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The Maximal Covering Location Problem (MCLP) deals with the location of facilities in order to attend the largest subset of
a population within a service distance. Many successful heuristic approaches have been developed to solve this problem. In
this work we use the Unified Linear Model developed by Hillsman to adapt the distance coefficients of a p-median problem
to reflect the demand information of a population. This transformation permits the application of a Lagrangean/surrogate
heuristic developed for solving p-median problems to solve the MCLP. In previous works this heuristic proved to be very
affordable, providing good quality solutions in reduced computational times. Computational tests for random generated
scenarios ranging from 100 to 900 vertices and GIS-referenced instances of São José dos Campos city (Brazil) were
conducted, showing the effectiveness of the combined approach.

Significance: In addition to the economic relevance of decisions related to facility location problems, applications in
computer network design and flexible manufacturing systems can benefit with the use of MCLP models.
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1. INTRODUCTION

Location-allocation problems deals with decisions of finding the best (or optimal) configuration for the installation of one or
more facilities in order to attend the demand of a population (Daskin (1995), Drezner (1995)). In the private sector the term
facility can be replaced by plants, warehouses, telecommunication antennas etc. The applications in the public sector can be
divided between public services (schools, libraries, hospitals, bus stops) and emergency services (fire and police stations,
ambulance posts). Facility location analysis can be improved if geo-referenced data, as provided by Geographic Information
Systems (GIS), is available.
  Despite the possible different nature of the applications, location-allocation models present the same basic structure. Based
in the p-median models of Hakimi (1965) and ReVelle and Swain (1970), Hillsman (1974) developed an Unified Linear
Model (ULM) that can be adapted to model other location-allocation problems. Given a network, the p-median problem
(pMP) is the problem of locating p facilities minimizing the sum of the distances of each demand point to its nearest facility.
The maximal covering location problem (MCLP) is the problem of locating p facilities on a network such that the maximal
population is attended (or covered) within a given service distance (Church and ReVelle (1974)).
  In his work, Hillsman proposed a change in the distance coefficients of a pMP to obtain a new set of coefficients, based in
the population information and the service distance of a MCLP. Since no changes are made in the structure of the pMP
model, existent solution procedures for solving pMP’s can be applied to the new data set and obtain solutions for the
corresponding MCLP. This paper assess the quality of the combined approach using the Lagrangean/surrogate heuristic of
Senne and Lorena (2000) for solving pMP’s in problem instances with both random generated and real world data.
  In the next section we present the unified linear model and the proper change in problem coefficients to model a maximal
covering location problem from data of a p-median problem. Section 3 presents the Lagrangean/surrogate relaxation of
Senne and Lorena for solving the p-median problem. Section 4 contains an interchange algorithm for improvement of primal
solutions. In section 5 we report the computational tests for random generated and real world data, ranging from 100 to 900
vertices. The integration of the heuristic to ArcView, a GIS software developed by Environmental Systems Research
Institute Inc., is also presented, using geo-referenced data of São José dos Campos city, Brazil. Section 6 presents the
conclusions and future extensions.



2. THE UNIFIED LINEAR MODEL FOR THE P-MEDIAN PROBLEM AND THE MAXIMAL
COVERING LOCATION PROBLEM

For a n vertex network and a symmetric distance matrix D = [dij]n×n, the ULM adapted for the pMP can be stated as the
following binary integer programming problem:
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  Constraint (3) is obtained assuming k = p and the equality relation in the generalized form of the corresponding inequality
of the ULM:

kx
n

i
ii

≥
=
≤

∑
=1

... (6)

  The variables xij, i, j ∈ N = {1, ..., n}, indicate if node j is served by the facility located in candidate node i (xij = 1) or not
(xij = 0) and if candidate node i is chosen for the installation of a facility (xii = 1) or not (xii = 0). The objective function (1)
represents the total distance from every node to its nearest facility. Constraints (2) and (4) specify that every node must be
served by only one installed facility. Constraint (3) indicates that exactly p nodes are to be chosen as candidates for
installation of facilities. The binary condition over the variables are given in constraint (5).
  An optimal solution to the model (1)-(5) is a solution that yields the minimum value of equation (1) for some matrix of
coefficients C = [cij]n×n. When population information is available for every node j ∈ N, say wj, then a new set of coefficients
can be calculated from the distance matrix D of the pMP in the following way:
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  If these coefficients are used in equation (1), then the problem switches to determine the best candidates for the installation
of p facilities, minimizing the unattended population of the nodes that are more than S distance units away from any facility
or, equivalently, maximizing the attendance of the population of the nodes within S distance units of any facility. The model
(1)-(5), with coefficients calculated as in (7), is the ULM correspondent of MCLP. If D contains information about time,
then S should be chosen accordingly to represent the limit time to reach a served node from an installed facility.
  In both problems, xij represents the solution of the location-allocation problem, with xii = 1 representing the chosen
candidates for the installation of the facilities. Although constraint (2) forces every node to be allocated to exactly one
facility, the fact that xij = 1 in the MCLP does not guarantee attendance: only the nodes within S distance (or time) units
from a facility will be considered covered. Another particularity of this transformation is that the value v(pMP) of the
objective function using the coefficients from matrix C gives the total unattended population: the value of the corresponding
solution to the MCLP is calculated as:
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3.THE LAGRANGEAN/SURROGATE RELAXATION

To shorten the notation, we refer to the model defined as in (1)-(5), with coefficients taken from the calculated matrix C, as
P. Problem P can be solved using relaxation heuristics. Narciso and Lorena (1999) developed a Lagrangean/surrogate

heuristic to approximately solve problem P. As proposed by Glover (1968), for a given nR+∈ , a surrogate relaxation of P

can be defined by:
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and (3)-(5).
  The optimal value of v(SPλ) is less than or equal to v(P), and results from the solution of the dual surrogate problem
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. Problem SPλ is an integer linear problem with no special structure to explore. In addition, the surrogate

function RRs n →+: , (λ, v(SPλ)) has some properties that make it difficult to find a dual solution. Methods for find

approximated solutions of the surrogate dual were proposed by Karwan and Rardin (1979) and Dyer (1980).
  Due to the difficulties with relaxation SPλ we proposed to relax again the problem, now in the Lagrangean way. For a given

t ≥ 0, constraint (10) is relaxed, and the Lagrangean/surrogate relaxation is given by:
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  For given t ≥ 0 and nR+∈ , v(LtSPλ) ≤ v(SPλ) ≤ v(P). Problem LtSPλ is solved considering implicitly constraint (3) and

decomposing for index i, obtaining the following n problems:
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and defining I as the index set of the p smallest βi (here constraint (3) is considered implicitly). Then, a solution ijx  to

problem LtSPλ is:
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  The Lagrangean/surrogate solution is given by:
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  The interesting characteristic of relaxation LtSPλ is that for t = 1 we have the usual Lagrangean relaxation using the
multiplier λ. For a fixed multiplier λ, the best value for t can be found by solving the Lagrangean dual:
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resulting v(SPλ) ≥ v( D t ) ≥ v(L1SPλ).

  The Lagrangean function RRl →+: , (t, v(LtSPλ)), is concave and piecewise linear (Parker and Rardin (1988)). The best

Lagrangean/surrogate relaxation value gives an improved bound over the usual Lagrangean relaxation. An exact solution to

D t  may be obtained by a search over different values of t (Minoux (1975) and Handler and Zang (1980)). However, in

general, we have an interval of values t0 ≤ t ≤ t1 (with t0 = 1 or t1 = 1) which also produces improved bounds. So, in order to
obtain an improved bound to the usual Lagrangean relaxation it is not necessary to find the best value t*, as is enough to find
a value T such that t0 ≤ T ≤ t1. Senne and Lorena (2000) describe a search heuristic that is used to find approximated best
values of T. If the values of T remains unchanged for an a priori fixed number of iterations then this value is assumed for the
upcoming iterations and the search procedure is no longer executed.



3.1 The Subgradient Heuristic

The following general subgradient heuristic is used as base to the relaxation heuristic used in this work. In this algorithm,
C = {i ∈ N | xii = 1} is the set of nodes already fixed as medians:

Given λ ≥ 0, λ ≠ 0;
Set lb = – ∞, ub = + ∞, C = ∅;
Repeat

Solve relaxation (LtSPλ) obtaining xλ and v(LtSPλ);
Obtain a feasible solution xf and the respective vf ;

Update lb = max {lb, v(LtSPλ)};
Update ub = min {ub, vf};

Fix xii = 1 if v(LtSPλ xii = 0) ≥ ub, i ∈ N – C;
Update the set C;

Set ∑
=
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n
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1 , j ∈ N;

Update the step size θ;

Set λj = max {0, λj + θ jg  }, j ∈ N;

Until (stopping tests).

  The initial value for λ is set as λj = 
Ni∈

min { cij}, j ∈ N. The step sizes used are:
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  The control of the parameter π is the same proposed in Held and Karp (1971). Beginning with π = 2, its value is halved
whenever ub does not decrease for 15 consecutive iterations. The stopping testes used are:
a) π ≤ 0.005;
b) ub – lb < 1;

c) 
2

g  = 0

d) every median was fixed.
  Solutions xλ are not necessarily feasible to P, but feasible solutions can be produced at each iteration, by assigning non-
median nodes to the nearest median node in I. The objective value of a feasible solution xf is calculated as:
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Figure 1: Reallocation of nodes for overlapping clusters.

s

(a) Initial solution (b) After reallocation



4. IMPROVING PRIMAL SOLUTIONS

Primal solutions are calculated whenever lb increases. Then, set C is updated to store the indexes of the nodes chosen as
new medians for pMP and exact p clusters can be identified, corresponding to the p medians and their allocated non-median
nodes. Primal solutions xf can be improved searching for a new median in each cluster, swapping the current median with a
non-median node of the same cluster, changing the allocation solution.
  As shown in Figure 1, this change may alter both allocation and covering configuration of the current pMP and MCLP
solutions, respectively, so an algorithm for recalculating the coverage is needed:

While (vf decreases)
For k = 1, ..., p;

Interchange median and non-median nodes in cluster Ck;
Calculate the corresponding value v of the best reallocation;
If v < vf

Update the median node for cluster Ck;
Set vf = v;

End If;
End For;

End While;

  The interchange procedure for nodes in each cluster Ck, k = 1,..., p, can be performed for:
a) all allocated non-median nodes in cluster Ck, or;
b) only served non-median nodes in cluster Ck, or;
c) only the non-median nodes within R < S distance (or time) units from median node of cluster Ck.

5. COMPUTATIONAL TESTS

The Lagrangean/surrogate heuristic with cost coefficients adapted to solve the MCLP was tested with random and real
world data. For the random generated data, we used the distance matrices of the 100 and 150-vertex network of Galvão and
ReVelle (1996) and Galvão et al. (2000) and the data sets pmed32.txt and pmed39.txt (with 700 and 900 vertices,
respectively) from Beasley (1990). The number of facilities p, the service distance S and the demand information were
considered as of Galvão and ReVelle (1996) and Galvão et al. (2000). The demand values used were not identical, but
generated in the same way: the population of each node were sampled from a uniform distribution in the range [20, 30] for
the 100-vertex network and from a normal distribution with mean equal to 80 and standard deviation equal to 15 for the
other networks. The real world data for 324, 402, 500, 708 and 818-vertex networks were taken from a geo-referenced
database for São José dos Campos city, Brazil. The nodes represent the blocks of some downtown and uptown portions of
the city and the number of houses, apartments, commercial and government buildings in each block provides the demand
information needed (the data files are available in http://www.lac.inpe.br/~lorena/instancias.html). For these problems we
simulated the installation of radio antennas for Internet service, with short, medium and long range values (800, 1200 and
1600 m., respectively). A summary of the test problems used is given in Table 1.

Problem set Number of vertices Values of p Values of S Source
G&R100 100 [8, 10, 12] [50, 65, 80] Galvão and ReVelle (1996)
G&R150 150 [8, 10, 12] [75, 80, 85, 90] Galvão and ReVelle (1996)
G150 150 [5, 7, 8, 10, 12, 14, 16, 18, 20] [70, 80, 90, 95] Galvão et al. (2000)
SJC324 324 [1, 2, 3, 4, 5] [800, 1200, 1600] dmatrix324.txt
SJC402 402 [1, 2, 3, 4, 5, 6] [800, 1200, 1600] dmatrix402.txt
SJC500 500 [1, 2, 3, 4, 5, 6, 7, 8] [800, 1200, 1600] dmatrix500.txt
SJC708 708 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] [800, 1200, 1600] dmatrix708.txt
SJC818 818 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 14]
[800, 1200, 1600] dmatrix818.txt

B700 700 [20, 24, 28] [13, 15, 20] pmed32.txt
B900 900 [20, 24, 28] [10, 13, 16] pmed39.txt

Table 1: Summary of test problems.



  The Lagrangean/surrogate heuristic were implemented in C and run on an IBM PC equipped with one Intel Pentium III
733 MHz processor and 128 MB RAM. A simple program was developed to generate the demand information for the
problems G&R100, G&R150, G150, B700 and B900 and to perform the necessary coefficient transformation, according to
(7). After the call to the Lagrangean/surrogate routine the resulting output is interpreted to provide the allocation in terms of
the original distance values. For each combination of (n, p, S) we generated 20 instances with random demand values.
  Tables 2, 3, 4, and 5 shows the computational results for the problems with 100, 150, 700 and 900-vertex networks. Time
values were calculated disregarding I/O operations and data manipulation. The columns Ref. Cov. and Ref. Time inform the
best values of coverage reported in Galvão and ReVelle (1996) and Galvão et al. (2000) and the respective solution time.
The entries in bold indicates the instances where the Lagrangean/surrogate provides better results of coverage.
  The values of coverage obtained for these problems by the Lagrangean/surrogate heuristic are comparable to those
reported in Galvão and ReVelle (1996) and Galvão et al. (2000). For the 700 and 900-vertex networks, the improvement of
primal solutions were restricted to nodes within R = 0.7*S distance units of the corresponding facility, in order to keep
computational times low. There was no significant degradation in the coverage results for the 700-vertex network, but for
the 900-vertex network this restriction played a crucial role. In this case, when the search for new facilities was performed
for all nodes within S distance units, coverage values are marginally increased but computational times were multiplied by a
factor of 5!

n p S Avg.
Population

Ref. Cov.
(%)

Avg. Cov.
(%)

Max. Cov.
(%)

Avg.
Iterations

Ref. Time
(s)

Avg. Time
(s)

Max. Time
(s)

100 8 50 2489 69.43 69.19 70.49 328 51.69 0.84 0.94
100 10 50 2499 76.23 76.00 76.94 309 62.90 1.01 1.15
100 12 50 2505 81.61 81.42 82.27 314 64.26 1.22 1.37
100 8 65 2485 87.36 87.09 87.89 321 53.81 0.90 1.04
100 10 65 2506 94.33 94.77 95.57 263 20.40 1.05 1.16
100 12 65 2507 99.18 99.57 100.00 252 22.03 2.02 3.13
100 8 80 2496 88.46 88.57 88.92 292 43.56 0.87 1.10
100 10 80 2494 96.21 95.84 96.41 277 20.54 1.18 1.37
100 12 80 2506 100.00 99.76 100.00 259 7.41 2.00 3.30

Table 2: Computational results for G&R100.

n p S Avg.
Population

Ref. Cov.
(%)

Avg. Cov.
(%)

Max. Cov.
(%)

Avg.
Iterations

Ref. Time
(s)

Avg. Time
(s)

Max. Time
(s)

150 10 70 11860 68.86 69.37 70.74 446 9.00§ 2.99 3.35
150 12 70 11949 77.09 77.91 78.69 433 11.00§ 3.69 4.01
150 14 70 11863 83.34 83.97 84.66 399 12.00§ 3.60 4.23
150 16 70 11957 87.75 88.46 89.35 367 13.00§ 3.75 4.40
150 18 70 11910 92.39 92.13 92.92 350 12.00§ 3.84 4.34
150 20 70 11912 93.95 95.22 96.28 289 6.00§ 4.36 5.11
150 8 75 11914 59.14 59.63 60.46 437 109.71¶ 2.05 2.36
150 10 75 11909 68.86 69.37 70.44 454 122.35¶ 2.97 3.24
150 12 75 11977 77.34 77.53 78.48 432 127.28¶ 3.54 3.96
150 8 80 11874 61.49 62.36 63.63 430 4.00§ 2.14 2.69
150 10 80 11879 70.91 71.67 72.99 454 6.00§ 3.09 3.57
150 12 80 11914 78.14 78.87 80.10 418 10.00§ 3.46 4.06
150 14 80 11874 84.47 84.88 84.64 383 12.00§ 3.55 4.23
150 8 85 11884 73.94 74.49 74.64 425 96.39¶ 3.05 3.35
150 10 85 11982 81.56 82.03 83.04 458 127.59¶ 3.88 4.40
150 12 85 11846 87.95 88.51 89.09 428 154.12¶ 4.11 4.56
150 6 90 11907 82.47 81.69 82.88 439 4.00§ 2.75 3.30
150 8 90 11950 89.79 89.51 90.30 427 8.00§ 3.73 5.05
150 10 90 11869 94.04 94.55 95.07 402 7.00§ 4.14 4.78
150 12 90 11886 96.93 97.87 98.27 351 5.00§ 4.71 5.22
150 14 90 11962 99.03 99.98 100.00 547 5.00§ 10.66 12.52
150 5 95 11935 87.23 87.83 88.95 396 4.00§ 2.15 2.37
150 7 95 11956 93.94 94.45 94.85 454 8.00§ 3.88 4.23

Table 3: Computational results for G&R150 (¶) and G150 (§).



n p S Avg.
Population

Ref. Cov.
(%)

Avg. Cov.
(%)

Max. Cov.
(%)

Avg.
Iterations

Ref. Time
(s)

Avg. Time
(s)

Max. Time
(s)

700 20 13 55545 70.03 70.05 70.77 963 329.00 135.69 149.23
700 24 13 55722 74.44 74.10 74.86 676 399.00 164.01 187.90
700 28 13 55483 78.05 77.56 78.46 668 536.00 198.17 220.86
700 20 15 55662 79.56 79.69 80.18 701 592.00 163.98 181.75
700 24 15 55650 83.17 83.06 83.43 717 662.00 199.51 223.33
700 28 15 55778 86.18 85.83 86.21 699 841.00 235.14 272.27
700 20 20 55495 95.76 96.19 96.45 1234 1281.00 547.08 652.02
700 24 20 55630 97.01 97.39 97.57 1105 1641.00 630.82 759.79
700 28 20 55640 98.02 98.26 98.51 1046 2076.00 737.77 909.94

Table 4: Computational results for B700.

n p S Avg.
Population

Ref. Cov.
(%)

Avg. Cov.
(%)

Max. Cov.
(%)

Avg.
Iterations

Ref. Time
(s)

Avg. Time
(s)

Max. Time
(s)

900 20 10 71464 67.72 67.08 67.70 707 763.00 186.20 214.53
900 24 10 71559 71.58 70.78 71.44 725 1099.00 244.17 264.19
900 28 10 71478 75.12 73.73 74.55 730 1272.00 298.30 323.73
900 20 13 71345 88.03 87.55 87.88 820 1272.00 467.75 528.43
900 24 13 71555 90.48 89.75 90.19 848 1656.00 598.15 696.51
900 28 13 71481 92.30 91.58 91.95 931 1989.00 771.27 852.51
900 20 16 71556 96.73 96.64 96.82 1544 2725.00 1533.13 1781.15
900 24 16 71481 97.66 97.76 97.98 1408 3269.00 1873.06 2750.71
900 28 16 71616 98.43 98.58 98.88 1244 4244.00 2031.29 2575.65

Table 5: Computational results for B900.

  The behavior of the Lagrangean/surrogate heuristic is partially illustrated in Figure 2. The scattered points in the upper half
portion of the graphic correspond to the primal solutions, calculated for each improved dual solution (the asymptotically
ascending set of points in the lower portion of the graphic). Each primal solution is improved, obtaining better values for
v(pMP), represented by the set of points immediately above the horizontal line, which represents the optimal value for this
(150, 7, 95) instance.

-1000

-500

0

500

1000

1500

2000

2500

3000

3500

4000

0 50 100 150 200 250 300 350 400 450

iterations

v(pMP)

Figure 2: Convergence of the Lagrangean/surrogate heuristic.



  Cost coefficients calculated as in (7) introduces a stronger discontinuity in v(pMP) when changing the median node of a
cluster with another candidate of the same cluster. The zero or non-zero nature on the cost coefficients, introduced by
Hillsman’s edition, also affects the calculation of the upper and lower bounds of the Lagrangean/surrogate heuristic. So, in
this approach, the values of the duality gaps cannot be used to measure the quality of heuristic solutions. In addition, the
random nature of the data and other characteristics of the network can influence the computational effort needed to solve p-
median location problems (Schilling et al. (2000)). We intend to study these issues in future researches.

n p S Pop.
Attended

Cov.
(%)

Iter. Time
(s)

n p S Pop.
Attended

Cov.
(%)

Iter. Time
(s)

324 1 800 5461 44.94 31 0.28 708 1 800 8393 34.69 38 1.48
324 2 800 8790 72.33 465 5.92 708 2 800 13306 55.00 489 22.25
324 3 800 11604 95.49 333 5.33 708 3 800 17272 71.40 533 26.25
324 4 800 12106 99.62 493 11.92 708 4 800 20338 84.07 570 33.84
324 5 800 12152 100.00 448 16.20 708 5 800 21486 88.81 581 54.65
324 1 1200 9932 81.73 27 0.27 708 6 800 22504 93.02 526 66.19
324 2 1200 11555 95.08 358 5.22 708 7 800 23151 95.70 456 74.65
324 3 1200 12152 100.00 428 9.84 708 8 800 23667 97.83 572 108.81
324 1 1600 12123 99.76 22 0.27 708 9 800 24024 99.31 654 139.18
324 2 1600 12152 100.00 698 15.00 708 10 800 24163 99.88 684 165.26
Table 6: Computational results for SJC324. 708 11 800 24192 100.00 750 207.51

708 1 1200 11612 48.00 43 1.98
n p S Pop. Cov. Iter. Time 708 2 1200 20376 84.23 386 31.86

Attended (%) (s) 708 3 1200 22422 92.68 485 32.40
402 1 800 6555 41.01 39 0.55 708 4 1200 23884 98.73 593 55.97
402 2 800 11339 70.94 545 10.16 708 5 1200 24142 99.79 570 84.69
402 3 800 14690 91.90 486 11.09 708 6 1200 24192 100.00 515 98.70
402 4 800 15658 97.96 493 13.73 708 1 1600 16827 69.56 40 2.04
402 5 800 15970 99.91 541 29.11 708 2 1600 23366 96.59 815 64.87
402 6 800 15984 100.00 567 38.01 708 3 1600 23888 98.74 649 52.73
402 1 1200 10607 66.36 41 0.71 708 4 1600 24192 100.00 644 71.40
402 2 1200 14832 92.79 342 7.14 Table 9: Computational results for SJC708.
402 3 1200 15984 100.00 405 13.46
402 1 1600 15438 96.58 36 0.77 n p S Pop. Cov. Iter. Time
402 2 1600 15984 100.00 483 11.87 Attended (%) (s)
Table 7: Computational results for SJC402. 818 1 800 8393 28.77 31 1.48

818 2 800 13306 45.62 461 29.16
n p S Pop. Cov. Iter. Time 818 3 800 17507 60.02 650 37.02

Attended (%) Iter. (s) 818 4 800 21428 73.46 582 43.83
500 1 800 7944 40.31 37 0.77 818 5 800 24531 84.10 503 51.03
500 2 800 12454 63.20 368 8.89 818 6 800 25908 88.82 502 73.87
500 3 800 15730 79.82 561 16.42 818 7 800 26933 92.34 484 99.80
500 4 800 17794 90.29 517 22.79 818 8 800 27783 95.25 540 129.84
500 5 800 18859 95.70 550 39.06 818 9 800 28351 97.20 553 158.02
500 6 800 19525 99.08 522 47.18 818 10 800 28639 98.19 575 197.79
500 7 800 19692 99.92 710 85.58 818 11 800 29019 99.48 638 215.36
500 8 800 19707 100.00 719 103.87 818 12 800 29103 99.78 664 283.91
500 1 1200 10726 54.43 42 1.04 818 13 800 29144 99.92 615 299.89
500 2 1200 18070 91.69 526 20.48 818 14 800 29168 100.00 704 337.02
500 3 1200 19393 98.41 525 22.90 818 1 1200 11612 39.81 32 1.71
500 4 1200 19707 100.00 570 45.92 818 2 1200 20290 69.56 578 49.16
500 1 1600 14804 75.12 39 1.15 818 3 1200 25211 86.43 446 35.21
500 2 1600 19668 99.80 780 25.04 818 4 1200 27029 92.67 488 52.95
500 3 1600 19707 100.00 856 60.74 818 5 1200 28513 97.75 569 89.97
Table 8: Computational results for SJC500. 818 6 1200 29137 99.89 526 106.61

818 7 1200 29168 100.00 531 137.31
Table 10: Computational results for SJC818.



n p S Pop. Cov. Iter. Time
Attended (%) (s)

818 1 1600 16827 57.69 41 2.64
818 2 1600 24646 84.50 466 43.72
818 3 1600 27672 94.87 569 53.89
818 4 1600 28862 98,95 581 62.28
818 5 1600 29168 100.00 654 110.40
Table 10: (continued).

  Tables 6, 7, 8, 9 and 10 presents the results obtained for problems SJC324, SJC402, SJC500, SJC708 and SJC818. The
number of facilities range from 1 to the minimum needed to obtain full coverage.
  Figure 4 illustrates the heuristic solution for problem SJC708, with 3 short range antennas, using ArcView routines to
process the output file containing the allocation solution (straight lines) and to represent the coverage (circles).

Figure 4: Location of 3 short range antennas in São José dos Campos.

6. CONCLUSIONS

In this work we adapted the distance coefficients of a pMP model to solve an associated MCLP. This approach permits the
use of existent p-median location problem algorithms to solve MCLP with minimum changes (if any) in the adopted
method. The similarity of the results to that obtained by Galvão and ReVelle (1996) and Galvão et al. (2000) shows the
effectiveness of this approach for the Lagrangean/surrogate heuristic of Senne and Lorena (2000), although the quality of
the solutions cannot be measured directly with the inherent heuristic mechanisms, due to the non-continuous nature of the
cost parameters. Further research will be carried to evaluate the performance of the heuristic for such data.
  The utilization of a GIS database permitted the evaluation of this approach with real word data. The low computational
times for obtaining solutions permits the study of different scenarios, which is helpful to decision makers in public and
private sectors.
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