (3) with 

vertices in the same clusters; 

• y is a vector of variables assigned to M conflict constraints in (3) with vertices 

in different clusters; 

• pA is a matrix that represents the variable coefficients assigned to cluster p and 

also appearing at the M conflict constraints defined by (3) corresponding to Ê ;  



• yA is a matrix that represents the coefficients of the conflict variables inter 

clusters (See Figure 7);  

• pB is a matrix (block)  representing the variable coefficients assigned to cluster 

p;  

• R is vector with coefficients of the right-hand side of constraints defined in (2) 

and in (3) for each pE  and Ê ; and 

• ~ are the relational operators = or ≤≤≤≤  depending on the respective constraint. 

 

Figure 7 illustrates how to proceed with the formulation above. Note that the relaxed 

constraint (shaded rectangle) is obtained from a decomposition of the constraints in 

original formulation that presents vertices in different clusters.  

 

Figure 7 – An example to illustrate variables and matrices in model (5)-(7) 

 

So, relaxing in a Lagrangean way the constraints generated by matrices 

PpAp ,...,1====∀∀∀∀ , the model (5)-(7) can be decomposed into P  sub-problems. Sub-

problem p is defined as: 
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Where: 

• MR++++∈∈∈∈µ  are the Lagrangean multipliers assigned to the M lines (relaxed 

constraints) of the matrix Ap; and 

• Qp is the set of constraints embedded in cluster p. 

 

Therefore, the LagClus can be written as: 
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This formulation was implicitly used by Ribeiro and Lorena (2006a). 

 

The classic implementation of a column generation approach uses a coordinator 

problem and sub-problems. This coordinator problem also known as Restricted 

Master Problem (RMP), guides the sub-problems by their dual variables for searching 

new columns that introduce new information in the RMP. 

 

Thus, applying the Dantzig-Wolfe decomposition (DW) for a linear relaxation (LP) of 

the blocked constrained problem (5)-(7) generates the following RMP: 
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Where: 

• jpλ is a decision variable that represents the extreme point pJj ∈∈∈∈ ; and 

• pJ is a set of extreme points of the cluster (sub-problem) p. 

 

The P  sub-problems for this column generation approach are the same shown in 



Equation (8), however, the Lagrangean multipliers are replaced by the M dual 

variables (∆ ) corresponding to constraints (11): 
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For the RMP, a new column provided by pth cluster is an improving column if 

0)( <<<<−−−− ppPFCLPv β , where pβ is a dual variable associated with the pth convexity 

constraint (12). 

 

The LagClus presented in Equation (9) can also be obtained directly from RMP model 

(10)-(13) using the formulation: 

∑∑
========

−−−−−−−−++++====
M

m
mm

T
P

p
p APFCLPvPFCLPLv

11

)1()()( ∆∆∆ Ryy   (15) 

 

Figure 8 describes a diagram of our column generation approach. Note that the 

number of new columns is used as a stopping condition, so the column generation 

stops when no more columns present negative reduced costs. After the end of the 

column generation all decision linear variables present in RMP are transformed to 

binaries and a binary RMP is solved. This procedure can be considered a heuristic 

method for solving the PFCLP. A Branch & Price procedure could be used to search 

optimal solutions. See the recent survey (Desrosiers and Lübbecke, 2005) of column 

generation for a comprehensive understanding. 

 

Figure 8 – A diagram of the column generation approach 

 



5. Computational Results 

 

The computational tests are performed on instances proposed by Yamamoto et al. 

(2002) that are available at http://www.lac.inpe.br/~lorena/instancias.html. The set of 

instances is composed by twenty five instances for 25, 100, 250, 500, 750 and 1000 

points. The code in C++ and the tests were done in a computer with Pentium IV (3.33 

GHz) processor and 1.0 GB of RAM memory. As done by Zoraster (1990), 

Christensen et al. (1995) and Yamamoto and Lorena (2005), for all problems the 

cartographic preferences were not considered. It allowed us to compare our results to 

the ones presented in literature considering the cost or penalty equal to 1 for all the 

candidate positions, where the number of those positions is equal to 4: wi,j=1 ∀i=1…N 

and ∀j=1…4.  

 

The sub-problems were solved by CPLEX 10 (ILOG, 2006) and the partitioning of 

conflict graphs were obtained by METIS (Karypis and Kumar, 1998), a well-known 

heuristic for graph partitioning. Given a conflict graph and a pre-defined number P  

of clusters, METIS divides the graph into P  sub-graphs of approximately same size 

minimizing the number of edges whose ends lie in different clusters of the partition. 

Before divide the conflict graph and test the column generation approach, we applied 

the technique proposed by Wagner et al. (2001) to reduce the graph. 

 

Table 1 presents results using CPLEX 10 with formulation (1) – (4) upon reduced 

conflict graphs. The first column represents the average number of points followed by 

CPLEX’s average lower and upper bounds. The fourth column presents GAP = 

(Upper Bound - Lower Bound)/Upper Bound*100, followed by the number of 



instances optimally solved, average elapsed time in seconds, average number of labels 

in conflict and the average proportion of free labels found. This last column was used 

to compare the results with the literature. 

 

These results were found running CPLEX until the instances are solved or reach an 

out of memory condition. CPLEX solved all instances with 100, 250 and 500 points. 

For instances with 750 points, it solved 14 among 25 and zero instances with 1000 

points. It shows that even with reduced graphs, instances with 1000 points are hard 

instances to be solved. 

 

Table 1 – Results using CPLEX 10 with reduced conflict graph. 

 

Table 2 reports the main average results provided by the column generation approach. 

We considered in this paper the same number of clusters used by Ribeiro and Lorena 

(2006a): 2 clusters for instances with 25, 100, 250 and 500 points, 10 for instances 

with 750 points and 25 for instances with 1000 points. The sub-problems are solved 

by CPLEX. 

  

The initial pool of columns is composed of randomly generated solutions followed by 

an improvement heuristic. The algorithm used to generate these initial columns is 

shown in Figure 9. 

 

The columns in Table 2 represent: 

• Problem – Number of points; 



• Best solution inserted in RMP – Best solution inserted in RMP provided by a 

improvement heuristic (see Figure 9); 

• Initial number of columns – Initial number of columns inserted in RMP. This 

number is calculated by SolutionsInitialP _*  , where Initial_Solutions is the 

initial number of solutions generated by algorithm shown in Figure 9. Note that 

a solution is decomposed into P  small solutions to be inserted in RMP; 

• Initial RMP – Represent LPDWPFCLPv )(  with the initial pool of columns; 

• Final number of columns – Number of columns after the end of column 

generation process; 

• Final RMP – Represent LPDWPFCLPv )(  with the final pool of columns; 

• Time1 (s) – Elapsed time until the end of column generation process; 

• ILP – Final RMP has all decision variables transformed to binaries and solved. 

This column represents the objective function value found for the binary RMP 

(See Figure 8); 

• Time2 (s) – Elapsed time using binary RMP; 

• # of instances solved – Number of instances optimally solved by the column 

generation approach; 

• Labels in conflicts – Number of labels in conflicts found in binary RMP 

solution; 

• Proportion of free labels (%) – Proportion of free labels found in binary RMP 

solution. 

 

Figure 9 – Algorithm used to create and insert initial columns in RMP. 

 



Table 2 – Average results using column generation approach. 

 

The results reported in Table 2 are very promising. The column generation inserts a 

small set of new columns into RMP: 52 new columns in average for the instances with 

1000 points. The computational times varied from 0.00 to 84.04 seconds for column 

generation process and from 0.00 to 2.64 seconds for solving the binary RMP, so in 

the worst case, the column generation approach takes 86.68 seconds to be concluded. 

Looking at the best solutions initially inserted into RMP, we can note that they are 

worst than the Final RMP and ILP, showing that our column generation really inserts 

good columns into RMP. 

 

As our coefficients in objective function (6) are integer, we considered that an 

instance is optimally solved if the difference between solutions of binary RMP and 

final RMP is less than 1, besides for all instances the lower bound provided by 

column generation (column final RMP in Table 2) were the same of the LagClus 

defined by equation (15). Thus, this column generation approach found the optimal 

solutions for all instances with 100, 250, 500 and 750 points. For the instances with 

1000 points the column generation found 10 optimal solutions against zero optimal 

solutions of the direct CPLEX application to (1) – (4). 

 

Table 3 reports the main results found in this paper and compares them to the ones 

provided by CPLEX. Note that the column generation approach surpasses CPLEX for 

the hard instances (750 and 1000 points). 

 

Table 3 – Main results found with CPLEX and column generation approach 



 

The best results found in this paper were compared to the best-known of the literature 

described in works of Yamamoto and Lorena (2005) and Ribeiro and Lorena (2006a). 

Table 4 reports the average proportion of free labels found using our column 

generation approach and the best-known results found in the literature. Once more, 

note that those approaches have different objectives however the column generation 

found better results to PFCLP than all those reported in the literature. The 

computational times are not compared since the computational tests were performed 

in different machines. 

 

Table 4 - Comparison with the literature 

 

6. Conclusions 

 

This paper presented a column generation approach for the point-feature cartographic 

label placement problem. This method provided good solutions in reasonable 

computational times, improving the best-known solutions in the literature.  

 

This column generation is an interesting technique and can be used for solving several 

related problems that can be formulated on conflict graphs. It takes in advantage the 

conflict graph partitioning to form a special mathematical formulation with coupling 

constraints of edges with vertices in different clusters and block constraints (clusters) 

that are all considered in a restricted master problem. The Dantzig-Wolfe 

decomposition generates independent sub-problems (clusters) that are used to 

introduce new improving columns for the restricted master problem. 



 

Despite our column generation provides interesting results, there are aspects to be 

explored. In this paper, we performed a static partitioning whose graph is partitioned 

directly into P  clusters. However, this partitioning task can be performed 

hierarchically. This feature can be very useful to provide good solutions and to define 

the ideal numberP .  

 

We also believe that a heuristic or metaheuristic can be used for solving the sub-

problems instead CPLEX. This is an important note because there are several 

algorithms that find optimal solutions for small-scale problems in reduced 

computational times, so a hybrid column generation can be a useful approach for 

several large-scale problems. Finally, we think that a Branch & Price procedure can 

be easily designed using the column generation approach proposed in this work. 
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Figure 1 - An example of a map with some overlapping labels (see arrows)  
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Figure 2 - Set of 8 candidate positions for one point (Christensen et al., 1995). 
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Figure 3 - Candidate positions (a), conflicts graph (b) and an optimal solution (c). 



 
Figure 4 – Clusters provided by a conflict graph of a map labeling problem on 250 

points. Adapted from Strijk et al. (2000) 

 



 

Figure 5 – Rules to reduce the conflict graph (Wagner et al., 2001). 

 



 
Figure 6 - Partitioning the conflict graph (Ribeiro and Lorena, 2006a). 



 

Figure 7 – An example to illustrate variables and matrices in model (5)-(7)



 

Figure 8 – A diagram of the column generation approach. 



 

Figure 9 – Algorithm used to create and insert initial columns in RMP. 



Tables 

 

Table 1 – Results using CPLEX 10 with reduced graphs. 
Reduced Conflict Graph 

Problem 
Lower 
Bound 

Upper 
Bound 

GAP 
(%) 

# of 
instances 

solved 

Time 
(s) 

Labels 
in 

conflicts 

Proportion 
of free 

labels (%) 
100 100.00 100.00 0.00 25 0.00 0.00 100.00 
250 250.00 250.00 0.00 25 0.01 0.00 100.00 
500 500.84 500.84 0.00 25 0.14 1.68 99.67 
750 757.10 758.92 0.24 14 5517.12 17.60 97.65 

1000 1004.87 1042.88 3.64 0 4504.52 83.12 91.69 
 

 



Table 2 – Average results using column generation approach. 
Column Generation Integer RMP 

Problem Best Solution 
Inserted in 

RMP 

Initial 
Number of 
Columns 

Initial 
RMP 

Final 
Number of 
Columns 

Final 
RMP 

Time1 
(s) 

ILP Time2 
(s) 

# of 
instances 

solved 

Labels in 
conflicts 

Proportion of 
free labels 

(%) 

100 100.04 2000 100.00 2002 100.00 0.00 100.00 0.08 25 0.00 100.00 
250 250.84 2000 250.00 2002 250.00 0.00 250 0.12 25 0.00 100.00 
500 504.00 2000 502.84 2003.04 500.84 0.16 500.84 0.00 25 1.64 99.67 
750 785.52 10000 765.16 10013.40 758.92 14.48 758.92 0.48 25 17.50 97.67 
1000 1123.24 25000 1048.97 25052.44 1037.56 84.04 1039.04 2.64 10 76.04 92.40 

 



Table 3 – Main results found with CPLEX and column generation approach 

Problem Approach Lower Bound Upper Bound GAP 
(%) 

# of instances 
solved 

Time (s) Labels in 
conflicts 

Proportion of 
free labels (%) 

 CPLEX 100.00 100.00 0.00 25 0.00 0.00 100.00 
100 Column Generation 100.00 100.00 0.00 25 0.08 0.00 100.00 

 CPLEX 250.00 250.00 0.00 25 0.01 0.00 100.00 
250 Column Generation 250.00 250.00 0.00 25 0.12 0.00 100.00 

 CPLEX 500.84 500.84 0.00 25 0.14 1.68 99.67 
500 Column Generation 500.84 500.84 0.00 25 0.16 1.64 99.67 

 CPLEX 757.10 758.92 0.24 14 5517.12 17.60 97.65 
750 Column Generation 758.92 758.92 0.00 25 14.96 17.50 97.67 

 CPLEX 1004.87 1042.88 3.64 0 4504.52 83.12 91.69 
1000 Column Generation 1037.56 1039.04 0.14 10 86.68 76.04 92.40 

 



Table 4 – Comparison with the literature 
Proportion of free labels (%) 

Problems Algorithm 
100 250 500 750 1000 

Column Generation Approach 100.00 100.00 99.67 97.67 92.40 
LagClus (Ribeiro and Lorena, 2006a) 100.00 100.00 99.67 97.65 91.42 
CGABest

 (Yamamoto and Lorena, 2005) 100.00 100.00 99.60 97.10 90.70 
CGAAverage (Yamamoto and Lorena, 2005) 100.00 100.00 99.60 96.80 90.40 
Tabu Search (Yamamoto et al., 2002) 100.00 100.00 99.30 96.80 90.00 
GA with masking (Verner et al., 1997) 100.00 99.98 98.79 95.99 88.96 
GA (Verner et al., 1997) 100.00 98.40 92.59 82.38 65.70 
Simulated Annealing (Christensen et al., 1995) 100.00 99.90 98.30 92.30 82.09 
Zoraster (Zoraster, 1990) 100.00 99.79 96.21 79.78 53.06 
Hirsh (Hirsh, 1982) 100.00 99.58 95.70 82.04 60.24 
3-opt Gradient Descent (Christensen et al., 1995) 100.00 99.76 97.34 89.44 77.83 
2-opt Gradient Descent (Christensen et al., 1995) 100.00 99.36 95.62 85.60 73.37 
Gradient Descent (Christensen et al., 1995) 98.64 95.47 86.46 72.40 58.29 
Greedy Algorithm (Christensen et al., 1995) 95.12 88.82 75.15 58.57 43.41 

 


