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Abstract

This paper presents a column generation algorithm to calculatenmawved lower
bounds to the solution of maximal covering location problems formulatag-anedian
problem. This reformulation results instances that are difffor column generation
methods. The traditional column generation method is compared teeth@pproach,
where the reduced cost criterion employed at the column iselast modified by a
lagrangean/surrogate multiplier. The efficiency of the agproach is tested with real
data, where computational tests were conducted and showed the ohpparsity and

degeneracy on column generation based methods.
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1. Introduction

The logistics for distribution of products or services has bearbjga of increasing
importance over the years, as part of the strategic plamfibgth public and private
enterprises. Decisions concerning the best configuration fonsielation of facilities
in order to attend demand requests are the subject of a wi&teaflproblems, known as
Location Problems (Drezner, 1995; Daskin, 1995). Using a graph refagse,
demand nodes and candidate nodes for the installation of faciligeslentified as
vertices in a network. Such problems typically occur in a dis@géce, that is, a space

where the number of candidate locations and network connectifmisais

Depending on the proposed objective, facility location problems camoogey into
two major classes. The first class deals with the mizatron of theaverageor total
distancebetween clients and facilities. The classic model thptesents the problems
of this class is th¢-Median Problemwhich seeks to selegt vertices on a network
with n nodes 1§ > p) for the installation of facilities, such as the sumh# tistances
between the demand nodes and its nearest facility is minimizedels that minimize
the average or total distance are best suited to describe mpsoli@t occur in the
private sector, since the costs are directly related totrdneel distances for the
satisfaction of the clients’ demands. Hillsman (1984) proposes samendaipulation
in order to produce new objective function cost coefficients, raguseveral location

problems to g@-median problem.

The second class of facility location problems deals with th&irman distance

between any client and the facility designed to attend the asstaiemand. These



problems are known a®vering problemsind the maximum service distance is known
ascovering distanceThe Set Covering ProbleriToregaset al, 1971) determines the
minimal number of facilities which are necessary to atteldclients, for a given
covering distance. Due to formulation restrictions, this model do¢sconsider the
individual demand of each client. In addition, the number efded facilities can be
large, incurring high fixed installation costs. An alternativemulation considers the
installation of a limited number of facilities, even if thisiount is unable to attend the
total demand. In this formulation, the condition that all clienisst be served is relaxed
and the objective is changed to locptéacilities such as the most part of the existing
demand can be attended, for a given covering distance. This nwtedponds to the
Maximal Covering Location ProblertMCLP). Covering models are often found in
problems of public organizations for the location of emergency casviEarly
techniques for solving the MCLP tried to obtain integer solutionm fthe linear
relaxation equivalent of the model proposed by Church and ReVelle (19fi4).
pioneer work formalizes the MCLP and presents a greedy hewéasg&d on vertices
exchange. Lorena and Pereira (2002) report results obtained aghaadgean/surrogate
heuristic using a subgradient optimization method, in complemeritetaissociated
lagrangean and surrogate heuristics presented in Galvab (2000). Arakaki and
Lorena (2001) present a constructive genetic algorithm to saVease instances with

up to 500 vertices.

Column generation methods has gained renewed interest for solvipg daale
combinatorial problems, mainly due to the development of faster athidble
commercial optimization software (ILOG, 2001), which allow inhdye complex

problems to be solved in reasonable computing times. These metb&rat applied



to one-dimensional cutting stock problems (Gilmore and Gomory, 196to€&iland
Gomory, 1963) and, since then, have been explored in many othertippic such as
cutting stocks (Vanceet al, 1994; Valério de Carvalho, 1999), vehicle routing
(Desrochers and Soumis, 1989; Desroclegral, 1992), crew scheduling (Day and
Ryan, 1997; Souzat al, 2000a; Souzat al, 2000b) and VLSI design (Souza and
Menezes, 2000). A complete overview of the column generation theady its
applications can be found in Lubbecke and Desrosiers (2002) and Desagirédrs

(2005).

The column generation technique can be applied to large linear mhbiken not all
variables are explicitly known or when the problem is to be sdiyeDantzig-Wolfe
(1960) decomposition (in this case, the columns are the extrems pbitite convex
hull of the set of feasible solutions.) The method alternategebetarestricted master
problem and acolumn generation subproblerBy starting with a feasible columns
subset, the optimal dual solution of the restricted master prablased to calculate the
cost coefficients of the objective function for the column gati@n subproblem, which
produces new columns to be added to the restricted master probleafataym If no
productive columns (based on its reduced cost value) are obtairsdutien of the

subproblem, the iterative process stops.

It is well known that the direct application of column generatinethods produces
many columns that are not relevant to the final solution, slogirgsolution process
convergencetéiling-off). In such case, it has been observed that the dual solutions
oscillate around the optimal dual solution, justifying the apptioabf stabilization

methodsto inhibit such behavior and, thus, accelerating the problem resolution.



Different techniques to prevent dual solutions to vary have been paplise the
Boxstep method (Marsteet al, 1975), where the optimization in the dual space is
explicitly restricted to a bounded region with the current dualtisol as the central
point. The Analytic Center Cutting Plane method (du Metlal, 1998) considers the
current analytic center of the dual function instead of thiena dual solution, avoiding
dual values to change too dramatically. The Bundle methodsn{dle1999; Briangt

al., 2005) define a trust region combined with penalties to prevgmifisant changes
between consecutive dual solutions. Senne and Lorena (2001) showctesséui
application of lagrangean/surrogate relaxation to stabilize temn generation
process fomp-median problems. The lagrangean/surrogate approach multiply the dua
variables by an explicit parameter, like other regularizatiethods (Marquardt, 1963),
but with a direct way to compute the optimal value for this patam Other recent
alternative methods to stabilize dual solutions have been cortsiteeZesrosiers and

Lubbecke (2005).

This paper presents the utilization of the lagrangean/surrodateatien in a column
generation algorithm to calculate lower bounds to MCLP formulated msedian
problem. The paper is organized as follows. Section 2 presentdassical model of
the p-median problem and the corresponding formulation as a set pantifiproblem
obtained through direct application of Dantzig-Wolfe decompositiothéoclassical
formulation. It also presents the MCLP formulated gsmedian problem. Section 3
defines the restricted master problemand presents the integration of
lagrangean/surrogate relaxation to the proposed column generatioithalg Section 4

describes the main aspects of the algorithm implementatimh in Section 5 the



computational results with real data are presented. Conclumiertiscussed in Section

6.

2. Mathematical formulations for the p-median problem

LetG = (N, A) be a graph wherld is the set of verticeg\ is the set of arcs anN||=n.
The p-median problem consists in determinmg n vertices (medians) such as the total
distance from each vertex to the nearest median is mininilteddistance matril =

[dij]nxn between each pair of vertices is assumed to be préyicusvn.

The p-median problem can be formulated as the following optimization problem

(Hakimi, 1964):

PMP V(PMP) = MinY" > d; x, (1)
iON jON
s.t. Y x =1, OiON (2)
jON
2% =P 3)
jON
X <X, Oi,jON 4)
x; 0{0,1}, 0Oi,jON (5)

where k;]nxn is the location-allocation matrix, wity = 1 if vertexi is allocated to the

medianj, andx; = 0, otherwisey; = 1 if vertexj is a median, angj; = 0, otherwise.



Equation (1) corresponds to the solution cost, which is to be m&im@onstraint set
(2) and (4) guarantee that each veitéxallocated to exactly one vertgxwhich must
be a median. Constraint (3) determines the number of mediabe tocalized and

constraint set (5) imposes integrality to the problem bterga

An alternative presentation f®®MP considers the partition of the détinto p clusters.
For this reasonp-median problems are also known @astering problemgVinod,

1969; Rao, 1971; Hansen and Jaumard, 1997; Fung and Mangasarian, 2000).

Swain (1974) and Garfinkedt al. (1974) proposed the application of Dantzig-Wolfe
decomposition to formulatioiPMP, aiming the application of column generation
techniques to solvp-median problems. Consideri®r {S;, S, ..., Sy} as the set of all
subsets o, Minoux (1987) presents the formulation ofet partition problem with

cardinality constrainto describg-median problems, as follows:

SPP V(SPB = Min )" ¢, %, (6)
kOM
s.t. Y A% =1 (7)
kOM
zxk =p (8)
kOM
x1{0,1}, OkOM 9
where:

* M={1,2,....mis the index set of elements §f

. :%Q{Zd”}, Ok O M;

i0S,



o A= [l With ay = 1ifi OS¢ ax = 0, otherwise;

* X = 1if subsetdlustel) S; O Shelongs to the solutioxi = 0, otherwise.

Each subse§ corresponds to a columi of the constraint set (7), representing a
cluster in which the median is defined as the vejrte)XS, that results the smallest total

distance to ali 0 S and the corresponding value@fwill be set as the cluster cost. So,
constraints (4) oPMP are implicitly considered. Constraints (2) and (3) are miaieta

and updated to (7) and (8), respectively.

Assumingb; as the demand value at each vertexN, andU as the covering distance,
Hillsman (1984) proposes new cost coefficiegfsto the objective function (1) as
follows:

[0 if d,<U
j (10)

b, if d; >U

This transformation allows that methods developedpimedian problems can be

applied to solve maximal covering location problgiinsrena and Pereira, 2002).

The optimal value/(PMP) of the objective function (1) with cost coeffinis calculated
as in (10) denotes the non-attended demand. Thenap¢alue for the corresponding

MCLP is calculated as:

attended demand >’ b —v(PMP)

iON



3. A stabilization method for column generation

As commented before, the solution of large scaleali problems by column generation
methods is an iterative process, starting withasifde subset of columns and adding
new columns to aestricted master problefRMP) at each iteration. Considering the
subsetk O M = {1, 2, ..., m} of all column indexes from the formulatioBPPF, the
corresponding RMP can be formulated as the follgwiimear relaxation of aset

covering problem with cardinality constraint

SCP V(SCP) = MinY "¢, , (11)
kOK
s.t. Y A% 21 (12)
kOK
z X =P (13)
kOK
x0[0,1] DOkOK (14)

The optimal dual solutiond 0 R! and 4 O R, associated to constraint set (12) and

constraint (13) respectively, can be used to obitain incoming columns t&CP and,
as presented in Senne and Lorena (2000), to ctdcldaver bounds by solving the
lagrangean/surrogate relaxation of probleMP (note that hereaftasj, given by (10),

replacesd;). This relaxation can be obtained as follows.

As proposed by Glover (1968), far0 R, a surrogate relaxation oP¥P) can be

defined by:

n

> D CiX (15)

n
i=1 j=1

SPMP V(SPMP = Min

1C



s. t. Zn:zn:/]jxij :Zn:/ij (16)

and (3) — (5).

The problemSPMP can not be easily solved, as it is an integer linear problemnai
special structure to be explored. Due to this difficulty, caist(16) in problenSPMP
is relaxed again, now in the lagrangean waytfor R, and thelagrangean/surrogate

relaxation ofPMP is given by:

LSPMP V(LSPMB = Min)_ > (c; —tA)x; +t> A

iON jON iON

s.t. (3)-(5).

For any given 0 R], the best lagrangean/surrogate multipliean be obtained either

as the optimal solution of the dualld8PMP, defined as:

D v(D) = Mtax{v(LSPMF)},

or by a dichotomous search, since the lagrangean furiction v(LSPMB is concave

and piecewise linear (Parker and Rardin, 1988).

For anyt andA, it is well known tha¥(LSPMB < v(SPMB < v(PMP). Settingt = 1 in
LSPMPresults the usual lagrangean relaxatio®bfP with multiplier A. The optimal

valuev(LSPMB provides better lower bounds than the usual lagrangean bounds, as can

be observed from the computational results presented in thes. pap

11



Letj* be the vertex defined as the median of the cluster witkrti@lest contribution to

v(D) which is determined as the optimal solution of the folfapsubproblem:

CGS V(CGY = hj/élkn{a‘!\é!)q}%:((%j _t/]i)aij}

SubproblemCGS can be easily solved by inspection, assuming each vefteXN as

median and setting;, Ui O N, as follows:

0, if ¢ —tA>0.

]

1, if ¢ -t4 <0
a; =
i
Let S+ be defined a§- = {i O N | &+ = 1}. The corresponding colur{nAT} will be

added toSCP if:

aul*\él{'(r)?l} iDZN:(C.j* —A)ay. <u (17)

In effect, in order to accelerate the solution ps¥of column generation methods,
i
every column{AT] j O N, satisfying condition (17) can be added to RMP I{imu

pricing). It is easy to see that, foil [0, 1], if ¢; — A > O thencj —t4; > 0 and the

j
correspondingy; = 0 in the columr{pﬂ is not modified by using multiplier Onthe

12



j
other hand, itj — A < 0 thenc;j —tA; < 0 orcj —tA > 0 and in the columﬁpﬂ some
a; = 1 can be flipped te; = 0. A straightforward consequence is that theimol cost

C = MQ{ZC” ] calculated by the lagrangean/surrogate appraachpe smaller than
! i0S,

the one obtained by the traditional lagrangeanttfersame multiplierd;. Hence, as it

is possible to consider several values for the iplidt t (as we proceed in some

computational tests), a greater number of columams be added toSCP in the

lagrangean/surrogate case. The effects of thesectaspf the lagrangean/surrogate
approach are best shown on computational testsedios 5 and results in faster
convergence, even when a higher number of columrsdded to the pool at each

iteration of the process.
4. The proposed column generation algorithm

Generally, in a column generation algorithm, thaldsolutions for the RMP in early
iterations present very strong oscillatory behawi@und the optimal dual solution, due
to the poor quality of the initial columns subs®ithce these dual solutions are used in
the column generation subproblem, the performantethe algorithm can be

compromised.

In the proposed algorithm, dual solutions are medifby the lagrangean/surrogate
multiplier t. In this manner, at early iterations the poor cisdlitions are multiplied by a
small positive value, minimizing their harmful efts. As new better columns are

obtained, this multiplier is consistently increasednverging to 1 as the process



converges to the optimal solution. This is a clestategy for a stabilized column
generation process, since the proper value usettlfy the dual solution depends on
the dual solution itself, and it is obtained frorsiaple local search. Other stabilization
approaches, such as the ones mentioned in Sectrety on more complex techniques

to control the dual solutions.

The column generation algorithm proposed in thisgpacan be described in Figure 1.
Note that the usual column generation algorithmbitined simply by setting= 1. In

this casey(LSPMB corresponds to the traditional lagrangean bound.

Figure 1.

The initial set of columns toSCP (starting master problem) is obtained with the
application of the subroutine depicted in Figurel2.order to compare both the
traditional and the proposed approaches, the saitied set was used for the lagrangean

and lagrangean/surrogate cases.

Figure 2.

In order to control the problem size, a column reahesubroutine was implemented

(Figure 3). This subroutine may be executed eithéne number of columns in the

formulation SCP is greater than a predefined maximum value, & ifitended to keep
in the formulation only columns with reduced costaler than a reference average

value.

14



Figure 3.

The cost coefficients calculated in (10) does ratisf/ the triangular inequality,
resulting in slow convergence of iterative lagraagéased procedures developed to

solve location problems (Schillingt al, 2000). In addition, linear program methods

applied to formulationSPP or SCP may suffer ofdegeneracyThis is more likely to
happen in column generation methods, as near-zsboolumns may be selected to
enter the basis in advanced iterations. For MCL&p zcost columns are highly
desirable, as they correspond to clusters witly faiended demand, making the column

generation approach a real challenge.

Preliminary computational tests with real data MGh&tances, which are solved by the
column generation algorithm developed by Senne lasréna (2001) forp-median

problems, presented non satisfactory convergence bfh the lagrangean and
lagrangean/surrogate cases. During the solutioregr it was verified, in many

instances, that the lower bounds providedUSPMP remained unchanged for many

iterations, indicating that the columns of the eatr master problenSCP always

produced the same optimal dual solutibn

In order to avoid this, the algorith@olGent) of Figure 1 was modified to include two
special procedures. The first was to alla columns obtained as solution of the
column generation subproblem to be included in RMP, even those with positive
reduced cost. This procedure, calf@etturbation caused the dual solutions to change

and the lower bounds to increase again. The patiorbprocedure was applied, just for



a single iteration, every timgLSPMB remained unchanged for a prefixed number of

iterations.

The second procedure is due to the inclusion oengotumns into the master problem
and the behavior of the multipliér The lagrangean/surrogate multipltenas zero as
the starting value and, as tllGer(t) algorithm proceeds, its value asymptotically
converges to 1. In order to increase the algorishp®rformance at early iterations, we
considered the inclusion of columns with negati@uced cost obtained as solution of
the subproblem for the current value for multiplteand for the values in the set
T ={0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.@™0, 1} which are greater than the
currentt, aiming the anticipation of information (columrbat would be available only
in advanced iterations. This procedure was ca#lagmentationand applies to the

lagrangean/surrogate case only.

Computational tests showed that the applicatiothefperturbation procedure in some
MCLP instances solved for the lagrangean/surrogaie caused the lower bound
convergence sequence to oscillate whealready converged to 1. In this case, the
algorithm produced worse values gt SPMP than the previously obtained ones. For
this reason, the proposed algorithm includes arobmhechanism that inhibits the
perturbation procedure, for the lagrangean/sureogase only, if the multiplier has

reached the value 1.

5. Computational results

1€



The algorithms and subroutines presented in thieipaere coded i€ and compiled
with Borland C++ Builder 5 with default compiling options to create a comuhdine
executable. Tests were conducted on a PC witl Pentium4 2.6 GHz processor and
1 GB RAM, runningMicrosoft Windows XP Professionalith Service Pack 2. The
solution of the RMPs and column generation subjoll were obtained withOG

CPLEX 7.5

The instances correspond to real case data fditfydocation in Sdo José dos Campos -

Brazil. They are available attp://www.lac.inpe.br/~lorena/instancias.html

The computational results are shown in the Tabkes5L These tables contain:

p: number of facilities to be located;
iter: number of performed iterations;
cols total number of generated columns;

Ib: bestv(LSPMB found;

gap: relative difference betweeJQS_CP) and the lower bound (in %);

time: total computational time (in seconds).

Note that the values in the Tables 1 to 5 for #grdngean case were obtained by
setting t = 1 in the algorithr@olGer(t). In any case, the perturbation procedure was
executed every time the valugLSPMP remained unchanged for 10 consecutive

iterations.

17



The maximum number of iterations was fixed at 1@08 new columns are obtained

and introduced in the formulation, the valMgSCP) decreases, acting as an upper

bound. The algorithm stops when the bounds condetgethe same value (that is

indicated with the symbol “~” in gap column of Tebl1l to 5) or ifv(ﬁ?) <

V(LSPMB.

Table 1

Table 2

Table 3

Table 4

Table 5
As the results show, more columns were generateithédagrangean case but it did not
implied in better bounds. The lagrangean/surrogaitkiplier seems to affect drastically
the column generation subproblem, resulting indoeguality columns and producing
better bounds in less computational time. The laggan case showed to be more
sensitive to the effects of degeneracy, as canbbereed by the number of generated

columns, indicating the intense use of the pertishgrocedure.

The effects of the controlled perturbation and aeigtation for the lagrangean/surrogate

case can be observed in Figures 4 to 6. The gmhiow the evolution of primal

18



valuesv( SCP) (upper portion curve) and dual valugsSPMB (lower portion curve)
for a MCLP instance witm = 324,p = 20 andU = 150. In Figure 4, algorithm
ColGertt) stopped after 80 iterations (no incoming colurariterion), resulting a lower

bound of 2121.40.

The augmentation procedure was then performedttandxecution was extended until
iteration 1972 (Figure 5), stopping after 1000 emugive iterations with no
improvement to/(LSPMB. Figure 6 shows the evolution of the solutiongass with
augmentation and controlled perturbation, and cajarece of the bounds after 374

iterations.

Figure 4

Figure 5

Figure 6
The smaller number of generated columns for theatagpan/surrogate case indicates
that the use of the lagrangean/surrogate multiplerthe calculation of the cost
coefficients for the objective function of the cwin generation subproblem helps to
produce better quality columns. As the computatioesults showed, in many instances
the usual lagrangean column generation algorithwppstd only after the maximum

iteration number was reached, with poor lower beund

6. Conclusion



This paper presented a simple stabilization mettoodMaximal Covering Location

problems (MCLP) formulated as p-median problemsswoided by a column generation
algorithm. This reformulation produced instancest thre difficult to standard column
generation approaches, which result in lacks ofvemgence or higher oscillations in

dual solutions at early stages.

The lagrangean/surrogate stabilization is fast stralghtforward, based on lagrangean
relaxation dual and reassembling other reguladmamethods. The best regularization
parameter is directly identified by dichotomousrekaAs shown in computational tests
with real instances the lagrangean/surrogate aphr@afaster and reliable, although
more research must be performed to shorten coniuodattimes. This will be

important if one consider the proposed approadh@sgore algorithm in a branch-and-

price method to produce feasible (integer) solwimnMCLP instances.
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Algorithm ColGen(t)

Define an initial set of columns to SCP;
Set condition —« TRUE;
While (condition = TRUE) do
Solve SCP using CPLEX and return optimal dual variables A and £,
Solve D by dichotomous search and return t;
i

Solve subproblem CGSand add to SCP all columns {AT} satisfying (17);

If no columns are found or if [\( SCP) —v(LSPMB)]| < 1, set condition — FALSE;

Perform tests to remove columns;
End

Figure 1 — Column generation algorithm.
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Subroutine IC
Define MaxC as the maximum number of generated columns;
Set NumC -~ O;
While (NumC < MaxC) do
Define P = {n, ...,np} [0 N a random set of p vertices;

Forj=1,..,pdo
S - {nj} U {qD N_Pldan: rtrypn{dqt}}v

G < ML“{Z%}:

(N N
Fori=1, ..., ndo
Ifi 08§, setay « 1;
Ifi 0, setaj — O;
i

Add column {T} to the initial set of columns;

NumC — NumC + p;
End

Figure 2 — Subroutine for the initial set of columns.
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Subroutine CR
Define TotC as the number of columns in SCP;
Define RC as the average reduced cost of the initial set of columns;

Obtain rc;, j = 1, ..., TotC, the reduced cost of every column jin SCP;
Forj=1, ..., TotCdo

If rc; > RC then remove column j of SCP;
End

Figure 3 — Column removal subroutine.
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Figure 4 — Standar@olGer{t): LB = 2121.40.
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Figure 5 -ColGer(t) with augmentation: LB = 2862.21.
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Figure 6 -ColGer(t) with augmentation and controlled perturbation: LB = 2936.49.
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Table 1 — Results for real case instances with324 vertices.

lagrangean case lagramgean/surrogate case

p iter cols Ib gap time iter cols Ib gap time
20 | 100000 11702106 4522.45 3.244 40944.96 881 510866 4763.06— 523.23
30 | 59937| 13421937 2160.090 29.6/5 16451{18 2257 2136 2911.73 - 530.38
40 7478 1913483 1075.44 40.152 1219.45 1313 111417637.18 - 292.24
50 2423 700628 386.53] 58.024 299.7p 438 326096  1689. - 83.92
60 952 156259 124.31 - 222.3( 1043 176719 10881 .6928 74.66
80 33 11290 0.00 - 2.14 9 27627 0.00 - 1.81
108 16 6429 0.00 - 0.58 5 16239 0.00 - 0.53
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Table 2 — Results for real case instances with402 vertices.

lagrangean case lagramgean/surrogate case

p iter cols Ib gap time iter cols Ib gap time
30 | 100000 34654329 2826.46 42.107 55877.57 10441 7862p81 .2@99 3.512 3393.48
40 | 100000 30366135 1977.76 41.166 28147.48 3146 3885112 9816, - 1285.91
50 | 26872 9101114 683.55 69.954 6364.61 3453 351281117789.38 - 1133.55
60 6189 2368197 -725.18 >100 1122.%8 1837 191800862.86 - 372.21
70 2170 830359 -610.41 >100 312.1¢ 12p2 1897866 5.335| 20.792 223.74
80 292 56664 41.06 - 28.05 1039 87151 32.05 30|3331.64
100 32 12892 0.00 - 2.38 8 27883 0.0(¢ . 1.67
134 15 7120 0.00 - 0.62 5 21214 0.00 - 0.5¢
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Table 3 — Results for real case instances withb00 vertices.

lagrangean case lagramgean/surrogate case

p iter cols Ib gap time iter cols Ib gap time

40 | 100000 47947348| 2942.82 55.219 87822.27 10797 21423705 2.538 - 11403.01
50 | 100000 49810865| 779.87| 85.513 63239.42 29]107 29005863 .4168 9.048| 8032.36
60 | 100000 48017859| 640.88| 85.428 40509.12 24]108 28507334 .8B79 3.692 6826.83
70 | 100000 46476364| 649.12| 81.682 29953.01 668 2027369  1854.00- 597.89

80 | 52658| 25102301 -260.48 >100 12270|24 8326 BEM3 1792.27 - 1824.89
100| 9618 | 4703855 -1077.10 >100 2420.87 108 40330833.99 - 74.89

130| 336 130206 0.36 - 46.19 20 9525y 6.83 - 7.2

167 43 22010 0.00 - 4.40 7 35617 0.0¢ . 1.84
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Table 4 — Results for real case instances with708 vertices.

lagrangean case lagramgean/surrogate case
p iter cols Ib gap time iter cols Ib gap time

70 | 100000 70801933 -8569.14 >100 182079/69467 | 37654385 3262.17 - 23566.19
80 | 100000 70801933 —-6273.98 >100 127565/437353 | 28081728 2651.8 - 13826.58
90 | 10000Q 70796775 —4943.89 >100 84151.88 9949 30628953 .2B0b - 10563.38
100 | 100009 70719646| -3148.58 >100 52267.47 2358 10326618 .1846 - 3222.66
120 | 16382| 11582316 -3.00 >100 38174/01 52 383893 72.42 - 155.55
140| 3198 2199458 -877.93 >100 3856.92 164 105308939.61 - 185.02
180 95 57986 3.01 - 18.62 243 97573 0.30 21.18
236 25 18105 0.00 - 2.50 7 45613 0.0(¢ 2.43




Table 5 — Results for real case instances with818 vertices.

lagrangean case lagramgean/surrogate case

p iter cols Ib gap time iter cols Ib gap time

80 | 84679| 6926858¢ -3.00 >100 206442.809947 | 130865821 4173.99 | 25.059 100206.88
90 | 100000 81801981 -15780.4 >100 178731/18084 | 40231415 2901.62 - 27721.61
100 | 100000 81801981 -11254.1 >100 131980/804948 | 24244184 2411.37 32.192 16630/18
120 | 100000 81535844 -3117.183 >100 46365.92 334 2797745 820.88 — 1597.38
140 | 21744| 17627162 -2602.10 > 100 6055.78 3p7 BA36598 509.47 - 716.29
160| 6845 5599300 -9.00 > 100 2289.91 197 1352662 6.267 - 384.90
200 | 418 295776 6.13 - 101.07p 1070 115052 8.02 285.2 103.55
273 29 23892 0.00 - 4.48 8 53007 0.0(¢ . 3.26
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Figure 1 — Column generation algorithm.

Figure 2 — Subroutine for the initial set of columns.
Figure 3 — Column removal subroutine.

Figure 4 — Standar@olGer{t): LB = 2121.40.

Figure 5 —ColGer(t) with augmentation: LB = 2862.21.

Figure 6 —ColGer(t) with augmentation and controlled perturbation: LB = 2936.49.
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Table 1 — Results for real case instances with324 vertices.

Table 2 — Results for real case instances withd02 vertices.

Table 3 — Results for real case instances wittb00 vertices.

Table 4 — Results for real case instances with708 vertices.

Table 5 — Results for real case instances witt818 vertices.
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