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The Traveling Salesman Problem (TSP) is one of the most studied problems in Combinatorial
Optimization literature. Several articles have been published on the subject and it remains today as
an interesting and challenging problem. The most common interpretation of the problem seeks the
shortest tour for a salesman on a number of cities or clients. Clients must be visited exactly one
time and the salesman must return to their home city. For a comprehensive survey of solution
methods, applications and related problems see the book of Lawler et al. [27]. Laporte [25] gives
another review, including applications examples on computer wiring, wallpaper cutting, hole
punching, job sequencing, dartboard design and crystallography. The problem is well known to be
NP-hard [25] justifying the use of heuristics, mainly for large scale problems. Johnson and
McGeoch [20] give a recent survey on the use of local search based heuristics.

Lagrangean relaxation is a well known relaxation technique frequently used to give bound
information to combinatorial optimization problems [see for example the survey papers [9, 10] and
the books [32, 36] ).  Held and Karp [17, 18] applied Lagrangean relaxation to TSP in beginning
of seventies. The relaxation limit approximates what is known today as HK (Held and Karp)
bound, a very good bound (less than 1% from optimal) for a large class of symmetric instances
[21]. Johnson et al. [21] report that exact HK bounds have been computed by a special purposed
linear programming code, for instances as large as 33,810 cities. For even large instances, is
applied the subgradient method proposed on the original Held and Karp papers and speeded up by
a number of algorithmic tricks [2,16,34,37,38]. Since for large instances we do not know the
optimal solution, the comparison of the heuristic and HK bounds is common practice.

Although of simple convergence conditions [8, 33], the convergence of subgradient methods can
consume a long time for some instances. The subgradient optimization is very sensitive to the
initial values for the multipliers and the rules applied for step size controlling. Efforts were made
to have theoretical foundations for these choices [3, 13], but until today the most popular



approaches are based on previous empirical experience  [19]. Other subgradient methods appeared
in literature [4,5,6,23,24,26]. More elaborated, they increase the local computational times
computing descent directions [6], or combining subgradients of previous iterations [4,5], or
realizing projections onto general convex sets [23,24,26]. Experimental results with some of these
methods show an improvement in performance compared to the subgradient method [23,26]. The
subgradient method remains the widely used approach in the Lagrangean relaxation context.

Reducing the initial erratic behavior of the subgradient method can result in fast convergence. For
large scale problems that can be interesting, even with the use of fast computers. The Lagrangean
relaxation can be adapted to use local information (optimization) provided by the surrogate
constraints to accelerate the subgradient method, conserving the same HK bounds. The idea is to
introduce a local optimization step at the initial iterations of a subgradient method. The first
relaxation is a surrogate relaxation of the assignment constraints at the TSP formulation, followed
by a Lagrangean relaxation of the surrogate constraint. A local Lagrangean dual optimization is
approximately solved. The process is repeated for a pre-defined number of iterations of the
subgradient method.

The surrogate duality theory is an old matter, that was not so intensively explored as the
Lagrangean counterpart (see the papers [7, 11, 12, 14, 22] and the book [32] for a formal view of
the subject). We explore here the simple relationship between the two relaxations, recalling that
Lagrangean multipliers can also be considered surrogate multipliers, and making profit of the local
optimization proportioned by the new local Lagrangean relaxation. The combination of the two
relaxations  is known as a Lagrangean/surrogate relaxation, and is best described on the Narciso
and Lorena work [31], for an application to Generalized Assignment problems. It appears to be
indicated to improve the use of subgradient schemes on Lagragean relaxation context, at least the
less elaborated ones as the traditional subgradient method.

Consider a TSP defined on a graph G = (V,E) , V={1,...,n}, and let the binary variable xij  be equal

to  1  if the edge (i,j) ∈  E is used in the optimal tour. C = [ ]cij  , where  c cij ji=  for all  i,j ∈  V, is
a distance (or cost) matrix associated with  E. The formulation is
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Constraints (1) specify that every vertex has degree 2,  constraints (2) are subtour elimination
constraints, and (3) the binary conditions.



The traditional multipliers  λk k V, ,∈ can be seen as surrogate multipliers, and
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 =2 0 , as a surrogate constraint. Using a one-dimensional multiplier  t ∈

R, and relaxing this surrogate constraint in the Lagrangean way gives the surrogate version of the
Lagrangean function (named Lagrangean/surrogate in [31])
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where  x  is a feasible solution to the length of the 1-spanning tree, obtained by the shortest tree
having vertex set V\{1} and two minimal distinct edges at vertex 1.

In our notation L(λ) = )(1 λL is the usual Lagrangean relaxation. The Lagrangean bound is
improved searching the solution of the dual  D(λ) = )}({ λλ tLMax (the dual value is the same for
both relaxations). For a given  λ,  a local dual can be identified here as  D t ( )λ  = Max Lt t{ ( )}.λ It
is interesting to note that for  t = 1  the local optimization induced by the surrogate constraints is
not considered. The same for each fixed value of  t. Also is immediate that for the same  λ ,
v[ D t ( )λ ] ≥  v[L(λ)], i.e., the local dual gives an improved bound to the usual Lagrangean
relaxation (v[(.)] is an optimal value for problem (.)). The local dual is approximately solved by a
naive one dimensional search for the best parameter  t .

The subgradient method is employed to solve problem D(λ), giving an approximated HK bound
for problem (P). We propose here to use the traditional subgradient method, with the step size
corrections provided by Held and Karp [18], without any modification or improvement. That
decision will respond the question if the original HK step was a good one. Observing the literature
for other suggestions on step size corrections and/or new step sizes, it become evident the
necessity of such modifications [3, 5, 16, 21, 34, 37, 38].

The multiplier updates observe the following formula
2
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(where v f  is the value of a feasible solution to (P)). It is easy to see different relaxation bounds

sequences observing that the subgradients are distinct, g gt
λ λ≠ 1 (in general). The control

parameter  β  is the Held and Karp [19] control that makes  0 2≤ ≤β , beginning with  β = 2. If
after 20 iterations  v L t[ ( )]λ   not increases,  β  is updated to  β = β / 2 .

A sample of symmetric instances was selected from the TSPLIB (http://www.iwr.uni-
heidelberg.de/iwr/comopt/soft/TSPLIB95/tsp) to conduct a computational comparison between the
application of the usual Lagrangean relaxation (multiplier  t  is fixed to 1 at each iteration of the
subgradient method) and the Lagrangean/surrogate (that explore the one dimensional search for  t
on a number of initial iterations of the subgradient method).



The instances are: uly16m; uly22m; att48; berlin52; kroA100; tsp225; pcb442; pr1002; d1291,
rl1304; nrw1379; d1655; vm1748; rl1889 and u2152 (refereed in the following simply as 16, 22,
48, 52, 100, 225, 442, 1002, 1291, 1304, 1379, 1655, 1748, 1889 and 2152).

Let gap = (optimal solution – relaxation)/optimal solution. Table 1 shows for each problem the
Lagrangean best gap (%) and the elapsed time (time1) to reach this gap, the
Lagrangean/surrogate best gap (%) and the elapsed time (time2 to reach the Lagrangean best
gap, and finally the time ratios time2/time1 (%). The Lagrangean/surrogate was able to reach 6
tighter bounds, all after the size of 1002. Observing the last column we can see, for example,  that
it reached the better Lagrangean bound using only 2.6 % of time on problem 1889 , 2.8% on
problem 1002, 3.7% on problem 1748, 5.3% on problem 1304. The economy of time was not
representative for two small instances (52 and 225).

We investigated in this paper the effects of local search on Lagrangean relaxation applied to
symmetric TSP. The local search was simply justified considering the Lagrangean multipliers as
surrogate multipliers, affected by a local one-dimensional Lagrangean dual. The local search can
be a straight one, giving in few iterations a better one-dimensional multiplier than the usual
Lagrangean multiplier (fixed in one). We hope that the Lagrangean/surrogate approach can be
useful for even large scale TSP instances, considering the importance of HK bounds for heuristic
performance comparison [20, 21]. It is also important to note that the refereed approach is
independent of the step size and subgradient direction used (if the convergence conditions were
observed).

Problem Lagrangean
best gap
%

Time1 (sec)
Lagrangean
best gap

Lagrangean/
surrogate
best gap
%

Time2 (sec)
Lagrangean/surrogate
reaches Lagrangean
best gap

%
1
2

Time
Time

16 0.1 2. 0.1 1.03 51
22 0.1 9.1 0.1 4.6 51
48 0.3 19. 0.3 8. 42
52 0.3 5. 0.3 5. 100

100 2. 27. 2. 14. 51
225 4. 495. 4. 392. 92
442 1. 4054. 1. 997. 24
1002 4. 36714. 2. 1054.8 2.8
1291 3. 13431. 3. 3230. 24
1304 5. 28094.3 2. 1511. 5.3
1379 2. 9465.7 2. 3147. 33
1655 3. 29368. 2. 3029. 10
1748 5. 48413. 2. 1802. 3.7
1889 5. 87568. 2. 2275.4 2.6
2152 2. 31334. 1. 3648. 11.6

Table 1: Comparison: Lagrangean versus Lagrangean/surrogate

Acknowledgments:
The second author acknowledges Conselho Nacional de Desenvolvimento Científico e Tecnológico -CNPq (proc. 350034/91-5,
520844/96-3, 680082/95-6) and Fundação para o Amparo a Pesquisa no Estado de S. Paulo - FAPESP (proc. 95/9522-0 e
96/04585-6) for partial financial support.



References

[1] Almiñana, Marcos e Pastor,  T. J. "An adaptation of  SH heuristic to the location set covering problem". European Journal of Operational Research,
100, 586-593, 1997.
[2]   Allen, E., Helgason, R., Kennington, et al. "A generalization of Poliak's convergence results for subgradient optimization". Mathematical
Programming, 37, 309-317, 1987.
[3]   Bazaraa, M. S., Sherali, H. D. "On the choice of step size in subgradient optimization". European Journal of Operational Research, 7, 380-388,
1981.
[4]  Brännlund, U., “A Generalized subgradient method with relaxation step”, Mathematical Programming 71 (1995) 207-219.
[5]  Camerini, P. ; Fratta, L. and Maffioli F., “On improving relaxation methods by modified gradient techniques” Mathematical Programming Study,
3, (1975) 26-34.
[6]   Correa, R. and Lemaréchal, C,  “Convergence of some algorithms for  convex minimization”, Mathematical Programming 62 (1993) 261-275.
[7]   Dyer, M. E. "Calculating surrogate constraints". Mathematical Programming, 19, 255-278, 1980.
[8]   Ermol'ev, Y. M. "Methods for solving nonlinear extremal problems". Cybernetics, 16/1, 1-14, 1966.
[9]   Fisher, M. L. "The lagrangian relaxation method of solving integer programming problems". Management Science, 27, 1-18, 1981.
[10]   Geoffrion, A. " Lagrangean  relaxation and its uses in integer programming".  Mathematical Programming Study, 2, 82-114, 1974.
[11]   Glover, F.  "Surrogate constraints". Operations Research, 16(4):741-749, 1968.
[12]   Glover, F. "Surrogate Constraints Duality in Mathematical  Programming". Operations Research, 23,  434-451, 1975.
[13]   Goffin, J. L. "On convergence rates of subgradient optimization methods", Mathematical Programming, 13, 329-347, 1977.
[14]   Greenberg, H. J., Pierskalla, W. P. "Surrogate Mathematical Programming". Operations Research, 18, 924-939, 1970.
[15]   Handler, G., Zang, I. "A dual algorithm for the constrained shortest path problem". Networks, 10, 193-310, 1980.
[16] Helbig-Hansen, K. H., Krarup, J. “Improvements of the Held-Karp algorithm for the symmetric traveling salesman problem”. Mathematical
Programming, 7, 87-96, 1974.
[17]   Held, M., Karp, R. M. “ The Traveling salesman problem and minimum spanning trees”. Operations Research, 18,1138-1162, (1970).
[18]   Held, M., Karp, R. M. “ The Traveling salesman problem and minimum spanning trees: Part II”. Mathematical Programming 1, 6-25, (1971).
[19] Held. M., Wolfe, P., Crowder, H. P. "Validation of subgradient optimization", Mathematical Programming, 6, 62-88, 1974.
[20] Jonhson, D.S., McGeoch, L.A. “The traveling salesman problem: a case study in local optimization”. In Local search in Combinatorial
optimization, E. H. L. Aarts and J. K. Lenstra (eds.), John Wiley & Sons, New York, 1997.
[21]   Jonhson, D.S., McGeoch, L.A., Rothberg, E. E.  “Asymptotic Experimental Analysis for the Held-Karp Traveling Salesman Bound. Proceedings
of the7th Annual ACM-SIAM Symposium on Discrete Algorithms, 341-350, 1996.
[22]   Karwan, M. H.,  Rardin, R. L. "Some relationships between lagrangian and surrogate duality in integer programming". Mathematical
Programming, 17, 320-334, 1979.
[23]   Kim, S. and Um, B. S., “Polyak’s subgradient method with simplified projection for nondifferentiable optimization with linear constraints”,
Optimization 20 (1989) 451-456.
[24]   Kim, S. and Um, B. S., “An improved subgradient method for constrained nondifferentiable   optimization”, Operations Research Letters 14
(1993) 61-64.
[25] Laporte, G. “The traveling salesman problem: an overview of exact and approximate algorithms”. European Journal of Operational Research, 59,
231-247, 1992.
[26]    Larsson, T. ; Patriksson, M. and Strömberg, A-B., “Conditional subgradient optimization - theory and applications”, European Journal of
Operational Research  88, 382-403, 1996.
[27] Lawler, E. L. ; Lenstra, J. K. ; Rinnooy Kan, A. H. G. and Shmoys, D. B., “The traveling salesman problem, John Wiley and Sons, Chichester,
1985.
[28]    Lorena, L. A. N., Lopes, F. B. " A surrogate heuristic for set covering problems". European Journal of Operational Research. 79(1), 138-150,
1994.
[29]   Lorena, L. A. N., Narciso, M. G. "Relaxation heuristics for a generalized assignment problem". European Journal of Operational Research,
91(1),  600-610, 1996.
[30]  Minoux, M.. "Plus courts chemins avec constraints: Algorithmes et applications",  Annals of Telecommunications,  30,  383-394, 1975.
[31] Narciso, M. G.,  Lorena, L. A.N.  "Lagrangean/surrogate relaxation for generalized assignment problems". European Journal of Operational
Research,114(1), 165-177, 1999.
 [32]  Parker, R. G., Rardin, L. R. "Discrete Optimization". Academic Press, INC,  London, 1988.
[33]   Poljak, B. T.  "Minimization of unsmooth functionals".  USSR Computational Mathematics and Mathematical Physics 9, 14-29, 1969.
[34] Reinelt. G. “The traveling salesman problem: computational solutions for TSP applications”. Lecture Notes in Computer Science 840, Springer
Verlag, Berlin, 1994.
[35]   Senne, E.L.F. and Lorena, L.A.N “A lagrangean/surrogate approach to facility location problems”, EURO-TIMS Congress – Barcelona, 1997.
[36]   Shapiro, J. F. "Generalized lagrange multipliers in integer programming". Operations Research, 19, 68-76, 1971.
[37]   Volgenant, T., Jonker, R. “A branch and bound algorithm for the symmetric  traveling salesman problem based on the 1-tree relaxation”.
European  Journal of Operational Research, 9, 83-89, 1982.
[38] Valenzuela, C. L., Jones, A J. “Estimating Held-Karp lower bond for the geometric TSP”, 1995.


