
Improving traditional subgradient scheme for
Lagrangean relaxation: an application to location problems

Luiz A.N. Lorena
LAC/INPE - Instituto Nacional de Pesquisas Espaciais

Av. dos Astronautas, 1758 - Caixa Postal 515
12227-010  São José dos Campos, SP - Brazil

e-mail: lorena@lac.inpe.br

Edson L.F. Senne
FEG/UNESP - Universidade Estadual Paulista

Faculdade de Engenharia - Departamento de Matemática
12500-000  Guaratinguetá, SP - Brazil

e-mail: elfsenne@feg.unesp.br

Abstract

Lagrangean relaxation is largely used to solve combinatorial optimization problems. A known
problem for Lagrangean relaxation application is the definition of convenient step size control
in subgradient like methods. Even preserving theoretical convergence properties, a wrong
defined control can reflect in performance and increase computational times, a critical point in
large scale instances.  We show in this work how to accelerate a classical subgradient method,
using the local information of the surrogate constraints relaxed in the Lagrangean relaxation. It
results in a one-dimensional search that corrects the step size and is independent of the step
size control used. The application to Capacitated and Uncapacitated Facility Location
problems is shown. Several computational tests confirm the superiority of this scheme.
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1. Introduction

Facility location is the problem of locating a number of facilities from a subset of m potential

facility locations to completely satisfy at minimum cost all the demands of a set of n clients.

Each client has an associated demand and the costs considered include transportation and



fixed costs for opening facilities. For the Uncapacitated Facility Location Problem (UFLP)

the facilities are assumed to have unlimited capacity, and for the Capacitated Facility

Location Problem considered in this paper (CFLP) there are constraints on the total demand

that can be met from a facility.

Both the problems are well known to be NP-hard [21]. Successful algorithms have been

developed for the UFLP and have appeared in Beasley [4], Cornuéjols, Fisher and Nemhauser

[11], Erlenkotter [16], Galvão and Raggi [20], Guinard [27], and Korkel [37]. The capacitated

problem and its variations have been intensively studied in the literature. Cornuéjols,

Sridharan and Thizy [12] presented a computational and theoretical comparison of various

relaxations proposed in the literature, covering the main mathematical formulations for the

problem. Surveys papers can be found in Domschke and Drexl [14] and Krarup and Pruzan

[38]. Optimal algorithms and heuristics appeared in Baker [2], Barceló, Fernandez and

Jörnsten [3], Beasley [5,6], Chistofides and Beasley [10], Jacobsen [33], and Nauss [45].

Beasley [6] describes Lagrangean heuristics for a class of location problems, including UFLP

and the CFLP considered here.

Lagrangean relaxation is a well known relaxation technique frequently used to give bound

information to combinatorial optimization problems [see for example the survey papers [18,

22] and the book [46] ). A widely used method to optimize the Lagrangean dual is the well-

known subgradient method of Polyak [47]. Although of simple convergence conditions

[17,47], the convergence of subgradient methods can consume a long time for some instances.

The subgradient optimization is very sensitive to the initial values for the multipliers and the

rules applied for step size controlling. Efforts were made to have theoretical foundations for



these choices [4, 25], but until today the most popular approaches are based on previous

empirical experience  [31].

Reducing the initial erratic behavior of the subgradient method can result in fast convergence.

For large scale problems that can be interesting, even with the use of fast computers. The

Lagrangean relaxation can be adapted to use local information (optimization) provided by the

surrogate constraints to accelerate the subgradient method. The idea is to introduce a local

optimization step at the initial iterations of a subgradient method. The first relaxation is a

surrogate followed by a Lagrangean relaxation of the surrogate constraint. A local Lagrangean

dual optimization is approximately solved. The process is repeated for a controlled number of

iterations of the subgradient method. The implementation of this scheme produced less

computational times for the UFLP and CFLP instances considered.

The use of surrogate information in Lagrangean relaxation context was tested before with

success on Set Covering problems [1,19,40], Generalized Assignment problems [41] and p-

median problems [48]. Notably is the gain in computer times for large scale instances.

We present in next section how to use local surrogate information on Lagrangean relaxation.

In section three, Lagrangean/surrogate relaxations are particularized to the UFLP and CFLP

considered in this paper. Section four presents the general relaxation heuristics considered for

application of Lagrangean/surrogate and Lagrangean heuristics. We then present

computational tests considering instances taken from the literature, mainly for large scale

instances.



2. The improved subgradient method

To best describe the modification scheme to the subgradient method, we start describing in

general terms how to make profit of the surrogate information considered when a Lagrangean

relaxation is performed.

In general terms, suppose the following 0-1 linear programming problem:
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The surrogate duality theory is an old matter, that was not so intensively explored as the

Lagrangean relaxation (see the papers [15, 23, 24, 26, 34] and the book [46] for a formal view

of the subject). We explore here the simple relationship between the two relaxations, recalling

that Lagrangean multipliers can also be considered surrogate multipliers, and making profit of

the local optimization proportioned by the new local Lagrangean relaxation.

For a given  λ ∈ +R m  , the surrogate problem of (P) is
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Frequently  ( )SPλ  is a difficult problem (like (P)). A linear programming relaxation

(surrogate continuous) ( )SP linear
λ of   ( )SPλ   can be considered substituting  X  by

}|]1,0[{ eDxxX n
linear ≥∈=  in ( )SPλ .

Consider now a relaxation in the Lagrangean way of problem ( )SPλ . Given  λ ∈ +R m  , and a

parameter  t ≥ 0, the Lagrangean/surrogate relaxation of (P)  is
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A Lagrangean/surrogate dual can be identified here as
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It is immediate that setting  ω λ= t .  , problem  ( )Dtλ  is the Lagrangean dual ( )Dω  , and the

optimal lower bound limits coincide for both Lagrangean and Lagrangean/surrogate approach.

A local dual can be identified using the Lagrangean/surrogate relaxation. Suppose  λ  fixed,

the one-dimensional dual in  t  is

( )Dt
λ
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When set  X  has the integrality property  v D v SPt linear( ) ( )λ λ=  [22]. In general we have

)()()()( PvDvDvSPLv t
tt ≤≤≤ λλλ . The attractive characteristic of relaxation ( )L SPt

λ , is that

for  t = 1  we have the usual Lagrangean relaxation using the multiplier λ. An exact solution

to ( )Dt
λ may be obtained by a search over different values of  t  (see Handler and Zang  [28]



and Minoux [44]). However we have a range of values t t t0 1≤ ≤*  with t0 1= or t1 1=  which

also produces improved bounds (for t1 1=  see figure 1). 
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Figure 1: Lagrangean/surrogate bounds.

Alternatively to solve ( )SP linear
λ  at each iteration (justified only when the set  X  has the

integrality property [22], and performed on early works on the subject [1, 40, 41] ),  a naive

line search is used to calculate a t*  belonging to the interval  t t t0 1≤ ≤*  ( t0 1= or t1 1= ). For

a fixed λ , the following one-dimensional line search procedure is used:

Search Heuristic (SH)
Let

s be the initial step size;
k be the number of iterations;
kmax be the maximum number of iterations;
t0 be the initial value of Lagrangean/surrogate multiplier;
t be the current value of Lagrangean/surrogate multiplier;
t* be the value of Lagrangean/surrogate multiplier;

z be the maximum value of )SPtL( λ
;

Set
k = 0;
z = 0;
t = t0;



t* = t;
t+ = t- = undefined;

Repeat
k = k + 1;

Solve )SPL( t
λ

 obtaining xλ

If ( )SPL(v t
λ

 > z) then

Set

z = )SPL(v t
λ

;

t* = t;

Calculate µλ = )bAx( −λλ (µλ is the slope of the Lagrangean/surrogate
function);

If (µλ < 0) then
−t = t;

If ( +t is undefined) then
t = t + s;

Else

Try to improve the current multiplier solving )SPL( 2/)tt(
λ

−++ , updating

t* if necessary and Stop.
End_If

Else
+t = t*;

If ( −t is undefined) then
t = t – s;

Else

Try to improve the current multiplier solving )SPL( 2/)tt(
λ

−++ , updating

t* if necessary and Stop.
End_If

End_If
Else

Try to improve the current multiplier solving )SPL( 2/st
λ

− , updating t*= t if

necessary and Stop.
End_If

Until (k < kmax).



Locally the Lagrangean/surrogate can provide better bounds than their Lagrangean (alone)

counterpart. For a fixed  λ  , the following inequalities are valid

).()()()()( *1 PvSPvDvSPLvSPLv tt ≤≤≤≤ λλλλ

Considering now the application of a traditional subgradient method to solve  ( )Dω , a

subgradient is directly identified after solving ( )LPω  as  g Ax bω ω= − ,  where  xω  is an

optimal solution of ( )LPω . The subgradient method updates the multiplier  ω k   as

ω ω θ ω
k k k g k

+ = +1 , and simple rules for the step sizes establish well known convergence

conditions [17,47]. The same convergence rules can be directly identified when the multiplier

t*λ  is used. Using the Lagrangean/surrogate bound  v L SPt( )*
λ  at the Held and Karp [29, 30,

31] step size rule can be attractive. The subgradient direction  gt*
λ   obtained from problem

( )L SPt
λ  can give a different direction of the subgradient obtained when problem  ( )L SP1

λ  is

solved. Therefore different sequences of relaxation bounds were obtained beginning with the

same initial multiplier λ  .

Other subgradient methods appeared in literature [8,9,13,35,36,39]. More elaborated, they

increase the local computational times computing descent directions [13], or combining

subgradients of previous iterations [8,9], or realizing projections onto general convex sets

[35,36,39]. Experimental results with some of these methods show an improvement in

performance compared to the subgradient method [35,39]. It appears that the local search

induced by the surrogate information is independent of the subgradient method employed,

then we decided to investigate the use of this scheme at the traditional subgradient method

that remains the widely used approach in the Lagrangean relaxation context.

The Lagrangean relaxations for UFLP and CFLP and corresponding Lagrangean/surrogate are

derived in next section. The local optimization procedure SH contributes for the reduction in



the oscillating behavior of the sequence { ( )}*
(.)v L SPt , but it increases the local computational

times resulting in the k λ  evaluations of v L SPt( )λ . In general, the oscillating behavior of

subgradient sequences is very accentuated at the first steps, then we propose to use the

procedure SH to the point that the same t* is found for a number ( n_consec ) of consecutive

λ. The computational tests of section five confirm the feasibility of this approach for a set of

UFLP and CFLP instances.

3. Lagrangean/Surrogate Relaxation for UFLP and CFLP

One objective of this paper is to show the local search benefits on the application of a standard

subgradient method in Lagrangean relaxation context. Then the problems chosen are classical

facility location problems, first used before in another papers [11,10], and are modeled as an

integer programming problem,  also denoted as (P).

In the case of UFLP [see 11], problem (P) is a binary integer programming problem given by:
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where:

[ ]cij mxn  is a symmetric transportation cost matrix;

[ ]xij mxn  is the allocation matrix, where xij  = 1 if customer j’s demand is satisfied by

facility i; xij  = 0, otherwise;



[ ]yi m  is the vector indicating opened or closed facilities, with yi = 1 if the facility is open;
yi = 0, otherwise;

[ ]Fi m   is the vector of fixed costs for opening facilities;
m is the number of potential facility locations and n is the number of clients.

On the other hand, problem (P) for CFLP [see 10] is a mixed binary integer programming

problem, which is defined as:
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where:

m, n, [ ]cij mxn , [ ]yi m  and [ ]Fi m  are as above for UFLP;

[ ]xij mxn  is the allocation matrix, where xij  is the fraction of demand of client j, that is

delivered from facility i;
[ ]si m  is the vector of capacities of the facilities (i.e. the upper limit on the total demand

that can be supplied from facility i);
[ ]d j n  is the vector of demands of the clients.
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, also used by Beasley [6], is a surrogate constrait introduced to

tighten the bounds when contraints (1) are relaxed.   For a given t ≥ 0, constraints (1) are then

relaxed, and the lagrangean/surrogate relaxation, denoted as ( L SPt
λ ), is given by:
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subject to the additional constraints of (P).

For the UFLP, ( L SPt
λ ) is easily solved observing that setting yi  = 1 (i.e., facility i is open)

the contribution to the objective function is:

γ λi i ij j
j

n
F min c t i M= + + ∈

=
∑ [ , ( )] ,0

1

The set Ι of open facilities is then defined by Ι = { i ∈ M  γ i  ≤ 0 }. The allocation variables

are then directly derived setting xij  = 1 if ( )c tij j+ ≤λ 0  and yi  = 1 (otherwise xij  = 0).

In the case of CFLP, ( L SPt
λ ) is solved separating into m subproblems. For a given i ∈ M

define the following m problems ( )L SPt i
λ :

v L SP Min c t x F yt i ij j ij
j
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Setting yi = 1 , each problem ( )L SPt i
λ  is a continue single constraint 0-1 knapsack problem

which evaluate the benefit of opening facilities, and can be solved in linear time [43]. After



solving the m subproblems, let zi = v ( )L SPt i
λ , then the set of facilities to be open can be

calculated by solving the following 0-1 knapsack problem [32]:

v L SP Min z y tt i i
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Let I be the set of indexes for the opened facilities ( yi = 1). The allocation variables are then

directly derived setting xij  = 1 if ( )c tij j+ ≤λ 0  and i ∈ I (otherwise xij  = 0).

4. Relaxation Heuristics

When the solution obtained by relaxations are transformed on primal feasible solutions, the

process involving Lagrangean relaxations are called Lagrangean heuristics. The following

relaxation heuristic is used as a base to the algorithms proposed in this work. Both relaxations

are used and distinguished by the value of t used in ( )L SPt
λ . The usual Lagrangean

relaxation uses t = 1 at each iteration of the algorithm and for the Lagrangean/surrogate

relaxation, the parameter t = t* results from the search procedure SH at each algorithm

iteration.

General Relaxation Heuristic (GRH)

Given λ ≥ 0, λ ≠ 0;
Set lb =  - ∞;

ub = + ∞;



O = φ;

C = φ;
While (not stopping tests) do

Solve relaxation ( )L SPt
λ  obtaining xλ  and v L SPt( )λ ;

Obtain a feasible solution xf  and their value vf  using xλ ;

lb = max [ lb , v L SPt( )λ ];
ub = min [ ub, vf ];

Set g x j Nj ij
i

λ λ= − ∈∑1 , ;

Update the step size θ;

Set λ λ θ λ
j j jg j N: ,= + ∈ ;

Apply tests in order to possibly fix variables. Update the sets O and C accordingly;
Make stopping tests;

end_while.

where:

a) The initial λ used is such as λ j
j N

ijMin c i M: { } ,= ∈
∈

.

b) The step sizes used are θ := π (ub - lb)/ gλ 2

c) The sets O and C are defined as O = { i ∈ M | yi  = 1 } and C = { i ∈ M | yi  = 0 }. For

each λ, a variable yi  (i ∈ M) is fixed at the value α (α ∈ {0,1}) if: v( L SPt
λ  | yi  = 1 - α) 

≥ ub.

d) The stopping tests used are:

• π ≤ 0.005;

• ub - lb < 0.01;

• 0g
2

=λ ; and

• Every facility was fixed.



For UFLP the control of parameter π is the classical control [31]. It makes 0 ≤ π ≤ 2,

beginning with π = 2 and updating π to π/2, if after 30 successive iterations the value of ub not

increases. For CFLP the control of parameter π starts with 2 / *tinitial , where t initial
*  is the

value resulted in the search for approximately solving ( )Dt
λ at the first iteration of GRH. If

after 30 successive iterations ub not increases, π is updated to π := π/κ, κ ≠ 0. For the usual

Lagrangean heuristic t t initial= =* 1  and κ = 2, and for the lagrangean/surrogate heuristic κ is

calculated in order to make π less than 0.005 after 6 divisions of π.

To calculate vf , for each iteration the solution xλ  is made feasible conserving the opened

facilities and changing the allocations xij
f

*  = 1 if i ∈ Ι, j* ∈ N and cij*  = min { cij }.

However, when the parameter π is updated, an interchange heuristic is used in order to search

for feasible solutions of better quality. In the case of CFLP, an additional step is performed, in

which a transportation problem that results from problem (P) when the facilities are fixed as

open ( )yi = 1  or closed ( )yi = 0  is solved. The heuristics are best described on Beasley

[Beasley, 1993]. For CFLP, in order to solve the transportation problems associated with

deciding the allocation cost of a set of open facilities we used a specialized network flow

algorithm discussed in Marins et al. [42].

The parameters used by the search procedure SH are: [ s = 0.50; t0 = 0.0; kmax = 5; n_consec

= 3 ] for UFLP instances and [ s = 0.35; t0 = 1.5; kmax = 10; n_consec = 2 ] for CFLP

instances.



5. Computational Tests

Algorithm GRH uses the relaxation ( )L SPt
λ , i.e., the Lagrangean relaxation (when t = 1,

fixed at each iteration) and the Lagrangean/surrogate relaxation (when t = t*, obtained directly

by SH or fixed after a number of consecutive applications of SH). Both relaxations are

considered in the computer implementation and compared with the same set of instances.

The algorithms were coded in C and run on an IBM Risc6000 3AT workstation (compiled

using xlc compiler with -O2 optimization option) for test problems drawn from OR-Library

[7] for which the optimal solutions are known. The results are reported in the tables below,

where the results for Lagrangean/surrogate heuristic are shown enclosed in brackets. Tables 1

to 3 refer to UFLP and tables 4 to 6 refer to CFLP. In these tables, all the computer times

shown exclude the time needed to setup the problem and the instances are of size n = 1000

and m = 100.

Table 1, for UFLP, and table 4, for CFLP, show that Lagrangean/surrogate heuristic reaches

the same good results of Lagrangean (alone) heuristic. In each table are given:

• The percentage deviation from optimal of upper bound (100*[ub - optimal] / optimal)

found by the corresponding heuristic procedure.

• The percentage deviation from optimal of lower bound (100*[optimal - lb] / optimal)

found by the corresponding heuristic procedure.



• The number of Lagrangean relaxations solved. It is important to observe that for

Lagrangean heuristic (Table 1) the number of Lagrangean relaxations is also the number

of subgradient iterations. For Lagrangean/surrogate heuristic (Table 4) however, the

number of Lagrangean relaxations solved includes the relaxations solved by the procedure

SH discussed in Section 2, and therefore it is greater than the corresponding number of

subgradient iterations.

• The total computational time (in seconds).

In order to avoid the effect of spurious stop tests and to see that the Lagrangean/surrogate

sequences are more stable and faster than their Lagrangean counterpart, table 2, for UFLP, and

table 5, for CFLP, show the computational time necessary to reach some percentage

deviations from optimal of lower bound as found by Lagrangean heuristic and by

Lagrangean/surrogate heuristic, for each instance.

Examining the tables it seems reasonable to conclude that Lagrangean/surrogate heuristic is

able to approximately solve UFLP problems faster than Lagrangean alone heuristic. In order

to facilitate this analysis, table 3, for UFLP, and 6, for CFLP, show the ratio (time for LSH -

Lagrangean/surrogate heuristic) / (time for LH - Lagrangean heuristic) and the average ratio

for each instance.

Table 1: Computational results for UFLP
Problem
number

% deviation
from optimal of ub

% deviation
from optimal of lb

Lagrangean
relaxations solved

Total
time

A -           ( - ) -           ( - ) 102   (100) 8.24   (6.80)
B -           ( - ) -           ( - ) 315   (187) 25.43   (16.63)
C 0.033   (0.033) 0.057   (0.051) 603   (578) 64.17   (64.71)



Table 2: CPU time to reach at least d %
as the deviation from optimal of ub for UFLP

Problem
number d = 95 d = 99

A 5.32    (1.00) 6.17     (2.32)
B 7.08    (1.83) 11.41    (8.70)
C 7.13    (2.52) 19.16    (7.24)

Table 3: Ratios (CPU time for LSH)/(CPU time for LH) for UFLP
Ratios for percentage deviation times Ratios for total time

Problem
number 95% 99%

Average
ratio Ratio

Average
ratio

A 0.19 0.38 0.83
B 0.26 0.76 0.65
C 0.35 0.38 0.39 1.01 0.83

Table 4: Computational results for CFLP
Problem
number

% deviation
from optimal of ub

% deviation
from optimal of lb

Lagrangean
relaxations solved

Total
time

A-1 2.761   (0.263) 0.065   (0.070) 597    (505) 1484.94    (1023.98)
A-2 3.759   (4.123) 0.052   (0.058) 683    (454) 1463.76     (884.00)
A-3 -          ( - ) 0.208   (0.202) 506    (475) 1135.72     (813.53)
A-4 0.008   (0.008) -          ( - ) 706    (360) 1042.80     (548.38)
B-1 0.351   (0.351) -          ( - ) 490    (569) 1752.42    (1300.43)
B-2 4.600   (4.892) 0.300   (0.302) 673    (735) 1753.72    (1396.15)
B-3 3.950   (3.061) 0.340   (0.366) 590    (469) 1600.45    (1035.73)
B-4 2.265   (2.265) 0.109   (0.114) 803    (780) 1750.28    (1311.43)
C-1 0.105   (0.105) 0.161   (0.164) 1136   (993) 2387.25    (1706.54)
C-2 3.566   (0.388) 0.438   (0.451) 670    (655) 1763.89    (1339.78)
C-3 1.340   (2.092) 0.095   (0.338) 709    (614) 1744.86    (1193.15)
C-4 0.027   (0.027) 0.050   (0.050) 508    (601) 1493.86    (1186.83)

Table 5: CPU time to reach at least d % as the
deviation from optimal of ub for CFLP

Problem
number d = 95 d = 99

A-1 302.29   (172.72) 475.51   (361.99)
A-2 304.98   (149.30) 449.11   (202.63)
A-3 309.99   (135.73) 495.94   (266.19)
A-4 195.29   (112.30) 391.21   (133.57)
B-1 406.73   (206.36) 642.16   (285.09)
B-2 344.45   (188.54) 605.51   (473.50)
B-3 326.43   (196.45) 716.63   (403.66)
B-4 334.62   (174.82) 713.83   (324.45)
C-1 371.09   (233.80) 726.70   (352.42)



C-2 367.31   (215.28) 808.29   (464.38)
C-3 327.23   (187.43) 556.78   (399.14)
C-4 328.52   (176.36) 481.65   (228.00)

Table 6: Ratios for CFLP
(CPU time for LSH)/(CPU time for LH)

Ratios for percentage deviation times Ratios for total time
Problem
number 95% 99%

Average
ratio Ratio

Average
ratio

A-1 0.57 0.76 0.69
A-2 0.49 0.45 0.60
A-3 0.44 0.54 0.72
A-4 0.58 0.34 0.53
B-1 0.51 0.44 0.74
B-2 0.55 0.78 0.80
B-3 0.60 0.56 0.65
B-4 0.52 0.45 0.75
C-1 0.63 0.48 0.71
C-2 0.59 0.57 0.76
C-3 0.57 0.72 0.68
C-4 0.54 0.47 0.55 0.79 0.70

Table 3 shows that, for UFLP, Lagrangean/surrogate heuristic is able to generate approximate

solutions in a computational time that is about 39% of computational time needed to

Lagrangean alone heuristic. The Lagrangean/surrogate heuristic seems to be better than the

ordinary Lagrangean relaxation for the instances tested.

From table 6 the following conclusion can be drawn, for CFLP: the average ratio shows that

the gain in computational times for the Lagrangean/surrogate was almost twice for the times

associated with the percentage deviations and of 30% for the total times.

Based on these observations it is possible to concluded that the Lagrangean/surrogate version

of GRH can generate approximate solutions of UFLP and CFLP faster than the Lagrangean

one when large scale instances is considered. The economy in times for large scale problems

can be very important for most applications.



We have made some additional tests looking only for relaxation bounds, fixing the upper

bound (ub in GRH)  to the known optimal solutions. The objective is to compare the effect of

primal heuristics on the subradient scheme proposed.  The table below shows the

computational times (in seconds of a Sun Ultra30 workstation) for CFLP instances when all

primal evaluations are rid by inputting the upper bound and the stopping test π < 0.005 is

replaced by a stopping test of the form ελλλ <− −− 11 )(/)()( ktktkt SPLvSPLvSPLv   for n

consecutive iterations, where kt SPLv )( λ  is the value of the dual function at iteration k of the

main loop of GRH. Table 7 shows the results for ε = 10-5 and n = 10.

Table 7: Computational results and ratios for CFLP
             (Total time for LSH)/(Total time for LH)
Problem
number

% deviation
from optimal of lb

Total
time Ratio

Average
ratio

A-1 0.065   (0.070) 197.10   (135.76) 0.69
A-2 0.046   (0.050) 190.61   (177.17) 0.93
A-3 0.207   (0.205) 86.07    (82.10) 0.95
A-4 -           ( - ) 19.38    ( 9.65) 0.50
B-1 0.001   (0.001) 49.89    (55.38) 1.11
B-2 0.301   (0.327) 271.52   (159.40) 0.59
B-3 0.336   (0.361) 230.66   (146.10) 0.63
B-4 0.096   (0.103) 370.89   (328.04) 0.88
C-1 0.165   (0.170) 198.77   (137.34) 0.69
C-2 0.425   (0.432) 274.38   (202.45) 0.74
C-3 0.096   (0.102) 157.55   (148.91) 0.95
C-4 0.050   (0.050) 179.95   (142.73) 0.79 0.79

Results on table 7 (0.79) are little worst than the ones of table 6 ( 0.70). The imposed

parameter ub = optimal solution, generates an external information to the proposed schemes.

It can be conjectured here that the Lagrangean/surrogate performs better for small level of

information, where the local search SH produces higher corrections.



6. Conclusion

The tables above show that results of high quality are obtained for both heuristics, the

Lagrangean (alone) heuristic and the Lagrangean/surrogate heuristic. However, the

combination of relaxations in Lagrangean/surrogate heuristic seems to be interesting to

improve computational times for a class of instances of the facility location problem.

The local searches in the Lagrangean/surrogate optimization appear to be beneficial to the

whole subgradient search. For the same multiplier, different subgradients are used on the

Lagrangean and Lagrangean/surrogate. As the Lagrangean/surrogate is also a Lagrangean

relaxation, it can be described as a step size corrector of the classical subgradient step size.

The local search also depends on a number of parameters that can influence the performance

of the Lagrangean/surrogate heuristic. The adopted naive line search prevents the use of a

large number of parameters, and proved to be useful for the instances tested.  The local

optimization also produces a (different) subgradient that can be used with other subgradient

methods, a possible extension of the current approach.
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