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Let G = (V,E)  be an undirected graph. A k-coloring of G is a partition of V into k subsets Ci, i
= 1,… ,k, such that no adjacent vertices belong to the same subset. The Graph-Coloring
Problem is to find k-coloring of G with k as small as possible. This optimal value of k
corresponds to the chromatic number of G. It is well known that this problem is NP-hard
[Garey & Johnson, 1978], and heuristics must be used for large graphs. Each vertex subset is
an independent vertex set, and the coloring problem could be seen as a clustering problem to
form independent vertex sets. Graph coloring is a very studied problem [de Werra, 1990;
Korman, 1979] and efficient algorithms have been developed [Fleurent & Ferland, 1995].
Applications appear in scheduling (like timetabling) [de Werra, 1985; Leighton, 1979],
frequency assignment [Gamst, 1986; Hale, 1980] and register allocation  [Briggs et al., 1989].
The use of metaheuristics has produced the best results for a large class of graph instances.
Johnson et al. [Johnson et al., 1991] and Chams et al. [Chams et al., 1987] applied Simulated
Annealing. Costa and Hertz [Costa & Hertz, 1996] have created something based on Ant
Colony. Friden et al. [Friden at al., 1989] and Hertz and de Werra [Hertz & de Werra, 1987]
applied Tabu Search and Fleurent and Ferland [Fleurent & Ferland, 1994] applied Hybrid
Genetic Algorithm with aggressive local search.

The Genetic Algorithms (GA) are very known, having several successful applications in
Combinatorial Optimization (CO) problems [Fleurant & Ferland, 1995; Levine, 1993; Lorena
& Lopes, 1996; Lorena &Lopes, 1997; Tam, 1992; Ulder et al., 1991]. GA is based on the
controlled evolution of a structured population. The basis of a GA is the recombination
operators and the schema formation and propagation over generations [De Jong, 1975;
Golberg, 1989; Holland, 1975]. To obtain successful applications of GA to solve CO problems
some characteristics of a classical GA have been adapted and redefined.

The Constructive Genetic Algorithm (CGA) approach (Ribeiro Filho, 1996) uses not only
complete problem solutions, but also solution parts, known as schemata. The algorithm works
with an initial population formed only by schemata. The schemata theory was for long the



central point in classical GA, but has been less explored in recent years. A simple schema is not
enough to represent a feasible solution for the coloring problem, as some vertices are not
colored. New schemata or complete solutions are generated by schemata combination.
Proportional fitting is used to evaluate schemata adaptation and good schemata are preserved.
An evolution parameter eliminates schemata that do not satisfy a permanence criterion and the
best schema found so far is kept. The process finishes with an empty population or when an
iteration limit is reached.

A structure formed by elements, one for each graph vertex, was used as schema representation
in the first CGA approach. Each element has the vertex color or a “do not care” symbol
indicating the vertex is not colored in the present schema. The algorithm looks for a graph
coloring that uses a number of colors a priori set. The population was kept ordered according
the “quality” of the individuals, meaning more colored vertices and less conflicts (an edge
linking same color vertices). The selection for recombination was made by taking an individual
from the best ones in the population and another one from the whole population. Schemata
recombination was made by merging the two selected schemata.

With representation modifications, the CGA was presented as a general heuristic for
optimization problems (http://www.lac.inpe.br/~lorena/teseJC/CGA-tese.ps). Based on the
representation used for the p-median problem (http://www.lac.inpe.br/~lorena/sbpo98/AGC-clust.ps),
that can be generalized for clustering problems, an adaptation for graph-coloring problem was
made so that it could be seen as a vertex-clustering problem. The basics of the first CGA
application to the problem are the same. The selection process, the schema fitness evaluation,
the evolution parameter are all the same. The main modifications were made in the schema
representation, the population composition, a vertex-to-cluster assignment heuristic and a very
aggressive mutation heuristic.

The new representation still uses structures with one element for each vertex, but only three
symbols are possible. These are: the “do not care” symbol, indicating the vertices which are
not assigned to any cluster; a symbol to indicate the vertex is a “seed” to form a cluster; and a
third symbol indicating the vertices assigned to some cluster. The number of seed vertices is
exactly the number of colors being used, or clusters being formed. The vertex-to-cluster
assignment must be made by an appropriate heuristic.

Only schemata now compose the population. There is no complete solutions in the population.
As complete solutions are generated, only the best one is kept. By the best one, we mean the
one with less conflict edges. When the first schema is taken from the best ones in the
population for recombination, a complete solution is created assigning all its vertices to a
cluster, considering the clusters “seeds” already in it. This solution passes through a mutation
process and is compared to the best complete solution found so far. As a second schema is
taken and recombined with the one taken before, if another schema is generated, it is inserted
into the population, but if a complete solution is generated, it passes through mutation and is
compared to the best one. The recombination is the same used in the p-median application and
merges the two schemata, but keep the number of seed vertices.

The vertex-to-cluster assignment uses an adaptation of a heuristic known as Recursive Large
First (RLF)  (Leighton, 1979) that has been compared to others and considered a very good
one. This can be better understood using an example. Suppose we are looking for 3-coloring
for a graph with ten vertices and the following adjacency matrix:



0111000000
1000001000
1001010000
1010101100
0001010110
0010100000
0101000001
0001100010
0000100100
0000001000

Let’s consider the following sets:

Ci is the set of vertices in the i-th cluster,
Ui is the set of all schema vertices adjacent to any vertex in Ci,
Vsch is the set of all the schema vertices, and
Vi is Vsch – Ui.

And let’s consider the following schema:

(#,1,0,1,#,0,0,#,1,0) where 1 = Seed vertex
0 = Vertex to be assigned
# = Vertex not to be assigned

So, initially we have:

C1 = {2} C2 = {4} C3 = {9}
V1 = {3,6,10} V2 = {6,10} V3 = {3,6,7,10}
U1 = {7} U2 = {3,7} U3 = { }

Now, take the vertex v in Vi, i=1,2,3 with the largest degree in Ui, i=1,2,3 and assign v to Ci.
Then, update the sets Ci, Vi, and Ui. We obtain:

C1 = {2,10} C2 = {4} C3 = {9}
V1 = {3,6} V2 = {6} V3 = {3,6,7}
U1 = {7} U2 = {3,7} U3 = { }

Repeating the process we have:

C1 = {2,10} C2 = {4,6} C3 = {9}
V1 = {3} V2 = { } V3 = {3,7}
U1 = {7} U2 = {3,7} U3 = { }

The process continues until all sets Vi are empty.

At the end, in this example we will have the following clusters:

C1 = {2,3,10} C2 = {4,6} C3 = {7,9}



The mutation process is based in the idea of taking the vertex with the largest degree as a
“seed”. It is applied to any complete solution generated and can be seen in the following
pseudo-code:

Mutation Process
1: For each cluster

Move the seed to the vertex with largest degree in the cluster
Re-assign the vertices using the RLF approach
Count conflicts and save the best in this loop

2: If the best found in the loop above is better than the original solution
Replace the original by this best and return to pass 1

Else
Stop.

Computational tests were made with several instances taken from different groups: book
graphs (Anna, David, Huck and Jean - each vertex represents a character and two vertices are
connected if the corresponding characters encounter each other in the book);  game graphs
(Games120 – each vertex represents a team and two vertices are connected if they played each
other during the season); miles graphs (Miles250, Miles500 and Miles750 – vertices
representing cities are linked if the cities are close enough); register graphs (Musol_1,
Musol_2, Zeroin_1 and Zeroin_2 - based on register allocation for variables in program code);
Mycielski graphs (Myciel5, Myciel6 and Myciel7 - graphs based on the Mycielski
transformation); queen graphs (Queen55, 66, 77, 88 and 99 - a graph with N2 vertices, each
corresponding to a square in NxN chess board, and two vertices connected if the
corresponding squares are in the same row, column or diagonal).

The table bellow gives the computational results of the two approaches, the original CGA and
the new one using clustering generalization and RLF based assignment. The table contains
average numbers of vertices, edges and conflicts for each instance group. All the experiments
were made with three runs for each instance, all of them for the optimal number of colors.

Group Instances Vertices Edges Original
CGA

RLF
CGA

Books 4 94.7 363.5 0 0
Games 1 120 638 0 0
Miles 3 128 1223.3 2.4 0
Register 4 204.8 3848.6 1.2 0
Mycielski 3 111 1117 1 0
Queen 5 51 753.2 24.3 0.5

The improvement in the quality of the results can be easily seen, especially for the queen
graphs. Other tests must be made with larger graphs and also the CGA parameters must be
analyzed.
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