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Abstract
The cartographic label placement problem is an important tasitamated cartography
and Geographical Information Systems. Positioning the texts reghat overlap among
texts should be avoided, that cartographic conventions and preference lshabdyed.
This paper examines the point-feature cartographic label platgmblem (PFCLP) as an
optimization problem. We formulate the PFCLP considering the miniioizaf existing
overlaps and labeling of all points on a map. This objective impregtsility when all
points must be placed even if overlaps are inevitable. A new mdibahfarmulation of
binary integer linear programming that allows labeling ofpalhts is presented, followed
by some Lagrangean relaxation heuristics. The computationalcaségdered instances
proposed in the literature up to 1000 points, and the relaxations provided gooditave

upper bounds.
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1. Introduction

The cartographic label placement problem is an important teesktomated cartography
and Geographical Information Systems. This problem consisttachad label, here a text,
to each feature point, line or region in the map. Positioning the tegtiires that overlap
among texts should be avoided, that cartographic conventions and prefehnend® be
obeyed. So, the label placement belongs to an area of difficult solution for large@ssta

This paper examines the point-feature cartographic label ptatepnoblem (PFCLP)
with labels restricted to some finite number of positions (discmodel) and being axis-
parallel rectangles. If we remove the restriction thabellaan be placed at a finite number
of positions and allow a continuous movement of the label around of its(pomtinuous
model), we have a model known as slider model (Kreveld et al., 1999;akthiutzel,

2000 and 2003).

Figure 1 - A set of 8 potential label positions and their desirability (Christensen et al.,
1995)

The PFCLP can be considered as an optimization problem and hashoeem to be
NP-Hard (Formann and Wagner, 1991; Marks and Shieber, 1991). The paubisists in
placing of point labels in positions in a way that a set of cdntdrare satisfied,
minimizing or maximizing an objective function. Thus, for each point exist af g@ssible
label positions also known as a set of candidate positions. Thisasksti®f potential label
positions that can indicate their desirability (Christensen.e1295). Fig. 1 shows a group
of 8 candidate positions for a point, where the numbers indicate thgreguhic preference

in increasing order.



Placing labels in candidate positions can generate overlaps (t)nékeising problems
in map visibility. Thus, due to these potential overlaps, the PFCE#Nvpoints can be
represented through a gra@~{V,E}, whereV is the set of the candidate positions
(vertices) ancE the set of edges representing overlaps or conflicts2Bighows the graph
of the example in Fig. 2A. This example has two points, each ore 4vitandidate
positions, the candidate positib has a potential conflict with the positiaé andL4 has

potential conflicts witH.5 andL6.

Figure 2 - Candidate positions, conflicts and the related graph (Yamamoto and Lorena,

2005).

Fig. 3 shows two possible solutions for the same problem with four p&iolistion (b)
has better visibility than solution (a). Considering these vigibdtiestions, this paper
proposes a new integer linear programming model for Minimum Nurob&onflicts
Problem (MNCP), presenting some Lagrangean and Lagrangean/$eiegaistics. This
formulation allows labeling all points in a conflict graph. Usihg benchmark composed
of instances of the literature, a commercial solver could ohtdiew seconds the optimal
solution for instances up to 500 points, but failed on large instanckes7at and 1000
points, justifying the use of lagrangean heuristics to provide gohdians (upper and

lower bonds).

Figure 3 - Possible solutions for a problem with 4 points.



The rest of this paper is organized as follows: in the nexiose@ review is shown
about PFCLP, followed by the proposed mathematical model. In sectiw rélaxations

and heuristics are shown, followed by the computation results and conclusions.

2. Literature Review

In the literature the PFCLP have different but connected objscfilee PFCLP can be
modeled as a Maximum Independent Set Problem (MISP) (Zord9@0, Strijk et al.,
2000) or as a Maximum Number of Conflict Free Labels Problem (MNCFLPjs{€hsen,
1993; Yamamoto and Lorena, 2005). Both approaches count the final number ohpdsiti
conflict free labels and the main difference is in the final Imemof labeled points. In
MISP, points with inevitable overlaps are not labeled, while all pamist be labeled in
MNCFLP. For literature on other models, see the map labelingograiphy (Wolf and
Strijk, 2005)

Considering the PFCLP as a MISP, several works that proposeittaigs and
techniques to reduce the number of constraints are found in théuliéerZoraster (1986,
1990 and 1991) formulated mathematically the PFCLP working with conficstraints
and dummy candidate positions of high cost if the points could not be labetedtef also
used a Lagrangean relaxation and obtained some computational ressitsalscale
instances. Strijk et al. (2000) proposed other mathematical faronukxploring some cut
constraints. These cuts are based on cliques and appeared beforsarkthef Moon and
Chaudhry (1984) and Murray and Church (1996). They applied and proposed several
heuristics: Simulated Annealing, Diversified Neighborhood Se&rolptand Tabu Search.

The last one showed the better results for their instances. Re&dat and Mutzel (2000



and 2003) present exact algorithms where constraint graphs codmlventil horizontal
positioning relations, allowing discrete and slider models with integer Ipregramming.

The Maximum Number of Conflict Free Labels Problem (MNCFLRswxamined in
several papers. Hirsch (1982) developed a Dynamic Algorithm ef faipulsion, where
labels in conflicts are moved trying to remove a conflict. Tigerahm defines repelling
forces for overlapping labels and computes translation vectors for #iger translation,
this process is repeated and hopefully, a labeling with fewapgeappears after a number
of iterations. Christensen et al. (1993; 1995) proposed an Exhaustive 3@arcach,
alternating positions of the labels that were previously positionedst€nsen et al. (1995)
also proposed a Greedy Algorithm and a Discrete Gradient Deatganithm but these
algorithms have difficulty of escaping from local maximum.néret al. (1997) applied a
Genetic Algorithm with mask such that if a label is in contie changing of positions are
allowed by crossover operators. Yamamoto et al. (2002) proposed a Taabh &gorithm
that provides good results when compared with the literature. SchargieRaidl (2002)
applied Ant Colony System but the results were not interestirpwompared to the ones
obtained by Yamamoto et al. (2002). Yamamoto and Lorena (2005) developedcan ex
algorithm for small instances of PFCLP and applied the Consteu@enetic Algorithm
(CGA) proposed by Lorena and Furtado (2001), to a set of largeksstnces. The exact
algorithm was applied to instances of 25 points and the CGA waga@pplinstances up to
1000 points, providing the best results of the literature.

The PFCLP, even as a MISP or MNCFLP, can generate a tagflict graph that
becomes hard to deal with it. Wagner et al. (2001) presentegproagh to reduce the

conflict graph provided by a PFCLP. They proposed three rules to réduricze of the



conflict graph without altering the set of optimal solutions. Morea¥ery combined these

rules with heuristic yielding near-optimal solutions.

3. Mathematical formulation
The mathematical formulation proposed for the MNCP is to mimintie number of
conflicts considering that for each pointorresponds a numbe@r of candidate positions.

Each candidate position is represented by a binary variablevhere i O{L...,N},
jOf{1....R}, andN is the number of points that will be labeledx|f = 1 the candidate

positionj of the pointi will be used (will receive the label of poi){ otherwisex; = 0.
Besides, for each possible candidate position aftpat is associated a cost (a penalty)
represented bw;.

For each candidate positiof exist a setS; of index pairs of candidate positions
conflicting with x;. §; is the set of index pair,t) of candidates positions: conflicting

with x;. For all(k,t)0S ., wherek O{L...,N}:k >i andtO{L...,R.}, we have a binary

(I
variabley, ; ., representing the conflict (an edge in the confliraphG).

Now, considering the information above, the objectfunction of the Minimum

Number of Conflicts Problem (MNCP) can be represefity:

V(MNCP) = Min zN:i[w,,JxH + Zy,w] (1)

i=l j=1 (k)OS



For each point only one candidate position must be selected andose of the
candidate positions fror®; will be receiving the value 1. This set of conits can be

written as:
Y x,;=1 DOi=1.N (2)

Placing the labels in a map can generate conflatsrlaps) with the other labels that

are positioned. Thus, we need a new constrairtbsejpresent this case. This set considers

each positior, ;, its respective conflict positiong,, and one conflict variablg ;. ,

i,
expressed as:

X + X~ Yiiikt <1 Oi=1..N
0j=1.P )
k)OS,

Thus, the MNCP can be formulated as a binary imtlygear programming problem:

N R
V(MNCP) = Min WX D Yk (4)
i=1 j=1 (k,t)3S;

Subject to dx,;=1 0Oi=1.N (5)

XX = Yijke <1 Oi=1.N
Oj=1.P (6)
k0OS,



X Xt and Yiikt I:l{(),:l-} Oi=1..N
Oj=1.P (7)
(k,t)DSIVJ-

Constraint (7) ensures that all decision variabliethe problem are binaries. When the
objective function is minimized the conflict varlab must be eliminated or minimized (if
elimination is not possible).

The formulation (4)-(7) is similar to the one prepd by Zoraster (1990), but in
Zorater’s formulation points with inevitable overtaare not labeled and our model ensures
that all points are labeled minimizing the numbiecanflicts.

This formulation was initially tested using the 2L 7.5 (ILOG, 2001) on a set of
standard problems (Yamamoto and Lorena, 2005; Yart@r@003). The optimal solution
could be found in few seconds for the instancesoup00 points. The CPLEX could not
obtain the optimal solutions for instances with 5@ 1000 points heuristically solved by
Yamamoto et al. (2002) and Yamamoto and Lorena5R00he CPLEX performed until
stop reaching an out of memory condition. Thus, esoefaxation heuristics were proposed
to provide good lower and upper bounds for MNCPsé&be that the particular case of
w;;=1 in (4)-(7) has a trivial lower bound equal Ny when all points are labeled without

conflict.

4. Relaxations
We examine in this section three relaxations to MW&CP formulation (4)—(7), a
Lagrangean relaxation of constraints (6), a LageangSurrogateLagSu) relaxation of

constraints (6) andlaagSurrelaxation of constraints (5).



The first relaxation is similar to the one proposgdZoraster (1990). The model defined
in (4)-(7) was solved by a Lagrangean relaxatioithva subgradient optimization and
specific heuristic.

The conflict constraints (6) are relaxed in a Lagean way. Then, for given

N R
multipliersA OR; , where C =ZZ‘S'J‘ is the number of the conflict constraints, the

i=l j=1

Lagrangean relaxation for MNCP (now consiBeas MNCP) is given by:

Subject to (5) and (7).

Problem(L"P) is easily solved by inspection over constraint set (5), anddet af A
values, the best valugL'P) is less than or equal t(P) and is obtained solving the
Lagrangean duahﬁlgao><{v(L‘ P)} To solve it, we use a subgradient algorithm (Parker and
Rardin, 1988). At an iteratioh the subgradients are defined by =x/; +x¢, -y . -1,
wherei O{L,...,N}, jO{L....R} and (k,t)OS,, such that k", y*) is anoptimal solution
to (LAP). The subgradient method updates the multipli@s A,,, = A, + 6, g”, whered, is

~v(L*P))
lo"]

feasible solution té (to be described in the followingjound at iteration. The control of

the step size calculated B = n(ulq andub is the value for an improved



parameterrzis the same proposed by Held and Karp (1971) nioégi with 2 and halving it

wheneverul does not decrease for 15 successive iterations.sfdpping tests used are:
n<00050r (ub -v(L*P)) < 10r Hg”' HZ =0.
The relaxed solutiorSol, = (x*,y") of (L'P), composed by variables representing

candidate positionsx(';) and conflicts §/,,,), is also a feasible solution fd&*. The

conflict constraints (6) are relaxed but constsa(®) are respected. This feasible solution is

improved by the following local search heuristic.

Improvement Heuristic - IH

For each element of feasible solution, store in a conflict array the number of conflicts for each

position.

For i=1 to the length of the conflict array;

If Conflict array[i] # 0

Seek among the possible candidate positions j, the one that presents the smallest
number of conflicts with the current feasible solution.
If there is some candidate position j with the number of the conflicts smaller than
Conflict array][i], change Feasible Solution [i] with candidate position j.

End For.

The second relaxation is a Lagrangean/SurrogbhtgSu) heuristic (Narciso and
Lorena, 1999) over conflict constraints (6). Fiest,described by Glover (1968), the set (6)

is relaxed in the surrogate way followed by a Lagean relaxation of the surrogate
constraint. For multipliersA OR{ where C is the number of the conflict constraints

defined before, the surrogate relaxatiorPos:

V(SR') = Min iz{wi,jxi,j + Zyi,j,k,t] 9)

i=l j=1 (KOS, |

10



N R N R

Subject to zz z/‘i,j,k,t(xi,j+Xk,t_yi,j,k,t)szz Z/‘i,j,k,t (10)

i=1 j=1(kt)0S i=1 j=1 (kt)DS

(5) and (7).
Fort=0, relaxing constraints (10) &P in the Lagrangean way, thegSurrelaxation

is given by:

N R
v(L,SR") = Min ZZ{WHXH + Zyw,k,t]"'

i=l j=1 (K0S,
(11)
N R N R
'{ZZ Z/]i,j,k,t(xi,j + Xt _yi,j,k,t)_zz Z’L,J,k,t]
=1 j=1(k )OS, =1 =1 (k00
Subject to (5) and (7).

An interesting characteristic of relaxatiqh,SP') is that fort = 1 we have the
Lagrangean relaxation shown before. Hofixed, the best value fdrcan be calculated by

solving aLagSurdual in variables0, v(D/ ), = I\{I%xv(LtSI?‘ ).
2

For A fixed, the optimal value/(Dt” )1 provides an improved bound to the Lagrangean
relaxation (whert is fixed to 1). Senne and Lorena (2000) descriédetchotomous search
algorithm that approximates the best valugé @fenotingt* this best value, if for a number
of iterations of the subgradient algorithm theueabf thet* repeats, thetr is fixed and

the dichotomous search is not more executed. Eatibnl of the subgradient algorithm,

the multipliers are updated ak,, = A, +6,g”", where 8, is the step size calculated by

6 = ,T(uh ﬁVA(FSFr )), ub is the feasible solution found with heuristic IHydathe
g |

subgradients are calculated as shown before.

11



The third relaxation considersLagSurrelaxation applied over the constraint set (5).

Again, given multipliers DR", whereN is the number of points, a surrogate relaxation

can be obtained as:

V(SR') = Min ZN:ZP:(WJX,] + zyi,j,k,tJ (12)

i=1 j=1 (k,t)OS;

N R N

Subject to ZZ/LXH =Z/li (13)
(6) and (7)

Fort/R, constraint (13) oSR' is relaxed in the Lagrangean way giving:

Pi
V(L;SR') = Min ZN:Z[Wi,in,j + Zyi,j,k,t]+

i=l j=1 (k1S
N R N (14)
t[z Alxl,j _Z/‘l]
i=1 j=1 i=1
Subject to (6) and (7)
N R
Now, the subgradient ig" =Zfoj -1 and the subgradient algorithm updates the
i=l j=1

multiplier A, as before A, =4, +6,g", where 6, is the step size calculated by

)), and ub is the feasible solution found with the construetiv

heuristic (CH) described in the following.

12



The constructive heuristic builds a feasible solutifrom the relaxed solution
Sol, =(x*,y") of (L,SR"), finding candidate positions (constraints (5))hwitmallest

number of conflicts related to the feasible solutibat is being built. If some pointwas
not labeled, the heuristic search among the pass#didate positiorjsof this point, the

smallest se§; and the respectiveis used to label. The feasible solution obtained is

further improved applying heuristic 1H.

Constructive Heuristic - CH

Fill the feasible solution array with zeroes;
Fori=1to N
Find in relaxed solution all candidate positions different from zero for the point i.
Select for feasible solution in the point i the candidate position j with smallest number of

conflicts with elements in feasible solution. In case of tie, select the position corresponding

to set S;; with smallest cardinality.
If none candidate position j for the point i is in relaxed solution, choose the candidate

position corresponding to the candidate position set S;; with smallest cardinality.

End For.

5. Computational Results

The computational tests are performed on instapiegssed by Yamamoto and Lorena

(2005) that are available at http://www.lac.inpé:lmrena/instancias.html Our

implementation used a Pentium IV 2.66GHz procesgth 512MB of RAM memory,

Windows XP and C++ compiler.

As considered by Zoraster (1990), Yamamoto et28l02) and Yamamoto and Lorena

(2005), we considered 4 candidate positions ankl eae has the same desirability;(= 1

[71i=1...Nandj=1...R).

13



Tables 1 to 3 report the average results fiotP and (L,SP'). Problems with 25

points have 8 instances and all the others 25iftbemation in columns are:
* Problem- Number of points to be labeled;
* Optimal Solution- The optimal solution to problem (4) — (7) ob&inwith
CPLEX;
* Lower Bound The best dual limit found;
» Upper Bound The best upper bound (feasible solution) found;

» Gab_ub- Percentage deviation from optimal solution te best upper bound:

Gap_ub= (Upperbound— Optimal SolutlonJ *100:

Optimal Solution
» Gap_lb- Percentage deviation from optimal solution te best lower bound:

Optimal Solution- Lowerbound
Optimal Solution

Gap_|Ib =( J*lOO;

» lter - Number of the iterations used by subgradieraraiym;

* Time- The total computational time (in seconds).

The search for the best multipliedescribed by Senne and Lorena (2000) was tending
to zero in(L,SP") . This fact was expected since all information atmmnflicts was relaxed.
Then, we tested some fixed valuestfod; 0.25; 0.5 and 0.75. Solvin@,SP') fort =0 is
equivalent to a random solution for candidate pmrsst (xfj) since the conflicts 3@‘,],“)

must be zero in (11).
Problems with 100 and 250 points are simple, ahatieas without conflicts are found

very quickly and the subgradient algorithm stopsa@ak lower bounds, consequently the

14



Gapsare not calculated being substituted by NC (Ndt@ated). The same situation also
appeared for some instances with 500 points. Timestesults shown in the Tables 1 to 3
correspond to problems in that the optimizationcpss reaches one of the three stop

conditions described in Section 4.

Considering Table 1, the.'P Ipwer bound gaps varied from 0.53% to 9.72% amed th
(L,SP"), in the best case, from 0.28% to 9.72%. In Tabtee2(L'P) upper bound gaps
varied from 0.00% to 4.14% and the best(bfSP'), from 0.00% to 1.82%. Therefore, in

both analysis théL,SP') provided better results théld P . The computational times (see

Table 3) were very good for all instances, varyfmgm 0.00 to 19.60 seconds (1000
points).

The results for(L,SR') are reported in Table 4. The CPLEX 7.5 was usezblee the

relaxed binary integer linear programs. This refiaxais stronger tharfL'P  and(L,SP"),

however the results were not interesting. Onlylthneer bound was improved, but the times
increased drastically. The upper bound was notongat and the large-scale instances (of
500, 750, and 1000 points) could not be solved. &@mple, the instance number 7 of
problems with 25 points consumed 444 seconds tmbw®leted.

Considering that for large instances we could ntduee optimal solution, the pre-
processing suggested by Wagner et al. (2001) o taseeduce the size of conflict graphs.
Wagner et al. (2001) developed three rules thatbeadescribed as follow. For the first
one, if a pointp has a candidate position without conflicts, we truge this candidate
position as part of the solution and eliminateaHer candidates gi. The second, if a

point p has a candidate positignthat is only in conflict with some candidate pmsitg,

15



and the point has a candidatg (j ) that is only overlapped lgy (I4), then addy andg;
to the solution and eliminate all other candidaiep andq. For the last rule, if a poing
has only one candidafe left, and the candidates overlappmdorm a clique, then declare
pi to be part of the solution and eliminate all caaties that overlap.

These three rules are applied exhaustively sor, eliteinating a candidatg, we must
check recursively whether the rules can be apphethe neighborhood gfi. For more
details, see Wagner et al. (2001).

Table 5 shows average results obtained with thdsiation procedure. The columns
indicate the number of verticesV|), number of edgesH]), number points fixed by
procedure (Labeled points), percentage of vertregsiction (Vertices reduction %) and
percentage of edges reduction (Edges reductionTBe).procedure reduced more edges in
instances with 100 and 250 points. For these iostann several cases the reduction
procedure provided a solution without overlaps. deer, even with reduced graphs, the
CPLEX could not found the optimal solutions fordar instances due to out of memory
conditions.

Our relaxations are then applied to these new estigcaphs. The results are shown in
Tables 6, 7, 8 and 9, where the columns are the shercribed before. All results were
improved, the lower bounds increased and the uppends decreased and consequently

the gaps reduced. The times are also reduced daedits, but we found the same situation
for the relaxation(L,SR') applied on large instances, i. e., we could néaiakbounds for

instances with 500, 750 and 1000 points.
It is important to note that all approaches revisedection 2 have different objectives

of those in MNCP and consequently the computaticesllts are not comparable.
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6. Conclusion

This paper presented a new mathematical formuldormpoint-feature cartographic
label placement problem that minimizes the numlbexasting overlaps in a labeling of all
points on a map, and is different from the commoobjem studied in literature that
considers the positioning of the maximum numbegaofflict free labels.

A commercial solver could not solve some largeansés proving space to new
lagrangean heuristics tested on a set of instarargsg from 25 to 1000 points. For many
instances the results found are close to the optsmlations, providing good lower and
upper bounds.

We believe that this work contributes for cartodriagpoint labeling problems and can

insight solutions to other related problems that loa formulated in conflict graphs.
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Figure Captions

Figure:

1 — A set of 8 potential label positions and thigisirability (Christensen et al., 1995).
2 — Candidate positions, conflicts and the relgteghh (Yamamoto and Lorena, 2005).

3 — Possible solutions for a problem with 4 points.
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Table Captions

Table:

1 — Lower Bound Average Results for LagrangeanlaagburRelaxation over Constraint
Set (6).

2 — Upper Bound Average Results for LagrangeanLag@®urRelaxation over Constraint
Set (6).

3 — Iterations and Computational Times for Lagramgand_agSurRelaxation over
Constraint Set (6).

4 — Average results obtained féir, SB') — BoundsGaps Iterations and Computational
Times.

5 — Average results on reduced conflict graphsinbethafter rules proposed by Wagner et
al. (2001).

6 — Lower bound average results on reduced graphs.

7 — Upper bound average results on reduced graphs.

8 — Iterations and computational times on reducagits.

9 — Average results obtained f¢lr, SB') on reduced graphs.
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. Lower bound Gap_Ib(%)
Problem Opt””f‘a'
Solution (LAP) (L18F1y]) (LAP) (L18F1y])
t=0.25 | t=0.50| t=0.75 t=0.25 | t=0.50, t=0.75
25.00 27.75 25.00 24.96 25.00  25.00 9.72 9.87 9.72.72
100.00 | 100.00 NC NC NC NC NC NC NG NG
250.00 | 250.00 NC NC NC NC NC NC NG NG
500.00 | 500.84 498.20 493.46* 496.91* 499/45 0.58 48%.| 0.80* | 0.28
750.00 - 749.98 743.42  748.74 749/98 - - 1 1
1000.00 - 999.93 997.04 999.93 999/95 - -
*Average between results that presented solutidh ganflicts.
Tablel
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0,
oroblorm Optimal Upper bound Gap_ub(%)
Solution (|_/1 p) (L18F1y]) (|_/1 p) (L[SFl)A)
t=0.25 t=0.50 t=0.75 t=0.25 | t=0.50| t=0.75
25.00 27.75 28.88 28.38 28.2% 28.683 4.14 2.33 1)823.21
100.00 | 100.00| 100.0Q 100.00 100.00 100,00 0.p0 0,000.00 0.00
250.00 | 250.00| 250.00 250.00 250.04 250.00 0.p0 0,000.02 0.00
500.00 | 500.84| 503.92 502.88* 503.16* 503.80 0.61 410.| 0.46* 0.59
750.00 - 774.44| 771.80 772.68 774.44 - - - -
1000.00 - 1086.44 1075.64 1079.24 108640 1 - .
* Average between results that presented solutiitim eonflicts.
Table2

27



Iterations Time (sec.)
Problem .
(L'P) (L18F1y]) g&ﬂ?{f‘:‘ (L'P) (L18F1y])

t=0.25 | t=0.50| t=0.75 t=0.25 | t=0.50| t=0.75
25.00 146.63| 148.88 148.38 146.63 1.60 0.25 0.13 13 0{ 0.13
100.00 1.16 1.16 1.16 1.16 0.02 0.00 0.00 0.00 0.04
250.00 2.48 2.36 7.72 2.68 0.06 0.00 0.00 0.04 0.00
500.00 | 146.00| 140.24 134.48 146.20 3.12 2.716 264 64 2] 2.80
750.00 | 146.00| 146.00 146.00 146.00 - 8.48 8.44 840 8.56
1000.00| 146.00| 146.00 146.00 146.00 - 19.82 19/609.521| 19.08

Table3
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. Time (s)
Instance Optlmal Lower Upper Gap_ub | Gap_Ib lter Ootimal
solution | bound | bound (%) (%) Soﬁution (L, SR")
25 27.75 25.13 28.38 2.29 9.27 151.63 1.6( 104.63
100 100.00 NC 100.00 0.00 NC 1.00 0.02 0.16
250 250.00 NC 250.00 0.00 NC 1.48 0.06 0.92
Note: The solutions are not obtained for problenih w00, 750 and 1000 points due to time-consuming

conditions.

Table4
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Original graph Reduced graph
Instance . Vertices Edges
VI Fl Labeled points reduction (%) | reduction (%)
25 100 332.38 4.63 18.50 11.65
100 400 102.28 98.52 98.52 90.66
250 1000 614.00 229.60 91.84 74.95
500 2000 2409.44 344.36 68.87 46.43
750 3000 5431.68 347.84 46.38 29.08
1000 4000 9700.92 276.36 27.64 16.24
Table5
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Lower bound Gap_Ib(%)
Optimal
Problem Sguﬂon (|_/1 p) (L[SFl)A) (|_/1 p) (L18F1y])
t=0.25 | t=0.50| t=0.75 t=0.25 | t=0.50] t=0.75
25.00 27.75 25.00 24.94 25.00 25.00 9,72 9,95 9,73,72
100.00 | 100.00 NC NC NC NC NC NC NG NG
250.00 | 250.00 NC NC NC NC NC NC NG NG
500.00 | 500.84 499.65*| 497.77* 499.29* 499.92*  0.24* 0.63* | 0.33*| 0.19*
750.00 - 749.98 747.34 749.76  749.98 - - 1 1
1000.00 - 999.93 998.61 999.96 999.94 - -
*Average between results that presented solutidh ganflicts.
Table6
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Upper bound

Gap_ub(%)

Problem Opt“”f‘a'
Solution (|_/1 p) (L18F1y]) (|_/1 p) (L[SFl)A)
t=0.25 t=0.50 t=0.75 t=0.25 | t=0.50| t=0.75
25.00 27.75 28.25 28.25 28.5( 28.2b 1.81 1.81 2/701.81
100.00 | 100.00] 100.0Q 100.00 100.00  100.00 0.00 0{000.00 0.00
250.00 | 250.00] 250.0Q 250.00 250.04  250.00 0.00 0{000.02 0.00
500.00 | 500.84| 502.8Q 502.88 503.28 503.04 0.39 0{410.49 0.44
750.00 - 772.36| 770.2Q 77216  772.36 - - - -
1000.00 - 1081.12 1074.76 1077.24 1081|16 - -
* Average between results that presented solutiitim eonflicts.
Table7
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Iterations Time (sec.)
Problem .
(L'P) (L18F1y]) (S)(I)Dlﬂ?:(?rL (L'P) (L18F1y])
t=0.25 | t=0.50| t=0.75 t=0.25 t=0.50 t=0.75
25.00 147.38| 149.50 147.00 148.25 0.44 0.13 0.13 250/ 0.25
100.00 1.04 1.04 1.04 1.04 0,20 0.08 0.0¢ 0.04 0.01
250.00 8.36 1.64 10.16 2.68 0,16 0,04 0 0,04 0,00
500.00 | 140.48] 134.40 128.76 140.24 0.61 1.52 144 361 1.44
750.00 | 146.00f 146.00 146.00 146.00 - 6.1p 6.12 6.20 6.04
1000.00| 146.00] 146.00 146.00 146.00 - 16.00 16{76 6.121 16.08
Table8
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. Time (s)
Instance Optlmal Lower Upper Gap_ub | Gap_Ib lter Ootmal
solution | bound bound (%) (%) soplution (L,SR')
25 27.75 25.13 28.25 1.81 9.26 147.63 0.44 95,00
100 100.00 NC 100,00 0,00 NC 1,00 0.20 0,08
250 250.00 NC 250,04 0,02 NC 5,64 0.16 0,40

Note: The solutions are not obtained for problenih w00, 750 and 1000 points due to time-consuming

conditions.

Table9

34



