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Abstract 

The cartographic label placement problem is an important task in automated cartography 

and Geographical Information Systems. Positioning the texts requires that overlap among 

texts should be avoided, that cartographic conventions and preference should be obeyed. 

This paper examines the point-feature cartographic label placement problem (PFCLP) as an 

optimization problem. We formulate the PFCLP considering the minimization of existing 

overlaps and labeling of all points on a map. This objective improves legibility when all 

points must be placed even if overlaps are inevitable. A new mathematical formulation of 

binary integer linear programming that allows labeling of all points is presented, followed 

by some Lagrangean relaxation heuristics. The computational tests considered instances 

proposed in the literature up to 1000 points, and the relaxations provided good lower and 

upper bounds. 

 

Keywords: Label placement, Modeling, Lagrangean relaxation, Lagrangean/Surrogate 
relaxation, Heuristic. 



 2 

1. Introduction 

The cartographic label placement problem is an important task in automated cartography 

and Geographical Information Systems. This problem consists in attach a label, here a text, 

to each feature point, line or region in the map. Positioning the texts requires that overlap 

among texts should be avoided, that cartographic conventions and preference should be 

obeyed. So, the label placement belongs to an area of difficult solution for large instances.  

This paper examines the point-feature cartographic label placement problem (PFCLP) 

with labels restricted to some finite number of positions (discrete model) and being axis-

parallel rectangles. If we remove the restriction that a label can be placed at a finite number 

of positions and allow a continuous movement of the label around of its point (continuous 

model), we have a model known as slider model (Kreveld et al., 1999; Klau and Mutzel, 

2000 and 2003). 

 

Figure 1 - A set of 8 potential label positions and their desirability (Christensen et al., 
1995) 

 
 

The PFCLP can be considered as an optimization problem and has been shown to be 

NP-Hard (Formann and Wagner, 1991; Marks and Shieber, 1991).  The problem consists in 

placing of point labels in positions in a way that a set of constraints are satisfied, 

minimizing or maximizing an objective function. Thus, for each point exist a set of possible 

label positions also known as a set of candidate positions. This set is a list of potential label 

positions that can indicate their desirability (Christensen et al., 1995). Fig. 1 shows a group 

of 8 candidate positions for a point, where the numbers indicate the cartographic preference 

in increasing order. 
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Placing labels in candidate positions can generate overlaps (conflicts) causing problems 

in map visibility. Thus, due to these potential overlaps, the PFCLP with N points can be 

represented through a graph G={V,E}, where V is the set of the candidate positions 

(vertices) and E the set of edges representing overlaps or conflicts. Fig. 2B shows the graph 

of the example in Fig. 2A. This example has two points, each one with 4 candidate 

positions, the candidate position L3 has a potential conflict with the position L6 and L4 has 

potential conflicts with L5 and L6. 

 

Figure 2 - Candidate positions, conflicts and the related graph (Yamamoto and Lorena, 

2005). 

 

Fig. 3 shows two possible solutions for the same problem with four points. Solution (b) 

has better visibility than solution (a). Considering these visibility questions, this paper 

proposes a new integer linear programming model for Minimum Number of Conflicts 

Problem (MNCP), presenting some Lagrangean and Lagrangean/Surrogate heuristics. This 

formulation allows labeling all points in a conflict graph. Using the benchmark composed 

of instances of the literature, a commercial solver could obtain in few seconds the optimal 

solution for instances up to 500 points, but failed on large instances with 750 and 1000 

points, justifying the use of lagrangean heuristics to provide good solutions (upper and 

lower bonds). 

 

Figure 3 - Possible solutions for a problem with 4 points. 
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The rest of this paper is organized as follows: in the next section, a review is shown 

about PFCLP, followed by the proposed mathematical model. In section 4 the relaxations 

and heuristics are shown, followed by the computation results and conclusions.    

  

2. Literature Review 

In the literature the PFCLP have different but connected objectives. The PFCLP can be 

modeled as a Maximum Independent Set Problem (MISP) (Zoraster, 1990; Strijk et al., 

2000) or as a Maximum Number of Conflict Free Labels Problem (MNCFLP) (Christensen, 

1993; Yamamoto and Lorena, 2005). Both approaches count the final number of positioned 

conflict free labels and the main difference is in the final number of labeled points. In 

MISP, points with inevitable overlaps are not labeled, while all points must be labeled in 

MNCFLP. For literature on other models, see the map labeling bibliography (Wolf and 

Strijk, 2005) 

Considering the PFCLP as a MISP, several works that propose algorithms and 

techniques to reduce the number of constraints are found in the literature. Zoraster (1986, 

1990 and 1991) formulated mathematically the PFCLP working with conflict constraints 

and dummy candidate positions of high cost if the points could not be labeled. Zoraster also 

used a Lagrangean relaxation and obtained some computational results on small-scale 

instances. Strijk et al. (2000) proposed other mathematical formulation exploring some cut 

constraints. These cuts are based on cliques and appeared before in the works of Moon and 

Chaudhry (1984) and Murray and Church (1996). They applied and proposed several 

heuristics: Simulated Annealing, Diversified Neighborhood Search, k-opt and Tabu Search. 

The last one showed the better results for their instances. Recently, Klau and Mutzel (2000 
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and 2003) present exact algorithms where constraint graphs code vertical and horizontal 

positioning relations, allowing discrete and slider models with integer linear programming. 

The Maximum Number of Conflict Free Labels Problem (MNCFLP) was examined in 

several papers. Hirsch (1982) developed a Dynamic Algorithm of label repulsion, where 

labels in conflicts are moved trying to remove a conflict. The algorithm defines repelling 

forces for overlapping labels and computes translation vectors for them. After translation, 

this process is repeated and hopefully, a labeling with few overlaps appears after a number 

of iterations. Christensen et al. (1993; 1995) proposed an Exhaustive Search Approach, 

alternating positions of the labels that were previously positioned. Christensen et al. (1995) 

also proposed a Greedy Algorithm and a Discrete Gradient Descent Algorithm but these 

algorithms have difficulty of escaping from local maximum. Verner et al. (1997) applied a 

Genetic Algorithm with mask such that if a label is in conflict the changing of positions are 

allowed by crossover operators. Yamamoto et al. (2002) proposed a Tabu Search algorithm 

that provides good results when compared with the literature. Schreyer and Raidl (2002) 

applied Ant Colony System but the results were not interesting when compared to the ones 

obtained by Yamamoto et al. (2002). Yamamoto and Lorena (2005) developed an exact 

algorithm for small instances of PFCLP and applied the Constructive Genetic Algorithm 

(CGA) proposed by Lorena and Furtado (2001), to a set of large-scale instances. The exact 

algorithm was applied to instances of 25 points and the CGA was applied to instances up to 

1000 points, providing the best results of the literature.  

The PFCLP, even as a MISP or MNCFLP, can generate a large conflict graph that 

becomes hard to deal with it. Wagner et al. (2001) presented an approach to reduce the 

conflict graph provided by a PFCLP. They proposed three rules to reduce the size of the 
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conflict graph without altering the set of optimal solutions. Moreover, they combined these 

rules with heuristic yielding near-optimal solutions. 

 

3. Mathematical formulation  

The mathematical formulation proposed for the MNCP is to minimize the number of 

conflicts considering that for each point i corresponds a number Pi of candidate positions. 

Each candidate position is represented by a binary variable xi,j where { }Ni ,...,1∈ , 

{ }iPj ,...,1∈ , and N is the number of points that will be labeled. If xi,j = 1 the candidate 

position j of the point i will be used (will receive the label of point i), otherwise, xi,j = 0. 

Besides, for each possible candidate position of point i it is associated a cost (a penalty) 

represented by wi,j. 

For each candidate position xi,j exist a set Si,j of index pairs of candidate positions 

conflicting with xi,j. Si,j is the set of index pairs (k,t) of candidates positions xk,t conflicting 

with xi,j. For all jiStk ,),( ∈∈∈∈ , where { } ikNk >∈ :,...,1  and { }kPt ,...,1∈ , we have a binary 

variable tkjiy ,,,  representing the conflict  (an edge in the conflict graph G). 

Now, considering the information above, the objective function of the Minimum 

Number of Conflicts Problem (MNCP) can be represented by: 
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For each point i only one candidate position must be selected and so, one of the 

candidate positions from Pi will be receiving the value 1. This set of constraints can be 

written as:  

Nix
iP

j
ji ...11

1
, ====∀∀∀∀====∑

====
               (2) 

Placing the labels in a map can generate conflicts (overlaps) with the other labels that 

are positioned. Thus, we need a new constraint set to represent this case. This set considers 

each position jix , , its respective conflict positions tkx ,  and one conflict variable tkjiy ,,, , 

expressed as: 
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Thus, the MNCP can be formulated as a binary integer linear programming problem: 
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Constraint (7) ensures that all decision variables of the problem are binaries. When the 

objective function is minimized the conflict variables must be eliminated or minimized (if 

elimination is not possible).     

The formulation (4)-(7) is similar to the one proposed by Zoraster (1990), but in 

Zorater’s formulation points with inevitable overlaps are not labeled and our model ensures 

that all points are labeled minimizing the number of conflicts. 

This formulation was initially tested using the CPLEX 7.5 (ILOG, 2001) on a set of 

standard problems (Yamamoto and Lorena, 2005; Yamamoto, 2003). The optimal solution 

could be found in few seconds for the instances up to 500 points. The CPLEX could not 

obtain the optimal solutions for instances with 750 and 1000 points heuristically solved by 

Yamamoto et al. (2002) and Yamamoto and Lorena (2005). The CPLEX performed until 

stop reaching an out of memory condition. Thus, some relaxation heuristics were proposed 

to provide good lower and upper bounds for MNCP. Observe that the particular case of 

wi,j=1 in (4)-(7) has a trivial lower bound equal to N, when all points are labeled without 

conflict. 

 

4. Relaxations 

We examine in this section three relaxations to the MNCP formulation (4)–(7), a 

Lagrangean relaxation of constraints (6), a Lagrangean/Surrogate (LagSur) relaxation of 

constraints (6) and a LagSur relaxation of constraints (5).    
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The first relaxation is similar to the one proposed by Zoraster (1990). The model defined 

in (4)-(7) was solved by a Lagrangean relaxation, with a subgradient optimization and 

specific heuristic. 

The conflict constraints (6) are relaxed in a Lagrangean way. Then, for given 

multipliers CR++++∈∈∈∈λ , where ∑∑
==== ====

====
N

i

P

j
ji

i

SC
1 1

,  is the number of the conflict constraints, the 

Lagrangean relaxation for MNCP (now consider P as MNCP) is given by: 

 

( )

∑∑ ∑

∑∑ ∑∑∑ ∑

= = ∈

= = ∈= = ∈

−

−++ +=

N

i

P

j Stk
tkji

N

i

P

j Stk
tkjitkjitkji

N

i

P

j Stk
tkjijiji

i

ji

i

ji

i

ji

yxxyxwMinPLv

1 1 ),(
,,,

1 1 ),(
,,,,,,,,

1 1 ),(
,,,,,

,

,,

  )(

λ

λλ

 (8) 

Subject to   (5) and (7). 

 

 Problem (LλP) is easily solved by inspection over constraint set (5), and for a set of  λ  

values, the best value v(LλP) is less than or equal to v(P) and is obtained solving the 

Lagrangean dual (((( )))){{{{ }}}}PLvMax λ

λ 0≥≥≥≥
. To solve it, we use a subgradient algorithm (Parker and 

Rardin, 1988). At an iteration l, the subgradients are defined by 1,,,,, −−−−−−−−++++==== llll
tkjitkji yxxg λλλλ , 

where { }Ni ,...,1∈ , { }iPj ,...,1∈  and jiStk ,),( ∈∈∈∈ , such that ( lxλ , lyλ ) is an optimal solution 

to (LλP). The subgradient method updates the multiplier λl as lglll
λθλλ +=+1 , where θ l is 

the step size calculated by 
( )

2
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l

l

g
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l λ

λπθ −
=  and ubl  is the value for an improved 

feasible solution to P (to be described in the following)  found at iteration l. The control of 
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parameter π is the same proposed by Held and Karp (1971), beginning with 2 and halving it 

whenever ubl does not decrease for 15 successive iterations. The stopping tests used are:  

005.0≤≤≤≤π  or  ( )( )PLvub l
l

λ−  < 1 or 0
2

=lgλ . 

The relaxed solution ),(Re
λλ yxSol l ====  of )( PLλ , composed by variables representing 

candidate positions (λ jix , ) and conflicts ( λ
tkjiy ,,, ), is also a feasible solution for P. The 

conflict constraints (6) are relaxed but constraints (5) are respected. This feasible solution is 

improved by the following local search heuristic.     

Improvement Heuristic - IH 

For each element of feasible solution, store in a conflict array the number of conflicts for each 

position.  

For i=1 to the length of the conflict array; 

If Conflict array[i] ≠ 0 

Seek among the possible candidate positions j, the one that presents the smallest 

number of conflicts with the current feasible solution.  

If there is some candidate position j with the number of the conflicts smaller than 

Conflict array[i], change Feasible Solution [i] with candidate position j.     

End For. 

 

The second relaxation is a Lagrangean/Surrogate (LagSur) heuristic (Narciso and 

Lorena, 1999) over conflict constraints (6). First, as described by Glover (1968), the set (6) 

is relaxed in the surrogate way followed by a Lagrangean relaxation of the surrogate 

constraint. For multipliers CR++++∈∈∈∈λ  where C is the number of the conflict constraints 

defined before, the surrogate relaxation of P is:  
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(5) and (7). 

For t≥0, relaxing constraints (10) of λ
1SP  in the Lagrangean way, the LagSur relaxation 

is given by: 
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Subject to   (5) and (7). 

An interesting characteristic of relaxation )( 1
λSPLt  is that for t = 1 we have the 

Lagrangean relaxation shown before. For λ  fixed, the best value for t can be calculated by 

solving a LagSur dual in variables t≥0, (((( )))) (((( ))))λλ
1

01 SPLvMaxDv t
t

t  
≥≥≥≥

==== . 

For λ  fixed, the optimal value (((( ))))1λ
tDv  provides an improved bound to the Lagrangean 

relaxation (when t is fixed to 1). Senne and Lorena (2000) described a dichotomous search 

algorithm that approximates the best value of t. Denoting t*   this best value, if for a number 

of  iterations of the subgradient algorithm the value of the t*   repeats, then t*  is fixed and 

the dichotomous search is not more executed. For iteration l of the subgradient algorithm, 

the multipliers are updated as lglll
λθλλ +=+1 , where θ l is the step size calculated by 

( )
2

1* )(

l

l

g

SPLvub tl
l λ

λπθ −
= , ubl  is the feasible solution found with heuristic IH, and the 

subgradients are calculated as shown before.  
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The third relaxation considers a LagSur relaxation applied over the constraint set (5). 

Again, given multipliers NR∈∈∈∈λ , where N is the number of points, a surrogate relaxation 

can be obtained as: 
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Now, the subgradient is 1
1 1

,
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xg λλ  and the subgradient algorithm updates the 

multiplier λl as before lglll
λθλλ +=+1 , where θ l is the step size calculated by 

( )
2
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= , and ubl  is the feasible solution found with the constructive 

heuristic (CH) described in the following.  
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The constructive heuristic builds a feasible solution from the relaxed solution 

),(Re
λλ yxSol l ====  of )( 2

λSPLt , finding candidate positions (constraints (5)) with smallest 

number of conflicts related to the feasible solution that is being built. If some point i was 

not labeled, the heuristic search among the possible candidate positions j of this point, the 

smallest set Si,j and the respective j is used to label i. The feasible solution obtained is 

further improved applying heuristic IH. 

 

Constructive Heuristic - CH 

Fill the feasible solution array with zeroes; 

For i=1 to N 

Find in relaxed solution all candidate positions different from zero for the point i. 

Select for feasible solution in the point i  the candidate position j  with smallest number of 

conflicts with elements in feasible solution. In case of tie, select the position corresponding 

to set Si,j with smallest cardinality.       

If none candidate position j for the point i is in relaxed solution, choose the candidate 

position corresponding to the candidate position set Si,j with smallest cardinality.       

End For. 

 

5. Computational Results 

The computational tests are performed on instances proposed by Yamamoto and Lorena 

(2005) that are available at http://www.lac.inpe.br/~lorena/instancias.html. Our 

implementation used a Pentium IV 2.66GHz processor with 512MB of RAM memory, 

Windows XP and C++ compiler. 

As considered by Zoraster (1990), Yamamoto et al. (2002) and Yamamoto and Lorena 

(2005), we considered 4 candidate positions and each one has the same desirability (wi,j = 1 

∀  i = 1…N and j = 1…Pi). 
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Tables 1 to 3 report the average results for )( PLλ  and )( 1
λSPLt . Problems with 25 

points have 8 instances and all the others 25. The information in columns are: 

• Problem - Number of points to be labeled; 

• Optimal Solution - The optimal solution to problem (4) – (7) obtained with 

CPLEX; 

• Lower Bound - The best dual limit found; 

• Upper Bound - The best upper bound (feasible solution) found; 

• Gab_ub - Percentage deviation from optimal solution to the best upper bound: 

100*_ 


 −−−−====
Solution Optimal

Solution Optimalbound Upper
ubGap ;  

• Gap_lb - Percentage deviation from optimal solution to the best lower bound: 

100*_ 


 −−−−====
Solution Optimal

bound LowerSolution Optimal
lbGap ; 

• Iter - Number of the iterations used by subgradient algorithm; 

• Time - The total computational time (in seconds). 

    

The search for the best multiplier t described by Senne and Lorena (2000) was tending 

to zero in )( 1
λSPLt . This fact was expected since all information about conflicts was relaxed. 

Then, we tested some fixed values for t: 0; 0.25; 0.5 and 0.75. Solving )( 1
λSPLt  for t = 0 is 

equivalent to a random solution for candidate positions ( λ
jix , ) since the conflicts (λ

tkjiy ,,, ) 

must be zero in (11).  

Problems with 100 and 250 points are simple, and solutions without conflicts are found 

very quickly and the subgradient algorithm stops on weak lower bounds, consequently the 
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Gaps are not calculated being substituted by NC (Not Calculated). The same situation also 

appeared for some instances with 500 points. Thus, the results shown in the Tables 1 to 3 

correspond to problems in that the optimization process reaches one of the three stop 

conditions described in Section 4.  

Considering Table 1, the )( PLλ  lower bound gaps varied from 0.53% to 9.72% and the 

)( 1
λSPLt , in the best case, from 0.28% to 9.72%. In Table 2 the )( PLλ  upper bound gaps 

varied from 0.00% to 4.14% and the best of )( 1
λSPLt , from 0.00% to 1.82%. Therefore, in 

both analysis the )( 1
λSPLt  provided better results than )( PLλ . The computational times (see 

Table 3) were very good for all instances, varying from 0.00 to 19.60 seconds (1000 

points).  

The results for )( 2
λSPLt are reported in Table 4. The CPLEX 7.5 was used to solve the 

relaxed binary integer linear programs. This relaxation is stronger than )( PLλ  and )( 1
λSPLt , 

however the results were not interesting. Only the lower bound was improved, but the times 

increased drastically. The upper bound was not improved and the large-scale instances (of 

500, 750, and 1000 points) could not be solved. For example, the instance number 7 of 

problems with 25 points consumed 444 seconds to be completed.  

Considering that for large instances we could not ensure optimal solution, the pre-

processing suggested by Wagner et al. (2001) is used to reduce the size of conflict graphs.  

Wagner et al. (2001) developed three rules that can be described as follow. For the first 

one, if a point p has a candidate position without conflicts, we must use this candidate 

position as part of the solution and eliminate all other candidates of p. The second, if a 

point p has a candidate position pi that is only in conflict with some candidate position qk, 
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and the point q has a candidate qj (j≠k) that is only overlapped by pl (l≠i), then add pi and qj 

to the solution and eliminate all other candidates of p and q. For the last rule, if a point p 

has only one candidate pi left, and the candidates overlapping pi form a clique, then declare 

pi to be part of the solution and eliminate all candidates that overlap pi.  

These three rules are applied exhaustively so, after eliminating a candidate pi, we must 

check recursively whether the rules can be applied in the neighborhood of pi. For more 

details, see Wagner et al. (2001). 

Table 5 shows average results obtained with this reduction procedure. The columns 

indicate the number of vertices (|V|), number of edges (|E|), number points fixed by 

procedure (Labeled points), percentage of vertices reduction (Vertices reduction %) and 

percentage of edges reduction (Edges reduction %). The procedure reduced more edges in 

instances with 100 and 250 points. For these instances in several cases the reduction 

procedure provided a solution without overlaps. However, even with reduced graphs, the 

CPLEX could not found the optimal solutions for larger instances due to out of memory 

conditions.  

Our relaxations are then applied to these new reduced graphs. The results are shown in 

Tables 6, 7, 8 and 9, where the columns are the same described before. All results were 

improved, the lower bounds increased and the upper bounds decreased and consequently 

the gaps reduced. The times are also reduced for the tests, but we found the same situation 

for the relaxation )( 2
λSPLt  applied on large instances, i. e., we could not obtain bounds for 

instances with 500, 750 and 1000 points. 

It is important to note that all approaches revised in section 2 have different objectives 

of those in MNCP and consequently the computational results are not comparable. 
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6. Conclusion 

This paper presented a new mathematical formulation for point-feature cartographic 

label placement problem that minimizes the number of existing overlaps in a labeling of all 

points on a map, and is different from the common problem studied in literature that 

considers the positioning of the maximum number of conflict free labels.  

A commercial solver could not solve some large instances proving space to new 

lagrangean heuristics tested on a set of instances varying from 25 to 1000 points. For many 

instances the results found are close to the optimal solutions, providing good lower and 

upper bounds. 

We believe that this work contributes for cartographic point labeling problems and can 

insight solutions to other related problems that can be formulated in conflict graphs. 
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Figure Captions 

Figure: 

1 – A set of 8 potential label positions and their desirability (Christensen et al., 1995). 

2 – Candidate positions, conflicts and the related graph (Yamamoto and Lorena, 2005). 

3 – Possible solutions for a problem with 4 points. 
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Figure 2 
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Figure 3 
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Table Captions 

Table: 

1 – Lower Bound Average Results for Lagrangean and LagSur Relaxation over Constraint 

Set (6). 

2 – Upper Bound Average Results for Lagrangean and LagSur Relaxation over Constraint 

Set (6). 

3 – Iterations and Computational Times for Lagrangean and LagSur Relaxation over 

Constraint Set (6). 

4 – Average results obtained for )( 2
λSPLt  – Bounds, Gaps, Iterations and Computational 

Times. 

5 – Average results on reduced conflict graphs obtained after rules proposed by Wagner et 

al. (2001). 

6 – Lower bound average results on reduced graphs. 

7 – Upper bound average results on reduced graphs. 

8 – Iterations and computational times on reduced graphs. 

9 – Average results obtained for )( 2
λSPLt on reduced graphs. 
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Lower bound Gap_lb(%) 

)( 1
λSPLt  )( 1

λSPLt  
Problem 

 

Optimal 
Solution 

 )( PLλ  
t=0.25 t=0.50 t=0.75 

)( PLλ  
t=0.25 t=0.50 t=0.75 

25.00 27.75 25.00 24.96 25.00 25.00 9.72 9.87 9.72 9.72 
100.00 100.00 NC NC NC NC NC NC NC NC 
250.00 250.00 NC NC NC NC NC NC NC NC 
500.00 500.84 498.20 493.46* 496.91* 499.45 0.53 1.48* 0.80* 0.28 
750.00 - 749.98 743.42 748.74 749.98 - - - - 
1000.00 - 999.93 997.04 999.93 999.95 - - - - 

*Average between results that presented solution with conflicts. 
Table 1 
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Upper bound Gap_ub(%) 

)( 1
λSPLt  )( 1

λSPLt  
Problem 

 

Optimal 
Solution 

 )( PLλ  
t=0.25 t=0.50 t=0.75 

)( PLλ  
t=0.25 t=0.50 t=0.75 

25.00 27.75 28.88 28.38 28.25 28.63 4.14 2.33 1.82 3.21 
100.00 100.00 100.00 100.00 100.00 100.00 0.00 0.00 0.00 0.00 
250.00 250.00 250.00 250.00 250.04 250.00 0.00 0.00 0.02 0.00 
500.00 500.84 503.92 502.88* 503.16* 503.80 0.61 0.41* 0.46* 0.59 
750.00 - 774.44 771.80 772.68 774.44 - - - - 
1000.00 - 1086.44 1075.64 1079.24 1086.40 - - - - 

* Average between results that presented solution with conflicts. 
Table 2 
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Iterations Time (sec.) 

)( 1
λSPLt  )( 1

λSPLt  
Problem 

 )( PLλ  
t=0.25 t=0.50 t=0.75 

Optimal 
Solution )( PLλ  

t=0.25 t=0.50 t=0.75 
25.00 146.63 148.88 148.38 146.63 1.60 0.25 0.13 0.13 0.13 
100.00 1.16 1.16 1.16 1.16 0.02 0.00 0.00 0.00 0.04 
250.00 2.48 2.36 7.72 2.68 0.06 0.00 0.00 0.04 0.00 
500.00 146.00 140.24 134.48 146.20 3.12 2.76 2.64 2.64 2.80 
750.00 146.00 146.00 146.00 146.00 - 8.48 8.44 8.40 8.56 
1000.00 146.00 146.00 146.00 146.00 - 19.32 19.60 19.52 19.08 

 
Table 3 



 29 

 
Time (s) 

Instance 
Optimal 
solution 

Lower 
bound 

Upper 
bound 

Gap_ub 
(%) 

Gap_lb 
(%) 

Iter Optimal 
solution )( 2

λSPLt  

25 27.75 25.13 28.38 2.29 9.27 151.63 1.60 104.63 
100 100.00 NC 100.00 0.00 NC 1.00 0.02 0.16 
250 250.00 NC 250.00 0.00 NC 1.48 0.06 0.92 

Note: The solutions are not obtained for problems with 500, 750 and 1000 points due to time-consuming 
conditions. 

Table 4 
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Original graph Reduced graph 

Instance 
|V| |E| Labeled points 

Vertices 
reduction (%) 

Edges 
reduction (%) 

25 100 332.38 4.63 18.50 11.65 
100 400 102.28 98.52 98.52 90.66 
250 1000 614.00 229.60 91.84 74.95 
500 2000 2409.44 344.36 68.87 46.43 
750 3000 5431.68 347.84 46.38 29.08 
1000 4000 9700.92 276.36 27.64 16.24 

 
Table 5 
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Lower bound Gap_lb(%) 

)( 1
λSPLt  )( 1

λSPLt  Problem 
Optimal 
Solution )( PLλ  

t=0.25 t=0.50 t=0.75 
)( PLλ  

t=0.25 t=0.50 t=0.75 
25.00 27.75 25.00 24.94 25.00 25.00 9,72 9,95 9,72 9,72 
100.00 100.00 NC NC NC NC NC NC NC NC 
250.00 250.00 NC NC NC NC NC NC NC NC 
500.00 500.84 499.65* 497.77* 499.29* 499.92* 0.24* 0.63* 0.33* 0.19* 
750.00 - 749.98 747.34 749.76 749.98 - - - - 
1000.00 - 999.93 998.67 999.96 999.94 - - - - 

*Average between results that presented solution with conflicts. 
Table 6 
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Upper bound Gap_ub(%) 

)( 1
λSPLt  )( 1

λSPLt  
Problem 

 

Optimal 
Solution 

 )( PLλ  
t=0.25 t=0.50 t=0.75 

)( PLλ  
t=0.25 t=0.50 t=0.75 

25.00 27.75 28.25 28.25 28.50 28.25 1.81 1.81 2.70 1.81 
100.00 100.00 100.00 100.00 100.00 100.00 0.00 0.00 0.00 0.00 
250.00 250.00 250.00 250.00 250.04 250.00 0.00 0.00 0.02 0.00 
500.00 500.84 502.80 502.88 503.28 503.04 0.39 0.41 0.49 0.44 
750.00 - 772.36 770.20 772.16 772.36 - - - - 
1000.00 - 1081.12 1074.76 1077.24 1081.16 - - - - 

* Average between results that presented solution with conflicts. 
Table 7 
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Iterations Time (sec.) 

)( 1
λSPLt  )( 1

λSPLt  
Problem 

 )( PLλ  
t=0.25 t=0.50 t=0.75 

Optimal 
Solution )( PLλ  

t=0.25 t=0.50 t=0.75 
25.00 147.38 149.50 147.00 148.25 0.44 0.13 0.13 0.25 0.25 
100.00 1.04 1.04 1.04 1.04 0,20 0.08 0.04 0.04 0.01 
250.00 8.36 1.64 10.16 2.68 0,16 0,04 0 0,04 0,00 
500.00 140.48 134.40 128.76 140.24 0.61 1.52 1.44 1.36 1.44 
750.00 146.00 146.00 146.00 146.00 - 6.12 6.12 6.20 6.04 
1000.00 146.00 146.00 146.00 146.00 - 16.00 16.76 16.12 16.08 

 
Table 8 
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Time (s) 

Instance 
Optimal 
solution 

Lower 
bound 

Upper 
bound 

Gap_ub 
(%) 

Gap_lb 
(%) 

Iter Optimal 
solution )( 2

λSPLt  

25 27.75 25.13 28.25 1.81 9.26 147.63 0.44 95,00 
100 100.00 NC 100,00 0,00 NC 1,00 0.20 0,08 
250 250.00 NC 250,04 0,02 NC 5,64 0.16 0,40 

Note: The solutions are not obtained for problems with 500, 750 and 1000 points due to time-consuming 
conditions. 

Table 9 
 


