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Abstract

The objective of the point-feature cartographicelaplacement problem (PFCLP) is to give more
legibility to an automatic map creation, placingntdabels in clear positions. Many researcherssictar
distinct approaches for PFCLP, such as to obtanntximum number of labeled points that can be
placed without overlapping or to obtain the maximwmember of labeled points without overlaps
considering that all points must be labeled. Tlipgy considers another variant of the problem iithvh
one has to minimize the number of overlaps whilgaints are labeled in the map. A conflict graph i
initially defined and a mathematical formulation lihary integer linear programming is presented.
Commercial optimization packages could not solvgdanstances exactly using this formulation over
instances proposed in the literature. A heurigithen examined considering a Lagrangean relaxation
performed after an initial partition of the confligraph into clusters. This decomposition allowsda
introduce tight lower and upper bounds for PFCLP.

Keywords: Label placement, Modeling, Lagrangean relaxation.

Resumo

O Problema Rotulagdo Cartogréafica de Pontos (PR&R)como objetivo dar maior legibilidade a um
mapa, colocando os rétulos dos pontos em posied@eeis. Existem abordagens distintas para o PRCP
direcionadas a obter o maximo niimero de pontosadds que podem ser colocados sem sobreposigcao
ou ainda obter o maximo nimero de pontos rotuladws sobreposi¢do considerando que todos os
pontos devem ser rotulados. Esse artigo abordaligona de uma outra forma, minimizando o nimero
de sobreposicdes existentes em uma rotulagdo ds &l pontos. Um grafo de conflitos é definido
inicialmente e uma formulagdo matematica de progg@m linear inteira binaria é apresentada.
Insténcias de grande porte propostas na literaogpuderam ser resolvidas por sofiware comercial

de otimizagdo, com isso, uma heuristica é examicadaiderando uma relaxacdo Lagrangeana feita
apés um particionamento inicial do grafo de coodliemclusters. Essa decomposigdo permitiu obter
bons limitantes inferiores e superiores para o PRCP

Palavras-chave Rotulacdo de Pontos, Relaxacdo Lagrangeana, Kypelal



1. Introduction

The point-feature cartographic label placement lerab(PFCLP) is a challenge problem in
automated cartography. Positioning the texts reguthat overlaps among texts should be
avoided and also cartographic conventions and maedes should be obeyed. Figure 1(a)
illustrates the difficulty that arises when manpdls are positioned in overlapping positions
generating invisible areas (see arrows). Figurg &flows a solution for this problem where
some points are not labeled.

Although it can be better to label only some pototproduce a cleaner map, there are some
geographic applications where all points must bdeeled. Thus, we need approaches and
algorithms to generate the best possible maps.

= ’

@ (b)
Figure 1 - Map of Brazilian Railway StationgAn example of a map with some overlapping

labels.

PFCLP seeks to place point labels in positionsuchsa way that a set of constraints are
satisfied, minimizing or maximizing an objectivenfition. However, a list of candidate
positions is presented for each point, indicatifgese a label can be placed. The list is chosen
in accordance to cartographic standards (Christereteal, 1995) that prioritize certain
positions. Figure 2 (a) shows a group of 8 candigarsitions for a point, where the numbers
indicate the cartographic preference in an increpsider.

Wi
2 1 Wi, W, R
1
& Py |
V7 7 T W, '@' TTIWg
!
3 4 W 3 W, [ e
Wig

(@) (b)

Figure 2 - Set of 8 candidate positions for one point (Ghrisen et al, 1995).

Placing labels in candidate positions can genearaéglaps (conflicts) compromising the map
visibility. Thus, due to these potential overlagiee PFCLP withN points can be represented
through a grapl={V,E}, whereV is a set of the candidate positions (vertices) Brdset of
edges representing overlaps or conflicts. Figul®y 8fiows the conflict graph of the example
shown in Figure 3(a). This example has three poedsh one with 4 candidate positions. The
candidate positions has potential conflicts with positions, v,, v, andvs, v, has potential
conflicts with vy, v,, v, V5 andve, and so on. Figure 3(c) shows a solution compbsed, vs
andvg that is optimal for this problem because it dogispresent conflicts between labels.



Starting from this conflict graph representatiomyot different approaches are usually
considered for PFCLP. This problem can be consitlasea Maximum Independent Vertex Set
Problem (MIVSP) (Zoraster, 1990; Strijk et al., Bp@r as a Maximum Number of Conflict
Free Labels Problem (MNCFLP) (Christensen et @5)9In both problems, the optimal value
refers to the number of points in the final solntishose labels are not conflicting. However,
the constraints requiring the labeling of a poiat meated differently.

©
Figure 3 - Candidate positions (a), conflicts graph (b) eptimal solution (c).
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Figure 4 - A labeling problem with 4 points and 2 candidatsition for each one (a). Two
possible solutions are shown at (b) and (c).

The MNCFLP is more useful under the cartographiatpaf view than the MIVSP but the map
visibility is not fully explored (Ribeiro, 2005).igfure 4 shows two possible solutions for the
same instance. The cost of the both solutionseésséme for MNCFLP while, if we count the
number of conflicts (edges) in their graphs, th#fedby three units. At right of this figure we
have an example that shows the difference betwessetsolutions.

Considering the map visibility above and that saragographic problems need to label all
points in maps, diagrams or graphs, this papergaegpa variant of the problem in which one
has to minimize the number of overlaps while alingoare labeled in a map. We propose for
this variant an integer linear programming modeal @nesent a Lagrangean heuristic that is
based on a decomposition of the conflict graph. Quational experiments showed that for
instances up to 500 points, this new model candsdyecomputed by a commercial solver.
Consequently, for such situations, these packaede used in cartographic centers.

The rest of the paper is described as follows. Negtion presents a brief review about PFCLP,
followed by Section 3 that presents the mathematicadel proposed. Section 4 presents the
Lagrangean relaxation proposed and some heuribatsre used in the subgradient algorithm.



Section 5 shows the computational results usin@mes formed by standard sets of randomly
generated points suggested in the literature, aatidh 6 has our conclusions and suggestions
for further research.

2. Literature Review

The Maximal Independent Vertex Set Problem (MIV3Rgsents a substantial research
considering algorithms and heuristics. BesidesMhéSP has several applications in different
fields such as in DNA sequencing (Joseph et al2)98cation of military defenses (Chaudhry
et al, 1986), location-allocation models (GerrardGhurch, 1996), anti-covering location
(Murray & Church, 1996a), forest planning (Murray @urch, 1996b) and Church et al
(1998), cut and packing (Beasley, 1985) and pkdkeing (Dowsland, 1987).

Specifically considering the MIVSP as a PFCLP, Ztern (1986, 1990 and 1991) formulated
mathematically the PFCLP working with conflict caiamts and dummy candidate positions of
high cost if the points could not be labeled. Hglroposed a Lagrangean relaxation for the
problem and obtained some computational resultsneail-scale instances. Strijk et al (2000)
proposed new mathematical formulations and exammdabu Search algorithm, obtaining
interesting results for their instances. The awheplored some kind of constraints that are
known as cut constraints, presented previously hyrdy & Church (1996¢) and Moon &
Chaudhry (1984).

The Maximum Number of Conflict Free Labels ProbldWNCFLP) was examined in several
works. Christensen et al (1993; 1995) proposed xmiistive Search Approach, alternating
positions of the labels that were previously posigid. Christensen et al (1995) also proposed a
Greedy Algorithm and a Discrete Gradient DescengjoAthm. These algorithms have
difficulty to escape from local maxima. Hirsh (19&&veloped a Dynamic Algorithm of label
repulsion, where labels in conflicts are movedngyio remove a conflict. Verner et al (1997)
applied a Genetic Algorithm with mask such thatiflabel is in conflict the changing of
positions are allowed by crossover operators.

Yamamoto et al (2002) proposed a Tabu Search #igofor the MNCFLP that provides good
results compared to other methods from the liteeatdamamoto & Lorena (2003) developed
an exact algorithm for small instances of PFCLP amgplied the Constructive Genetic
Algorithm (CGA) proposed by Lorena & Furtado (20@d)a set of large-scale instances. The
exact algorithm was applied to instances of 25{gand the CGA was applied to instances up
to 1000 points, providing the best results of iterdture. However, the authors can not prove
the optimality of these results because CGA is tahwauristic.

Although the MNCFLP presents several different dthms, it has not a mathematical
formulation like the model proposed by Zoraster 99 However, almost all heuristics
proposed for solving the MNCFLP uses the conflieiply as a base for their mechanism.

Thus, considering these characteristics, in the segtion we propose a new mathematical
model that combines the conflict graph and the &er& formulation for constructing a new
approach that minimizes the number of conflictsgés) in a conflict graph. This new
mathematical model allows us to label all points.

3. Mathematical Formulation
This section presents a new approach and a matisaméirmulation for the PCFLP that

minimizes the number of conflicts. This approach bea used in problems where we have to
label all points.



Considering that each poinhas a seP; of candidate positions, as shown at Figure 2 (a), w
start by defining the variables used in the mofiel.each candidate position is represented by a

binary variablex; wherei D{l...,N}, ] D{l.--ﬂ} , andN is the number of points that will be

labeled. Ifx;; = 1 the candidate positigrfor the point will be used (it will receive the label of
pointi), otherwisex ; = 0. Besides, for each possible candidate positioh@fbinti, a cost (a
penalty)w; is assigned. It represents the cartographic prefes as shown at Figure 2 (b).

For each candidate positiey) there is a se§; of index pairsK;t) that corresponds to candidate
positions x; that present potential conflicts withx;. For all (k,t)O S, where
kD{l,...,N}:k>i and tD{l,...,Pk}, there is a binary variabley, ;. representing the
conflict (an edge) in the conflict grah

Now, considering the information above, the objextiunction of the Minimum Number of
Conflicts Problem (MNCP) for the PFCLP can be repreed by:

N R
V(MNCP) = Min ZZ(wi,,-xi,j + Zyi,j,k,t] @
i=1 j=1 (k,t)3S

For each point exactly one of its candidate positions must besehoThis set of constraints
can be written as:

Y x,;=1 DOi=1.N 2)

We also must take into account that when a labeh@sen, it can be overlapping the other
ones. So, a hew set of constraints is necessary:

% F Xer = Vijke <1 Oi=1.N
Oj=1.P 3)
(k,t)l:lSl’j

Thus, the MNCP can be formulated as a binary imtkigear programming problem:

V(MNCP) = Min ZN:i[wi,jxi,j + ZM,,—,MJ (4)

== (kS
Stbject to 3%, =1 Oi=1.N -
X i+ X = Vijke S1 Oi=1..N

O0j=1.P (6)
(Y



X0 Xt and Yijkt D{O.]} Oi=1.N
Oj=1.P 7)
k)OS

Constraint (7) ensures that all decision variablethe problem are binaries. Depending on the
values assigned for the costg, the conflict variabley can be reduced to zero and a cleaner
map is obtained.

We tested the formulation above with CPLEX 7.5 ((2001) on a set of standard problems
with four candidate positions for each point, prega by Yamamoto & Lorena (2003). The
optimal solution could be found in few secondstfeg instances up to 500 points. For larger
instances (750 and 1000 points), CPLEX could neéinkthe optimal solutions in few hours

reaching an out of memory state in a computer Wightium 1V 2.66GHz processor and 512
MB of RAM memory.

Thus, to provide bounds for the MNCP, we show irt rsection a Lagrangean relaxation that
differs from the literature. It works with sevemsalb-problems (clusters) that are generated by
partitioning of the conflict graph.

4. Lagrangean Relaxation With Clusters

Prior to explain the Lagrangean relaxation, wetskgr observing that the conflict graph

generated by PFCLP, provides clusters of candipaséions. For example, Figure 5 shows a
conflict graph generated by a problem with 250 tsowwhere each one has four candidate
positions. The black vertices represent the maxinmoependent set (Strijk et al, 2000). It is

easy to see that this graph is sparse and presefitdefined clusters of candidate positions
(see stippled lines). So, if we relax the edges #Hra connecting the clusters, raise sub-
problems (clusters) that can be solved indepengentl
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Figure 5— Clusters provided by a conflict graph of a rmegpeling problem on 250 points.
(Strijk et al, 2000)

Thus, considering this PFCLP characteristic, thgraagean relaxation proposed here has two
distinct phases. The first one divides the confiietph into clusters and in the second one, the



edges connecting the clusters are relaxed in aabggan fashion. Depending on the size of
these sub-problems, each one sub-problem can loethiesolve and thereby the number of
clusters is essential to obtain good bounds irasamable time.

Figure 6 details the Lagrangean relaxation. Theplgrabtained for the problem shown in
Figure 6(a) is partitioned into two clusters (bpté&lthat for each point, the clique generated by
their candidate positions is initially ignored. thiis partition some constraints represented by
edges inter clusters are removed (c) and two spnabllems (d) can be independently solved.
Thus, the edges inter clusters and those that ceenihe clique for each point, are relaxed in a
Lagrangean fashion.

So, after this decomposition, each cluster has oohflict constraints (6) and even so, the
clusters can be hard problems to be solved. Thalsemblems are solved in a subgradient
algorithm, providing bounds for the problem. Degdegdon the number of clusters considered
this Lagrangean relaxation can be more or lesag#mno

Cluster 1

Cluster 1

Cluster 2 Cluster 2

(©)

Figure 6 - Partitioning the conflict graph. Problem (a)nfiiwt graph and the clusters (b), (c)
the edges inter clusters; and (d) two sub-problems.

Therefore, considering the original probldtn this Lagrangean relaxation must be applied
following these steps:

i. Apply a graph partitioning heuristic to dividg into m clusters. The probler® can be
written through the objective function defined #) éubject to (5), (6) and (7), where, the
conflict constraints (6) is now divided into twoogips: one with conflict constraints
corresponding to edges intra clusters and othemddr by conflict constraints that
correspond to edges connecting the clusters.

ii. Using two distinct multipliers, relax in a Lagramgeway, the constraints (5) and the
conflict constraints corresponding to edges coringdhe clusters.

iii. The resulted Lagrangean relaxation is decompodedirsub-problems and solved. This
Lagrangean relaxation will be denotedlagClus hereafter.



Relaxing constraints (5), the relaxed solution carbe feasible t& because it is possible that
for a point, no one candidate position is assigme@&ven more than one. So, the following
heuristics CH and IH are used to obtain and impeofeasible solution.

Constructive Heuristic — CH
Let:
e Sol_point_i be a set of candidate positions of the point i.

1. FORIi=1toN DO
2. Sol_point_i < Find in relaxed solution all candidate positions different from zero for
the point i.
3. IF| Sol_point_i | <> 0 THEN
4. Select for feasible solution the candidate position j /7 Sol_point_i that
presents the smallest number of conflicts with the current feasible solution.
In case of tie, select the candidate position with the smallest cardinality set
Si,j-
ELSE
5. Select the candidate position j /7P; with the smallest cardinality set S;;.
END FOR

Improvement Heuristic - IH
Let:
e Conflict_Array be an array with N positions that stores the number of overlaps for
each pointi related to the current feasible solution;
e Curr_Feasible_Solution be an array with the current feasible solution;
* Best_Candidate_i be an integer variable that stores the best candidate position of
the point i to enter in the Curr_Feasible_Solution.

1. Compute Conflict_Array.
2. FORi=1toNDO
3. IF Conflict_Array[ i ]<>0 THEN
4. Best_Candidate_i ~ Select the candidate position j /7 P; that presents the
smallest number of conflicts with the current  solution
Curr_Feasible_Solution.
5. Update Curr_Feasible_Solution with Best_Candidate_i.
6. Compute Conflict_Array.
END FOR

For the computational experiments, the sub-problemse solved by CPLEX in reasonable
times. The number of clusters was defined experiallgn The partitioning of grapls was
obtained using METIS (Karyps & Kumar, 1998), a wealbwn heuristic for Graph Partitioning
Problems. Given a conflict grajfghand a pre-defined numbarof clusters, METIS divides the
graphinto m clusters minimizing the number of edges with exities in different clusters.
Recently Hicks et al (2004) found good results gipgl this technique in a Branch-and-Price
algorithm to Maximum Weight Independent Set Proldem

A subgradient algorithm is used for solving the lzagean dual (Parker & Rardin, 1988). The
subgradient method is similar to the one proposediéld & Karp (1971) and updates the

multipliers considering step sizes based on thexesl solutions and the feasible solutions
obtained by heuristics CH and IH. We implementeel shbgradient algorithm described by

Narciso & Lorena (1999) and the stopping tests wseik: step size less or equal than 0.005,
difference between upper and lower bounds lesgj@aléhan 1 or subgradient norm equals to
0.



5. Computational Results

The computational tests are performed over standetd of randomly generated points
proposed by Yamamoto & Lorena (2003), available at
http://www.lac.inpe.br/~lorena/instancias.htmrhese sets are composed of twenty five
instances for each number of poiMg425, 100, 250, 500, 750, 1000}. We considered as
Zoraster (1990), Yamamoto et al (2002) and Yamar&otorena (2003), cost or penalty equal
to 1 for all the candidate positions, being the hanof those positions equal to 4. Observe that
the particular case afi;=1in (4)-(7) has a trivial lower bound equalXpwhen all points are
labeled without conflicts.

We implemented the subgradient algorithm in C++ gnadtests were performed in a computer
with Pentium IV 2.66GHz processor and 512 MB of RAMmory.

Table 1 shows the clustering information for eattance class. The first column presents the
number of points, followed by the number of clusteonsidered and the number of possible
vertices in each cluster. Those numbers of clusegerted at Table 1 were defined based on
prior experiments of the authors, see Ribeiro (2005

Table 1— Cluster information for each instance class.

Instance Number of Number of Possible
Clusters Positions in each Cluster
25 2 50
100 4 100
250 10 100
500 20 100
750 25 120
1000 60 ~67

Table 2 reports théagClus average results over twenty five instances for eaamber of
points. We used CPLEX 7.5 for solving the binargger linear sub-problems.

The information in columns ar@roblem - Number of points to be labele@ptimal Solution e
Timey(s) - The optimal solution and time elapsed by CPLpXIEd over formulation (4) — (7);
Lower Bound - The best dual limit found by relaxatiodpper Bound - The best upper bound
(feasible solution) found by heuristics CH and G#b_ub - Percentage deviation from optimal

Upper bound —Solution)*loo_ Gap_Ib -

Solution
Percentage  deviation from optimal solution to theestb lower bound:
Solution — Lower bound
Gap_Ib= -
Solution

subgradient algorithm andime, (s) - The total computational time elapsed by subguatdi
algorithm reaching some stop condition.

solution to the best upper bounfﬂap_ub=(

)*100; Iter - Number of the iterations used by

The computational results fdragClus shown in Table 2 are very promising. The large
problems (750 and 1000 points) were solved, in ayerin 337,80 and 817,00 seconds,
respectively. The upper bound gaps varied from%,@0 0,46%, very close to the optimal
solution. The lower bound gaps varied from 0,0098,@/% and some of them improved the
trivial number of points limit (see 25 and 1000rgs). The problems with 100 and 250 points
are simple and solutions without conflicts are otgd quickly. In these cases, the subgradient
algorithm stops and we considered that the lowantse are equal to the upper bounds.



Table 2- Average results fdragClus — Bounds, Gaps, Iterations and Computational Times

CPLEX 7.5 LAGCLUS
Problem | Optimal | Time, | Lower | Upper Gap Gap lter Time,
Solution (s) bound | bound | UB (%) | LB (%) (s)

25 27.75 1.60 25.138 27.88 0.46 9.27| 148.50 23.88

100 100.00 0.04 100.00 100.00 0,00 0.00 1.00 0.16

250 250.00 0.06 250.00 250.00 0.00 0.00 7.12 2.36

500 500.84 3.14 498.43 501.52 014 0.48| 103.16 82.72
750 - - 749.41] 767.08 - - 145.28 337.80
1000 - -| 1002.11 1070.60 - - 145.96 817/00

Table 3- Average results fdragClus — Bounds, Iterations and Computational Times.

LAGCLUS |
Problem Nglr:sbtzrr:f Lower | Upper | . Time
bound | bound (s)
750 20| 749.63 767.28 14548 436.04
750 25| 749.41 767.08 145.28 337,80
750 30| 749.51 767.32 145.40 12312

To show what happens when we consider differentbaunof clusters, we performed some
experiments for instances with 750 points and T&bleports the average results provided by
LagClus. Note that when the number of cluster increadss,computational time decreases
although the bounds remain practically constant.

Table 4 shows the results obtained for a simplerdgean relaxation over the set of
constraints (5). CPLEX 7.5 was also used for sglvthe Lagrangean relaxations. The
computational times increased drastically. The ufgmeind was not improved and the large-
scale instances (of 500, 750, and 1000 points)dcoat be solved. For example, the instance
number 7 of problems with 25 points elapsed 444rsés to be completed.

Table 4- Average results for a Lagrangean relaxation ostaints (5).

Lagrangean relaxation over constraint set (5)
Problem | | ower Upper Gap Gap .
bound | bound | UB(%) | LB(%) | '€ | Time()
25 25.13 28.Sd 2.29 9.27 151.63 104(63
100 100.00 100.0¢ 0.00 0.00 1.00 0J16
250 250.00 250.0¢ 0.00 0.00 1.48 0]92

PS: The solutions were not obtained for problents w00, 750 and 1000 points
due to time-consuming conditions.

Relaxations of constraints (6) were also teste@ dimlal bounds were always smaller than the
trivial limit imposed by the number of points (Sizi the problem. So, relaxing the constraint
set (6) could be considered weak for these instara@ more details, see Ribeiro (2005).

It is important to note that all approaches revisedection 2 have different objectives of that
in MNCP and consequently the computational resutsnot comparable.



6. Conclusions

This paper presented a new approach and a new mmatical model for point-feature
cartographic label placement problem aiming a bettap legibility. This model seeks
minimize the number of existing overlaps, labelitigooints on a map.

A new relaxation heuristic was also proposed. Tigkxation works with clusters and
presented tight bounds on a set of instances \@rfyom 25 up to 1000 points. For many
instances the results found are very close to piienal solutions.

We believe that this work contributes for pointttea cartographic label placement problems
and the LagClus can be useful in related problefos,instance, the Maximal Vertex
Independent Set Problem.
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