
COLUMN GENERATION APPROACH FOR THE POINT-FEATURE

CARTOGRAPHIC LABEL PLACEMENT PROBLEM

Abstract

This paper proposes a column generation approach for the Point-Feature

Cartographic Label Placement problem (PFCLP). The column generation is based on

a Lagrangean relaxation with clusters proposed for problems modeled by conflict

graphs. The PFCLP can be represented by a conflict graph where vertices are

positions for each label and edges are potential overlaps between labels (vertices).

The conflict graph is decomposed into clusters forming a block diagonal matrix with

coupling constraints that is known as a restricted master problem (RMP) in a

Dantzig-Wolfe decomposition context. The clusters’ sub-problems are similar to the

PFCLP and are used to generate new improved columns to RMP. This approach was

tested on PFCLP instances presented in the literature providing in reasonable times

better solutions than all those known and determining optimal solutions for some

difficult large-scale instances.

Keywords

• Combinatorial optimization

• Integer programming

• Column generation

• Map Labeling

Authors

Glaydston Mattos Ribeiro1

UFES – Universidade Federal do Espírito Santo

CEUNES – Centro Universitário Norte do Espírito Santo

Rua Humberto de Almeida Franklin, 257, Bairro Universitário, São Mateus – ES – Brazil

ZIP CODE 29933-480

Tel/FAX: +55 27 3763-6284-6555

E-mails: glaydstonribeiro@ceunes.ufes.br

Luiz Antonio Nogueira Lorena2*

INPE – Insituto Nacional de Pesquisas Espaciais

LAC – Laboratório Associado de Computação e Matemática Aplicada

Avenida dos Astronautas, 1758, Jardim da Granja, São José dos Campos – SP – Brazil

ZIP CODE 12227-010

Tel: +55 12 3945-6555 FAX: +55 12 3945-6357

E-mails: {glaydston1, lorena2}@lac.inpe.br

*Author for correspondence

1. Introduction

The cartographic label placement problem is an important task in automated

cartography and Geographical Information Systems (GIS). Labels convey information

about objects (or features) in graphical displays like graphs, networks, diagrams, or

cartographic maps (Wolff, 1999).

Features can be points (Cities), lines (Railways) or areas (States). However, the point-

feature labeling is considered a hard problem to be solved in an automated process,

and has consequently received more attention by researchers (Wolff and Strijk, 2006).

One of these problems can be described as placing point labels at predefined positions

generating a map without overlaps (See Figure 1). In the literature, this problem is

known as the Point-Feature Cartographic Label Placement problem (PFCLP) and has

been shown to be NP-Hard (Formann and Wagner, 1991; Marks and Shieber, 1991).

Thus, exact techniques are not common and metaheuristics/heuristics dominate the

solution process (Wolff and Strijk, 2006).

Figure 1 - An example of a map with some overlapping labels (see arrows)

In PFCLP, each point has a list of candidate positions where labels can be placed.

This list is defined according to a cartographic standardization (Christensen et al.,

1995). Figure 2 (a) shows 8 candidate positions for a point, where the numbers

indicate the cartographic preferences in an increasing order.

Figure 2 - Set of 8 candidate positions for one point (Christensen et al., 1995).

Placing labels in candidate positions can generate overlaps (conflicts) compromising

the map visibility. Thus, due to these potential overlaps, a PFCLP with N points can

be represented through a graph G={V,E}, where V is a set of the candidate positions

(vertices) and E a set of edges representing overlaps or conflicts. Figure 3(b) shows a

conflict graph of the example shown in Figure 3(a). This example has four points

(districts at Espírito Santo State – Brazil), each one with 4 candidate positions. The

candidate position v3 has potential conflicts with positions v1, v2, v4 and v6; v4 has

potential conflicts with v1, v2, v3, v5 and v6; and so on. Figure 3(c) shows a solution

composed by v1, v5, v9 and v15 that is optimal for this problem because it does not

present overlaps between labels.

Figure 3 - Candidate positions (a), conflicts graph (b) and an optimal solution (c).

Starting from this conflict graph representation three different approaches are usually

considered for PFCLP. The problem can be considered as a Maximum Independent

Vertex Set Problem (MIVSP) (Zoraster, 1990; Strijk et al., 2000), as a Maximum

Number of Conflict Free Labels Problem (MNCFLP) (Christensen et al., 1994; 1995)

and as a Minimum Number of Conflicts Problem (MNCP) (Ribeiro and Lorena,

2006a; 2006c). In all these approaches, the optimal value refers to the number of

points in the final solution whose labels are not conflicting. However, the constraints

requiring the labeling of a point are treated differently.

Figure 4 – Clusters provided by a conflict graph of a map labeling problem on 250

points. Adapted of Strijk et al. (2000)

Besides, the conflict graph generates clusters of candidate positions (Ribeiro and

Lorena, 2006a). For example, Figure 4 shows a conflict graph generated by a problem

with 250 points where each one has four candidate positions. The black vertices

represent the maximum independent set (Strijk et al., 2000). It is easy to see that this

graph is sparse and presents well-defined clusters of candidate positions (see stippled

lines). Ribeiro and Lorena (2006a) relax in a Lagrangean way the edges that are

connecting the clusters rising to sub-problems that are independently solved. This

relaxation was called Lagrangean relaxation with clusters (LagClus).

Taking into account the idea behind the LagClus, this paper presents a column

generation approach for the PFCLP. The original graph is partitioned into clusters

forming blocks of constraints and the edges that are connecting the clusters form

coupling constraints that are all used in a Restricted Master Problem (RMP). This

column generation based on clusters was tested upon instances proposed in the

literature and their results were successful compared with the best ones known. It

provides better solutions than all those reported in the literature in reasonable

computational times.

The structure of the paper is as follows. Section 2 has a brief review of the PFCLP.

Section 3 presents the Lagrangean relaxation with clusters with the main steps. The

column generation approach for the PFCLP is presented in Section 4. Section 5

presents our computational results and the final remarks are presented in Section 6.

2. Literature Review

The Maximal Independent Vertex Set Problem (MIVSP) presents a substantial

research considering algorithms and heuristics in different fields. Specifically

considering the MIVSP as a PFCLP, Zoraster (1986, 1990 and 1991) formulated

mathematically the PFCLP working with conflict constraints and dummy candidate

positions of high cost if the points could not be labeled. He also proposed a

Lagrangean relaxation for the problem and obtained some computational results on

small-scale instances. Strijk et al. (2000) proposed new mathematical formulations

and examined a Tabu Search algorithm, obtaining interesting results for their

instances. The authors explored some kind of constraints that are known as cut

constraints, presented previously by Murray and Church (1996) and Moon and

Chaudhry (1984).

The Maximum Number of Conflict Free Labels Problem (MNCFLP) was examined in

several works. Christensen et al. (1994; 1995) proposed an Exhaustive Search

Approach that alternates positions of the labels previously positioned, to find a better

solution. Christensen et al. (1995) also proposed a Greedy Algorithm and a Discrete

Gradient Descent Algorithm. These algorithms have difficulty to escape from local

maxima. Hirsch (1982) developed a Dynamic Algorithm of label repulsion, where

labels in conflicts are moved trying to remove all conflicts. Verner et al. (1997)

applied a Genetic Algorithm with mask such that if a label is in conflict, the changing

of positions is allowed by crossover operators.

Yamamoto et al. (2002) proposed a Tabu Search algorithm for the MNCFLP that

provides good results compared to other methods from the literature. Schreyer and

Raidl (2002) applied Ant Colony System but the results were not interesting when

compared to the ones obtained by Yamamoto et al. (2002). Yamamoto and Lorena

(2005) developed an exact algorithm for small instances of the PFCLP and applied the

Constructive Genetic Algorithm (CGA) proposed by Lorena and Furtado (2001) to a

set of large-scale instances. The exact algorithm was applied to instances of 25 points

and the CGA was applied to instances up to 1000 points, providing better results than

Yamamoto’s Tabu Search.

Although the MNCFLP presents several different algorithms, it does not have a

mathematical formulation like the model proposed by Zoraster (1991). However,

almost all heuristics proposed for solving the MNCFLP uses the conflict graph as a

base for their mechanism.

The PFCLP, considered as a MIVSP or MNCFLP, can generate large conflict graphs

that become hard to deal with it. Wagner et al. (2001) presented an approach to reduce

the conflict graph provided by a PFCLP. The authors proposed three rules to reduce

the size of the conflict graph without altering the set of optimal solutions. Moreover,

they combined these rules with heuristic yielding near-optimal solutions. These rules

are presented bellow:

• If p has a candidate position pi, without any conflicts, declare pi to be part of

the solution, and eliminate all other candidates of p (see Figure 5(a));

• If p has a candidate position pi that is only in conflict with some qk, and q has a

candidate position qj (j ≠ k) that is only overlapped by pl (l ≠ i), then add pi and

qj to the solution and eliminate all other candidates of p and q (see Figure

5(b));

• If p has only one candidate position pi left, and the candidates overlapping pi

form a clique, then declare pi to be part of the solution and eliminate all

candidates that overlap pi (see Figure 5(c)).

These rules are applied exhaustively. After eliminating a candidate pi, we must check

recursively whether the rules can be applied in the neighborhood of pi.

Figure 5 – Rules to reduce the conflict graph (Wagner et al., 2001).

Considering now the PFCLP as a MNCP, Ribeiro and Lorena (2006a; 2006c) have

proposed two models based on integer linear programming and also a Lagrangean

heuristic that have presented the best-known solutions in the literature for the

instances proposed by Yamamoto et al. (2002). The second formulation proposed by

the authors reduces the number of constraints generated by the first model. This

formulation is described bellow. ++++==== ∑∑ ∑
==== ==== ∈∈∈∈

N

i

P

j Cc
ijcijij

i

ij

yxw MinMNCPv
1 1

)((1)

 Subject to:

Ni x
iP

j
ij ...11

1

====∀∀∀∀====∑
====

 (2)

i

Cc
ijijc

Stk
ktijij

Pj

Ni CyxxC

ijij

...1

...1
),(

====∀∀∀∀

====∀∀∀∀≤≤≤≤−−−−++++ ∑∑
∈∈∈∈∈∈∈∈ (3)

{{{{ }}}}

ij

i

ijcktij

Cc

Pj

Ni y and xx

∈∈∈∈
====∀∀∀∀

====∀∀∀∀∈∈∈∈

...1

...11,0,

 (4)

Where:

• N is the number of points to be labeled and Pi is the set of candidate positions

of point i;

• xij is a binary variable such as i∈N and j∈Pi;

• wij is the cartographic preference assigned to each candidate position. It

allowed us to prioritize some candidate positions as described in Figure 2(b);

• Sij is a set of index pairs (k,t):k>i of candidate positions such that xkt has

potential conflict with xij;

• Cij is a set of all points that contain candidate positions in conflict with the

candidate position xij; and

• yijc is a conflict variable between the candidate position xij and the point

c∈Cij:c>i .

Constraint (2) ensures that each point must be labeled with one candidate position.

Constraint (3) ensures that if vertices with potential conflicts are chosen to compose

the solution, the objective function described in Equation (1) will be penalized. And

Equation (4) indicates that all variables in the model are binaries.

In an opposite way, there are some models where the labels can move around of its

feature. They are known as slider models (Doddi et al., 1997; van Kreveld et al.,

1998; Klau and Mutzel, 2000; 2003), but the present work does not take into account

sliding.

3. Lagrangean Relaxation with Clusters (LagClus)

The LagClus (Ribeiro and Lorena, 2006a; 2006b; 2006c) is a stronger relaxation that

can be useful for several theoretical and practical large-scale problems. The first

application of the LagClus was performed on point-feature instances. Later, Ribeiro

and Lorena (2006b) applied this relaxation on pallet loading instances obtaining good

results for instances that are considered difficult for a Lagrangean relaxation. Besides,

the authors proposed a column generation for that problem using the cluster relaxation

idea. Another interesting application was performed on woodpulp stowage context

(Ribeiro and Lorena, 2005). This problem consists of arranging items into holds of

dedicated maritime international ships. Recently, Côrrea et al. (2006) applied the

LagClus to uncapacitated facility location instances providing better bounds than the

ones presented in the literature for a set of difficult instances.

For the PFCLP, the best solutions provided by LagClus uses a point graph instead the

original conflict graph. Figure 6 shows an example where the original conflict graph

(b) is obtained from problem (a). The original graph is transformed in a point graph

collapsing the cliques and a graph partitioning heuristic is applied (Figure 6 (c)).

Starting from (c), the cliques and the original graph are restored (d). At the end, the

edges with terminations in different clusters (e) are relaxed in a Lagrangean way

generating small sub-problems that are independently solved (f).

Therefore LagClus follows these steps (Ribeiro and Lorena, 2006a):

i. Apply a graph partitioning heuristic to divide G into P clusters. The PFCLP

can be written through the objective function defined in (1) subject to (2)-(4)

where the conflict constraints (3) is now divided into two groups: one with

conflict constraints corresponding to edges intra clusters and other formed by

conflict constraints that correspond to edges connecting the clusters.

ii. Using distinct non-negative multipliers, relax in a Lagrangean way, the conflict

constraints corresponding to edges connecting the clusters.

iii. The resultant Lagrangean relaxation is decomposed into P sub-problems and

solved.

Figure 6 - Partitioning the conflict graph. (Ribeiro and Lorena, 2006a).

Observe that the constraints (2) are not relaxed and appear in clusters, so all relaxed

solutions are feasible to PFCLP. Thus, Ribeiro and Lorena (2006a) also used an

improvement heuristic that receives a relaxed solution obtained during a subgradient

algorithm, and tries to improve it.

Ribeiro and Lorena (2006a) also performed experiments partitioning the original

graph, but the best solutions were found partitioning the point graph. For more details,

see Ribeiro and Lorena (2006a; 2006c).

4. A Column Generation Approach for the PFCLP

The model (1)-(4) can be rewritten using the decomposition of the original graph into

clusters. Let P be the number of clusters obtained after the partitioning of the conflict

graph G=(V,E). Thus, G is partitioned in ()),(),...,,(,, 222111 PPP
EVGEVGEVG and set

U
P

p
pEEE

1

\ˆ

====

==== , i. e., Ê represents a set of all edges of G whose ends lie in different

clusters.

Thus, the PFCLP formulation (1)-(4) can be rewritten as:

 ++++++++==== ∑
====

yyx
P

p

ppMinPFCLPv
1

)()((5)

Subject to:

 R

y

y

x

y

x
y

~

 B

 B

 B

A A A A

P

P

P

 MLOLL

L 1

2

1

21

000

000

000

 (6)

 }1,0{},...,1{ ∈∈∈∈∈∈∈∈∀∀∀∀∈∈∈∈ variables of vector a is Pp B and pVpp yyx (7)

Where:

• px is a vector of decision variables (candidate positions) assigned to cluster p;

• py is a vector of variables assigned to conflict constraints defined by (3) with

vertices in the same clusters;

• y is a vector of variables assigned to M conflict constraints in (3) with vertices

in different clusters;

• pA is a matrix that represents the variable coefficients assigned to cluster p and

also appearing at the M conflict constraints defined by (3) corresponding to Ê ;

• yA is a matrix that represents the coefficients of the conflict variables inter

clusters (See Figure 7);

• pB is a matrix (block) representing the variable coefficients assigned to cluster

p;

• R is vector with coefficients of the right-hand side of constraints defined in (2)

and in (3) for each pE and Ê ; and

• ~ are the relational operators = or ≤≤≤≤ depending on the respective constraint.

Figure 7 illustrates how to proceed with the formulation above. Note that the relaxed

constraint (shaded rectangle) is obtained from a decomposition of the constraints in

original formulation that presents vertices in different clusters.

Figure 7 – An example to illustrate variables and matrices in model (5)-(7)

So, relaxing in a Lagrangean way the constraints generated by matrices

PpAp ,...,1====∀∀∀∀ , the model (5)-(7) can be decomposed into P sub-problems. Sub-

problem p is defined as:

 (((())))[[[[]]]]p
ppppT

pp Q and AMinPFCLPv ∈∈∈∈++++++++==== yxyx1 :)(µ (8)

Where:

• MR++++∈∈∈∈µ are the Lagrangean multipliers assigned to the M lines (relaxed

constraints) of the matrix Ap; and

• Qp is the set of constraints embedded in cluster p.

Therefore, the LagClus can be written as:

 ∑∑
========

−−−−−−−−++++====
M

m
mm

P

p

T
p APFCLPvPFCLPLv

11

)1()()(µµµ Ryy (9)

This formulation was implicitly used by Ribeiro and Lorena (2006a).

The classic implementation of a column generation approach uses a coordinator

problem and sub-problems. This coordinator problem also known as Restricted

Master Problem (RMP), guides the sub-problems by their dual variables for searching

new columns that introduce new information in the RMP.

Thus, applying the Dantzig-Wolfe decomposition (DW) for a linear relaxation (LP) of

the blocked constrained problem (5)-(7) generates the following RMP:

 ++= ∑∑
= ∈

yyx
P

p Jj
jp

pp
LPDW

p

MinPFCLPv
1

)()(λ (10)

Subject to:

 [[[[]]]]∑∑
==== ∈∈∈∈

≤≤≤≤++++P

p Jj

jp

pjp

p

A
1

Ry
y

x
λ (11)

 },...,1{1 Pp

pJj
jp ∈∈∈∈∀∀∀∀====∑

∈∈∈∈

λ (12)

 pjp Jj and Pp ∈∈∈∈∈∈∈∈∀∀∀∀≥≥≥≥ },...,1{0λ (13)

Where:

• jpλ is a decision variable that represents the extreme point pJj ∈∈∈∈ ; and

• pJ is a set of extreme points of the cluster (sub-problem) p.

The P sub-problems for this column generation approach are the same shown in

Equation (8), however, the Lagrangean multipliers are replaced by the M dual

variables (∆) corresponding to constraints (11):

 (((())))[[[[]]]] Pp Q and AMinPFCLPv p
ppppT

pp ,...,1:)(====∀∀∀∀∈∈∈∈++++++++==== yxyx1 ∆ (14)

For the RMP, a new column provided by pth cluster is an improving column if

0)(<<<<−−−− ppPFCLPv β , where pβ is a dual variable associated with the pth convexity

constraint (12).

The LagClus presented in Equation (9) can also be obtained directly from RMP model

(10)-(13) using the formulation:

∑∑
========

−−−−−−−−++++====
M

m
mm

T
P

p
p APFCLPvPFCLPLv

11

)1()()(∆∆∆ Ryy (15)

Figure 8 describes a diagram of our column generation approach. Note that the

number of new columns is used as a stopping condition, so the column generation

stops when no more columns present negative reduced costs. After the end of the

column generation all decision linear variables present in RMP are transformed to

binaries and a binary RMP is solved. This procedure can be considered a heuristic

method for solving the PFCLP. A Branch & Price procedure could be used to search

optimal solutions. See the recent survey (Desrosiers and Lübbecke, 2005) of column

generation for a comprehensive understanding.

Figure 8 – A diagram of the column generation approach

5. Computational Results

The computational tests are performed on instances proposed by Yamamoto et al.

(2002) that are available at http://www.lac.inpe.br/~lorena/instancias.html. The set of

instances is composed by twenty five instances for 25, 100, 250, 500, 750 and 1000

points. The code in C++ and the tests were done in a computer with Pentium IV (3.33

GHz) processor and 1.0 GB of RAM memory. As done by Zoraster (1990),

Christensen et al. (1995) and Yamamoto and Lorena (2005), for all problems the

cartographic preferences were not considered. It allowed us to compare our results to

the ones presented in literature considering the cost or penalty equal to 1 for all the

candidate positions, where the number of those positions is equal to 4: wi,j=1 ∀i=1…N

and ∀j=1…4.

The sub-problems were solved by CPLEX 10 (ILOG, 2006) and the partitioning of

conflict graphs were obtained by METIS (Karypis and Kumar, 1998), a well-known

heuristic for graph partitioning. Given a conflict graph and a pre-defined number P

of clusters, METIS divides the graph into P sub-graphs of approximately same size

minimizing the number of edges whose ends lie in different clusters of the partition.

Before divide the conflict graph and test the column generation approach, we applied

the technique proposed by Wagner et al. (2001) to reduce the graph.

Table 1 presents results using CPLEX 10 with formulation (1) – (4) upon reduced

conflict graphs. The first column represents the average number of points followed by

CPLEX’s average lower and upper bounds. The fourth column presents GAP =

(Upper Bound - Lower Bound)/Upper Bound*100, followed by the number of

instances optimally solved, average elapsed time in seconds, average number of labels

in conflict and the average proportion of free labels found. This last column was used

to compare the results with the literature.

These results were found running CPLEX until the instances are solved or reach an

out of memory condition. CPLEX solved all instances with 100, 250 and 500 points.

For instances with 750 points, it solved 14 among 25 and zero instances with 1000

points. It shows that even with reduced graphs, instances with 1000 points are hard

instances to be solved.

Table 1 – Results using CPLEX 10 with reduced conflict graph.

Table 2 reports the main average results provided by the column generation approach.

We considered in this paper the same number of clusters used by Ribeiro and Lorena

(2006a): 2 clusters for instances with 25, 100, 250 and 500 points, 10 for instances

with 750 points and 25 for instances with 1000 points. The sub-problems are solved

by CPLEX.

The initial pool of columns is composed of randomly generated solutions followed by

an improvement heuristic. The algorithm used to generate these initial columns is

shown in Figure 9.

The columns in Table 2 represent:

• Problem – Number of points;

• Best solution inserted in RMP – Best solution inserted in RMP provided by a

improvement heuristic (see Figure 9);

• Initial number of columns – Initial number of columns inserted in RMP. This

number is calculated by SolutionsInitialP _* , where Initial_Solutions is the

initial number of solutions generated by algorithm shown in Figure 9. Note that

a solution is decomposed into P small solutions to be inserted in RMP;

• Initial RMP – Represent LPDWPFCLPv)(with the initial pool of columns;

• Final number of columns – Number of columns after the end of column

generation process;

• Final RMP – Represent LPDWPFCLPv)(with the final pool of columns;

• Time1 (s) – Elapsed time until the end of column generation process;

• ILP – Final RMP has all decision variables transformed to binaries and solved.

This column represents the objective function value found for the binary RMP

(See Figure 8);

• Time2 (s) – Elapsed time using binary RMP;

• # of instances solved – Number of instances optimally solved by the column

generation approach;

• Labels in conflicts – Number of labels in conflicts found in binary RMP

solution;

• Proportion of free labels (%) – Proportion of free labels found in binary RMP

solution.

Figure 9 – Algorithm used to create and insert initial columns in RMP.

Table 2 – Average results using column generation approach.

The results reported in Table 2 are very promising. The column generation inserts a

small set of new columns into RMP: 52 new columns in average for the instances with

1000 points. The computational times varied from 0.00 to 84.04 seconds for column

generation process and from 0.00 to 2.64 seconds for solving the binary RMP, so in

the worst case, the column generation approach takes 86.68 seconds to be concluded.

Looking at the best solutions initially inserted into RMP, we can note that they are

worst than the Final RMP and ILP, showing that our column generation really inserts

good columns into RMP.

As our coefficients in objective function (6) are integer, we considered that an

instance is optimally solved if the difference between solutions of binary RMP and

final RMP is less than 1, besides for all instances the lower bound provided by

column generation (column final RMP in Table 2) were the same of the LagClus

defined by equation (15). Thus, this column generation approach found the optimal

solutions for all instances with 100, 250, 500 and 750 points. For the instances with

1000 points the column generation found 10 optimal solutions against zero optimal

solutions of the direct CPLEX application to (1) – (4).

Table 3 reports the main results found in this paper and compares them to the ones

provided by CPLEX. Note that the column generation approach surpasses CPLEX for

the hard instances (750 and 1000 points).

Table 3 – Main results found with CPLEX and column generation approach

The best results found in this paper were compared to the best-known of the literature

described in works of Yamamoto and Lorena (2005) and Ribeiro and Lorena (2006a).

Table 4 reports the average proportion of free labels found using our column

generation approach and the best-known results found in the literature. Once more,

note that those approaches have different objectives however the column generation

found better results to PFCLP than all those reported in the literature. The

computational times are not compared since the computational tests were performed

in different machines.

Table 4 - Comparison with the literature

6. Conclusions

This paper presented a column generation approach for the point-feature cartographic

label placement problem. This method provided good solutions in reasonable

computational times, improving the best-known solutions in the literature.

This column generation is an interesting technique and can be used for solving several

related problems that can be formulated on conflict graphs. It takes in advantage the

conflict graph partitioning to form a special mathematical formulation with coupling

constraints of edges with vertices in different clusters and block constraints (clusters)

that are all considered in a restricted master problem. The Dantzig-Wolfe

decomposition generates independent sub-problems (clusters) that are used to

introduce new improving columns for the restricted master problem.

Despite our column generation provides interesting results, there are aspects to be

explored. In this paper, we performed a static partitioning whose graph is partitioned

directly into P clusters. However, this partitioning task can be performed

hierarchically. This feature can be very useful to provide good solutions and to define

the ideal numberP .

We also believe that a heuristic or metaheuristic can be used for solving the sub-

problems instead CPLEX. This is an important note because there are several

algorithms that find optimal solutions for small-scale problems in reduced

computational times, so a hybrid column generation can be a useful approach for

several large-scale problems. Finally, we think that a Branch & Price procedure can

be easily designed using the column generation approach proposed in this work.

Acknowledgements

The authors acknowledge Conselho Nacional de Desenvolvimento Científico – CNPq

for partial financial support.

References

1. A. Wolff, “Automated label placement in theory and practice,” PhD thesis,

Fachbereich Mathematik und Informatik, Freie Universität Berlin, pp. 153, 1999.

2. A. Wolff and T. Strijk, “The map labeling bibliography,” URL on July 10th.

http://i11www.ilkd.uni-karlsruhe.de/~awolff/map-labeling/bibliography/, 2006.

3. A.T. Murray and R.L. Church, “Solving the anti-covering location problem using

lagrangian relaxation,” Computers and Operations Research, vol. 24(2), pp. 127-

140, 1996.

4. F. Wagner, A. Wolff, V. Kapoor and T. Strijk, “Three rules suffice for good label

placement,” Algorithmica, vol. 30, pp. 334-349, 2001.

5. F.A. Côrrea, L.A.N. Lorena and E.L.F. Senne, “Lagrangean relaxation with

clusters for the uncapacitated facility location problem,” in XIII CLAIO -

Congreso Latino-Iberoamericano de Investigación Operativa, Uruguay,

Motevideo, 2006.

6. G. Karypis and V. Kumar “Multilevel k-way partitioning scheme for irregular

graphs,” Journal of Parallel and Distributed Computing, vol. 48(1), pp. 96-129,

1998.

7. G.M. Ribeiro and L.A.N. Lorena, “Woodpulp stowage using lagrangean

relaxation with clusters,” Journal of the Operational Research Society, 2005, To

Appear.

8. G.M. Ribeiro and L.A.N. Lorena, “Lagrangean relaxation with clusters for point-

feature cartographic label placement problems,” Computers and Operations

Research, 2006a. To Appear.

9. G.M. Ribeiro and L.A.N. Lorena, “Lagrangean relaxation with clusters and

column generation for the manufacturer’s pallet loading problem,” Computers and

Operations Research, 2006b. To Appear.

10. G.M. Ribeiro and L.A.N. Lorena, “Heuristics for cartographic label placement

problems,” Computers and GeoSciences, vol. 32(6), pp. 739-748, 2006c.

11. G.W. Klau and P. Mutzel, “Optimal labeling of point features in the slider model,”

in D.Z. Du, P. Eades, V. Estivill-Castro, X. Lin and A. Sharma (Eds), Proc. 6th

Annual International Computing and Combinatorics Conf. (COCOON'00), vol.

1858. Springer-Verlag, pp. 340-350, 2000.

12. G.W. Klau and P. Mutzel, “Optimal labeling of point features in rectangular

labeling models,” Mathematical Programming Ser. B, vol. 94, pp. 435-458, 2003.

13. I.D. Moon and S. Chaudhry, “An analysis of network location problems with

distance constraints,” Management Science, vol. 30, pp. 290-307, 1984.

14. ILOG. CPLEX 10, Reference Manual. Mountain View, CA, 2006.

15. J. Christensen, J. Marks and S. Shieber, “Placing text labels on maps and

diagrams,” in P. Heckbert (Ed.), Graphics Gems IV. Academic Press, pp. 497-504,

1994.

16. J. Christensen, J. Marks and S. Shieber, “An empirical study of algorithms for

point-feature label placement,” ACM Transactions on Graphics, vol. 14(3), pp.

203-232, 1995.

17. J. Desrosiers and M.E. Lübbecke, “A primer in column generation,” in G.

Desaulniers, J. Desrosiers and M.M. Solomon (Eds.), Column Generation (GERAD

25th anniversary series), Springer Science+Business Media Inc., New York, 2005,

pp. 1-32.

18. J. Marks and S. Shieber, “The computational complexity of cartographic label

placement”, Technical Report TR-05-91, Advanced Research in Computing

Technology, Harvard University, 1991.

19. L.A.N. Lorena and J.C. Furtado, “Constructive genetic algorithm for clustering

problems,” Evolutionary Computation, vol. 9(3), pp. 309-327, 2001.

20. M. van Kreveld, T. Strijk and A. Wolff, “Point set labeling with sliding labels,” in

Proceedings of the 14th Annual ACM Symposium on Computational Geometry

(SoCG'98), pp. 337-346, 1998.

21. M. Formann and F. Wagner, “A packing problem with applications to lettering of

maps,” in Proceedings of the Seventh Annual ACM Symposium on

Computational Geometry, New Hampshire, pp. 281-288, 1991.

22. M. Schreyer and G.R. Raidl, “Letting ants labeling point features”, in Proc. of the

2002 IEEE Congress on Evolutionary Computation at the IEEE World Congress

on Computational Intelligence, pp. 1564-1569, 2002.

23. M. Yamamoto, G. Câmara and L.A.N. Lorena, “Tabu search heuristic for point-

feature cartographic label placement,” GeoInformatica and International Journal

on Advances of Computer Science for Geographic Information Systems, vol. 6(1),

pp. 77-90, 2002.

24. M. Yamamoto and L.A.N. Lorena, “A constructive genetic approach to point-

feature cartographic label placement,” in T. Ibaraki, K. Nonobe and M. Yagiura

(Eds), Metaheuristics: Progress as Real Problem Solvers, Kluwer Academic

Publishers, pp. 285-300, 2005.

25. O.V. Verner, R.L. Wainwright and D.A. Schoenefeld, “Placing text labels on

maps and diagrams using genetic algorithms with masking,” INFORMS Journal

on Computing, vol. 9, pp. 266-275, 1997.

26. S. Doddi, M.V. Marathe, A. Mirzaian, B.M.E. Moret, and B. Zhu, “Map labeling

and its generalizations,” in Proc. 8th ACM-SIAM Symposium on Discrete

Algorithms (SODA'97), pp. 148-157, 1997.

27. S. Zoraster, “Integer programming applied to the map label placement problem,”

Cartographica, vol. 23(3), pp. 16-27, 1986.

28. S. Zoraster, “The solution of large 0-1 integer programming problems encountered

in automated cartography,” Operations Research, vol. 38(5), pp. 752-759, 1990.

29. S. Zoraster, “Expert systems and the map label placement problem,”

Cartographica, vol. 28(1), pp. 1-9, 1991.

30. S.A. Hirsch, “An algorithm for automatic name placement around point data,”

American Cartographer, vol. 9(1), pp. 5-17, 1982.

31. T. Strijk, B. Verweij and K. Aardal, “Algorithms for maximum independent set

applied to map labeling,” Available at ftp://ftp.cs.uu.nl/pub/RUU/CStechreps/CS-

2000/2000-22.ps.gz., 2000.

Figures

Figure 1 - An example of a map with some overlapping labels (see arrows)

3 4

2 1

7 5

6

8
wi,3 wi,4

wi,2 wi,1

wi,7 wi,5

wi,6

wi,8

(a) (b)

Figure 2 - Set of 8 candidate positions for one point (Christensen et al., 1995).

Serra Serra

Serra Serra

Serra Serra

Serra Serra

Vitória Vitória

Vitória Vitória

Vitória Vitória

Vitória Vitória

v3
v4

v2
v1

v7 v8

v6 v5

(a) (b)

Cariacica Cariacica

Cariacica Cariacica

Cariacica Cariacica

Cariacica Cariacica

v11
v12

v10 v9

Vila Velha Vila Velha

Vila Velha Vila Velha

Vila Velha Vila Velha

Vila Velha Vila Velha

v16

v13

v15

v14

Serra

(c)

Cariacica
Vitória

Vila Velha

Figure 3 - Candidate positions (a), conflicts graph (b) and an optimal solution (c).

Figure 4 – Clusters provided by a conflict graph of a map labeling problem on 250

points. Adapted from Strijk et al. (2000)

Figure 5 – Rules to reduce the conflict graph (Wagner et al., 2001).

Figure 6 - Partitioning the conflict graph (Ribeiro and Lorena, 2006a).

Figure 7 – An example to illustrate variables and matrices in model (5)-(7)

Figure 8 – A diagram of the column generation approach.

Figure 9 – Algorithm used to create and insert initial columns in RMP.

Tables

Table 1 – Results using CPLEX 10 with reduced graphs.
Reduced Conflict Graph

Problem
Lower
Bound

Upper
Bound

GAP
(%)

of
instances

solved

Time
(s)

Labels
in

conflicts

Proportion
of free

labels (%)
100 100.00 100.00 0.00 25 0.00 0.00 100.00
250 250.00 250.00 0.00 25 0.01 0.00 100.00
500 500.84 500.84 0.00 25 0.14 1.68 99.67
750 757.10 758.92 0.24 14 5517.12 17.60 97.65

1000 1004.87 1042.88 3.64 0 4504.52 83.12 91.69

Table 2 – Average results using column generation approach.
Column Generation Integer RMP

Problem Best Solution
Inserted in

RMP

Initial
Number of
Columns

Initial
RMP

Final
Number of
Columns

Final
RMP

Time1
(s)

ILP Time2
(s)

of
instances

solved

Labels in
conflicts

Proportion of
free labels

(%)

100 100.04 2000 100.00 2002 100.00 0.00 100.00 0.08 25 0.00 100.00
250 250.84 2000 250.00 2002 250.00 0.00 250 0.12 25 0.00 100.00
500 504.00 2000 502.84 2003.04 500.84 0.16 500.84 0.00 25 1.64 99.67
750 785.52 10000 765.16 10013.40 758.92 14.48 758.92 0.48 25 17.50 97.67
1000 1123.24 25000 1048.97 25052.44 1037.56 84.04 1039.04 2.64 10 76.04 92.40

Table 3 – Main results found with CPLEX and column generation approach

Problem Approach Lower Bound Upper Bound GAP
(%)

of instances
solved

Time (s) Labels in
conflicts

Proportion of
free labels (%)

 CPLEX 100.00 100.00 0.00 25 0.00 0.00 100.00
100 Column Generation 100.00 100.00 0.00 25 0.08 0.00 100.00

 CPLEX 250.00 250.00 0.00 25 0.01 0.00 100.00
250 Column Generation 250.00 250.00 0.00 25 0.12 0.00 100.00

 CPLEX 500.84 500.84 0.00 25 0.14 1.68 99.67
500 Column Generation 500.84 500.84 0.00 25 0.16 1.64 99.67

 CPLEX 757.10 758.92 0.24 14 5517.12 17.60 97.65
750 Column Generation 758.92 758.92 0.00 25 14.96 17.50 97.67

 CPLEX 1004.87 1042.88 3.64 0 4504.52 83.12 91.69
1000 Column Generation 1037.56 1039.04 0.14 10 86.68 76.04 92.40

Table 4 – Comparison with the literature
Proportion of free labels (%)

Problems Algorithm
100 250 500 750 1000

Column Generation Approach 100.00 100.00 99.67 97.67 92.40
LagClus (Ribeiro and Lorena, 2006a) 100.00 100.00 99.67 97.65 91.42
CGABest

 (Yamamoto and Lorena, 2005) 100.00 100.00 99.60 97.10 90.70
CGAAverage (Yamamoto and Lorena, 2005) 100.00 100.00 99.60 96.80 90.40
Tabu Search (Yamamoto et al., 2002) 100.00 100.00 99.30 96.80 90.00
GA with masking (Verner et al., 1997) 100.00 99.98 98.79 95.99 88.96
GA (Verner et al., 1997) 100.00 98.40 92.59 82.38 65.70
Simulated Annealing (Christensen et al., 1995) 100.00 99.90 98.30 92.30 82.09
Zoraster (Zoraster, 1990) 100.00 99.79 96.21 79.78 53.06
Hirsh (Hirsh, 1982) 100.00 99.58 95.70 82.04 60.24
3-opt Gradient Descent (Christensen et al., 1995) 100.00 99.76 97.34 89.44 77.83
2-opt Gradient Descent (Christensen et al., 1995) 100.00 99.36 95.62 85.60 73.37
Gradient Descent (Christensen et al., 1995) 98.64 95.47 86.46 72.40 58.29
Greedy Algorithm (Christensen et al., 1995) 95.12 88.82 75.15 58.57 43.41

