
A Hybrid Column Generation Approach for the
Berth Allocation Problem

Geraldo R. Mauri1,3, Alexandre C. M. Oliveira2, and Luiz A. N. Lorena3 ?

1 Federal University of Esṕırito Santo - UFES, Brazil
2 Federal University of Maranhão - UFMA, Brazil

3 National Institute for Space Research - INPE, Brazil
mauri@lac.inpe.br,acmo@deinf.ufma.br,lorena@lac.inpe.br

Abstract. The Berth Allocation Problem (BAP) consists on program-
ming and allocating ships to berthing areas along a quay. The BAP is
modeled as a vehicle routing problem and a recently proposed evolu-
tionary hybrid method denominated PTA/LP is used to solve it. The
PTA/LP combines the Population Training Algorithm with Linear Pro-
gramming to generate improving incoming columns in a column genera-
tion process. The computational results are obtained for a set of instances
proposed in literature and new best known solutions are presented.

1 Introduction

The programming and allocation of ships to berths have a primary impact in the
efficiency of the port operations [1]. A discussion about the decision problems
that appear in a port is presented in [2].

The Berth Allocation Problem - BAP consists of optimally assigning ships
to berthing areas along a quay in a port. The main decision to be made in that
process accomplishes the choice of “where” and “when” the ships shall berth [3].
Managers want to minimize both port and user costs, which are related to the
ships’ service time. The BAP objective is usually to minimize the total service
time of all ships.

The BAP can be modeled as a discrete problem considering the quay as a
finite set of berths. In this case, the berths can be described as fixed length
segments, or points if the spatial dimension is ignored [1, 3]. Continuous mod-
els consider that ships can berth anywhere along the quay, where ships are of
different lengths and the quay capacity varies dynamically.

In this paper, the problem is treated in discrete form considering the minimiz-
ation of the time spent by ships arriving in a port, allocating and programming
the ships mooring to berths, aiming to reduce the permanence time for ships
inside the port. The remainder of the paper is organized as follows. Section 2
presents a brief literature review. The problem modeling is presented in Section
3. Section 4 describes the proposed model and the methods used to solve the
BAP. Computational results are presented in Section 5, and the conclusions are
summarized in Section 6.
? The authors acknowledge FAPESP and CNPq by partial research support.

2 Literature Review

Cordeau et al. [3] presents a Tabu Search based heuristic to solve two different
models for a discrete case of BAP. Only small instances could be solved op-
timally and the proposed Tabu Search always yields an optimal solution. The
proposed heuristics could handle the various features of real-life problems, in-
cluding time windows and favorite and acceptable berthing areas. The objective
function could easily accommodate a weighted sum of the ship’s service times.

Filho and Lorena [4] applied a heuristic column generation approach to graph
coloring. They describe the principles of their Constructive Genetic Algorithm
(CGA) and give a column generation formulation for the problem. The CGA
is used to generate the initial columns and also to solve the sub-problems. The
column generation is performed as long as the CGA finds columns with negative
reduced costs. The master problem is solved by CPLEX [5].

Recently, Puchinger and Raidl [6] proposed new integer linear programming
formulations for the three-stage two-dimensional bin packing problem. Based
on these formulations, a branch-and-price algorithm was developed with a fast
column generation performed by applying a hierarchy of four methods: a greedy
heuristic, an evolutionary algorithm, a restricted pricing problem using CPLEX,
and finally the complete pricing problem also using CPLEX.

3 BAP modeling

This work considers the Berth Allocation Problem (BAP) modeled as a Multi-
Depot Vehicle Routing Problem with Time Windows (MDVRPTW) [7, 3] (dis-
crete formulation). The ships are seen as customers, and the berths as depots
at which one vehicle is located. There are m “vehicles”, one for each depot, and
each vehicle starts and finishes its tour at its depot. The ships are modeled as
vertices in a multi-graph and every depot is divided into an origin and a des-
tination vertices. The time windows can be imposed on every vertex, and its
correspond to the availability period of the berth at the origin and destination
vertices.

The model is given by a multi-graph Gk = (V k, Ak), ∀k ∈ M where V k =
N ∪ {o(k), d(k)} and Ak ⊆ V k x V k. The input data are given by:

• N : set of ships, n = |N |;
• M : set of berths, m = |M |;
• tki : handling time of ship i at berth k ;
• ai: arrival time of ship i ;
• sk: start of availability time of berth k ;
• ek: end of availability time of berth k ;
• bi: upper bound for service time window for ship i ;
• vi: the value (cost) of service time for ship i.

The model variables are:
• xk

ij ∈ {0, 1}, k ∈ M , (i,j) ∈ Ak; xk
ij = 1 if the ship j is scheduled after

ship i at berth k ;

• T k
i , k ∈ M , i ∈ N : is the berthing time of ship i at berth k ;

• T k
o(k), k ∈ M : is the starting operation time of berth k (the time when

the first ship moors at the berth);
• T k

d(k), k ∈ M : is the ending operation time of berth k (the time when
the last ship departs from the berth);

• Mk
ij = max{bi + tki − aj ,0}, k ∈ M , i and j ∈ N .

The BAP model is as follows:

Minimize:

Z =
∑
i∈N

∑
k∈M

vi

T k
i − ai + tki

∑
j∈N∪{d(k)}

xk
ij

 (1)

Subject to: ∑
k∈M

∑
j∈N∪{d(k)}

xk
ij = 1 ∀i ∈ N (2)

∑
j∈N∪{d(k)}

xk
o(k)j = 1 ∀k ∈ M (3)

∑
i∈N∪{o(k)}

xk
i,d(k) = 1 ∀k ∈ M (4)

∑
j∈N∪{d(k)}

xk
i,j−

∑
j∈N∪{o(k)}

xk
j,i = 0 ∀k ∈ M,∀i ∈ N (5)

T k
i + tki − T k

j ≤ (1− xk
i,j)M

k
i,j ∀k ∈ M,∀(i, j) ∈ Ak (6)

T k
i ≥ ai ∀k ∈ M,∀i ∈ N (7)

T k
i + tki

∑
j∈N∪{d(k)}

xk
j,i ≤ bi ∀k ∈ M,∀i ∈ N (8)

T k
o(k) ≥ sk ∀k ∈ M (9)

T k
d(k) ≤ ek ∀k ∈ M (10)

xk
i,j ∈ {0, 1} ∀k ∈ M,∀(i, j) ∈ Ak (11)

The objective function minimizes the elapsed time since the ships incoming,
mooring and handling, considering a respective service cost. Constraints (2) state
that each ship is only once assigned to one berth. Constraints (3) and (4) ensure
that a ship will be the first handling by each berth and another will be the last.
The flow conservation is given by constraint (5) and constraint (6) calculates
the ships berthing time. Only the valid arches Ak (∀k ∈ M) are considered in
constraint (6), because some ships cannot be assisted by certain berth, because

for instance, the type of available equipment in berth cannot be appropriate
for handling some load types. The instance’s data shown the berth capacity to
attend the ships (handling time is different of zero). Constraints (7) and (8)
state that the berthing time is posterior to the ship arrival time and completion
time happens before the ship’s time limit (time window). Constraint (9) and
(10) ensure the non time windows violation in berths, and constraint (11) sets
that decision variables xk

i,j will be binary.

4 The PTA/LP Method

Initially proposed by Mauri and Lorena [8], the PTA/LP is a heuristic method
based on applying the Population Training Algorithm (PTA) and Linear Pro-
gramming (LP) through the Column Generation technique. The PTA and LP
are applied in an interactive way. The PTA uses the information of dual variables
in a LP relaxation to generate improved incoming columns (low cost and good
covering of the ships) in a column generation process. The LP relaxation is used
for solve a Set Partitioning Problem (SPP) formed by these columns. The SPP
is formulated as follows:

Minimize:

Z∗ =
p∑

j=1

cjxj (12)

Subject to:

p∑
j=1

aijxj = 1 i = 1, ..., n (13)

xj ∈ {0, 1} ; j = 1, ..., p (14)

The BAP is modeled as a matrix constructing with columns representing
berths and lines the ships. Each element aij ∈ {0, 1}, i ∈ N = 1..n and j ∈
P = {1..p}. n is the number of ships (lines) and p the number of generated
columns. aij = 1 if the column j attends the ship i, and 0 otherwise. This is
a classic formulation constantly used in several works found in the literature.
The cj represents the cost of column j (defined in eq. 16) and xj is equal to 1 if
column j belongs to the problem solution and 0 otherwise.

In BAP specific case, each berth has its own features, and sometimes a ship
type could not be attended by a berth. Just a berth (or none) of each available
“type” in quay must be used (each column belonging to the final problem solution
should represent a different berth, without repetitions). Then, a new constraint
must be inserted in SPP (eq. 15) to forming a set partitioning problem with an
additional constraint (SPP+).

p∑
j=1

bijxj ≤ 1 i = 1, ...,m (15)

Each element bij ∈ {0, 1}, i ∈ M = {1..m} and j ∈ P = {1..p}. m is the
number of available berths, and bij = 1 if the column j represents the berth i.

Now seeing in an evolutionary computation context, each column is repres-
ented through an “individual” formed by integers, where the first position indic-
ates the berth referring to a column, and the other positions represent the ships
attended by this berth (column). For the columns’ cost calculation, the time
windows constraints in the BAP model (7-10) are relaxed and moved to object-
ive function considering weight factors (vector w = [w0, w1, w2]). This approach
is used to facilitate and accelerate the generation of new columns, because the
computational cost (time) to generate the columns with the restrictions (7-10)
is higher. The columns are evaluated in a relaxed way and its cost will receive a
high weight for violations in time windows. The cost of each column (individual)
is given by

ck = w0

∑
i∈Bk

vi

(
T k

i − ai + tki
)
+ (16)

w1

∑
i∈Bk

(
max

(
0, ai − T k

i

)
+ max

(
0, T k

i + tki − bi

))
+

w2

(
max

(
0, sk − T k

o(k)

)
+ max

(
0, T k

d(k) + ek
))

The generation of all necessary columns to build and solve SPP+ (eq. 12-
15) can be a challenge. So, the LP relaxation is used with PTA to generate a
suitable set of columns for commercial solvers (a number of columns to be solved
by CPLEX - see [5]). More details on PTA/LP can be seen in [9] and [10].

4.1 The Population Training Algorithm

The Population Training Algorithm - PTA is a kind of evolutionary technique
first employed in [11] and derived from the Constructive Genetic Algorithm
(CGA) proposed by Lorena and Furtado [12]. The CGA has a number of in-
novative features compared to traditional genetic algorithms. These include a
“ranked” population of dynamic size composed of “schemata” and “structures”.
The schemata and structures are directly evaluated in a common basis, using a
double fitness process, called fg-fitness.

The schemata are not used in PTA and the fg-fitness will be performed
by heuristics. An individual is considered well adapted if it cannot be better
regarding the employed training heuristic. The adaptation in the population
training is, therefore, used to guide the search to promising areas.

The two functions used in evolutionary training are defined by g(k) = “qual-
ity” of column (individual) k (eq. 19), and f(k) = Best g(k′)|k′ ∈ Neighbor-
hood(k). The f(k) value is obtained through training heuristic (Fig. 3) and the
evolutionary process is developed privileging the individuals presenting small
differences [g(k)− f(k)] and small g(k), assigning to them the following ranks:

δ(k) = d× [gmax − g(k)]− [g(k)− f(k)] (17)

gmax is the cost of worst individual (column) created in initial population
and d is a constant percentage of gmax. The population is dynamically controlled
by an evolution parameter denominated α, and updated as:

α = α + Step× PS × δbst − δwst

RG
(18)

Step is a constant that controls the evolutionary process speed and PS is
the current population size. (δbst − δwst) is the variation among the ranks of
the best and worst individuals, respectively, and RG is an estimated number of
remaining generations to finish the process.

The parameter α is compared to the ranks (eq. 17), and if α ≥ δ(k) the
individual k is eliminated from the population. The population at the evolution
time α is dynamic in size and can be emptied during the process.

1. CREATE (m empty berths);

2. CREATE (a list L with all the ships);

3. ORDER (the list L by ships incoming time);

4. FOR (each ship j in L, j = 1,2,...,n) DO

5. SELECT (a berth i, i = 1,2,...,m);

6. IF (the berth i was unable to handling the ship j)

7. RETURN (to step 5);

8. ELSE

9. ASSIGN (the ship j to berth i);

10. END-IF;

11. END-FOR;

Fig. 1. Distribution heuristic

The initial population is generated through two heuristics: distribution heur-
istic and programming heuristic. The distribution heuristic attributes the ships
to the berths. This heuristic is based on the distribution heuristic presented
by Mauri and Lorena [13] and the FCFS-G heuristic presented by Cordeau et
al. [3]. The programming heuristic makes the ships schedule in the berths. The
distribution heuristic runs for “initial population size” times.

1. GIVEN (any column k)

2. FOR (each ship i assigned to k) DO

3. Tk
i =

{
max(ai, s

k), i = 1

max(ai, T
k
i−1 + tki−1), i > 1

4. END-FOR;

5. CALCULATE (ck,g(k),f(k) and δ(k))

Fig. 2. Programming heuristic

The distribution heuristic creates initially m empty berths. The n ships are
organized by incoming order on port and distributed to the berths in a random
way. In this process the selected berth must always be able to assist the selected

ship. This heuristic ensures that each ship will be assigned to a berth that must
be able to attend it. The berthing times may present overlapping and/or time
windows violations, for ships or berths. The Figure 1 describes the distribution
heuristic.

In programming heuristic the berthing time for each ship and the solution ob-
jective function of column k (ck) are computed. The functions g(k) and f(k) and
rank δ(k) are also computed. The Figure 2 presents the programming heuristic.

A simple local search heuristic is used as training function f(k), and several
alternative individuals (columns) in a neighborhood are evaluated. This heuristic
is described in Figure 3.

1. GIVEN (any column k);

2. k’ ← k;

3. f* = g(k’)

4. FOR (neighborhood size times)

5. i ← any ship attended by column k’;

6. j ← another ship attended by column k’;

7. CHANGE (the attendance sequence for ships i and j);

8. EXECUTE (the programming heuristic for column k’);

9. IF (g(k’) < f*);

10. f* ← g(k’);

11. END-IF;

12. END-FOR;

13. f(k) ← f*;

Fig. 3. Training heuristic

The used mutation is also based in a local search implemented through a
simple change of the handling positions of two ships (randomly selected) assisted
by a column (individual). This process is described in Figure 4.

1. GIVEN (any column k);

2. i ← any ship attended by column k;

3. j ← another ship attended by column k;

4. CHANGE (the attendance sequence for ships i and j);

5. EXECUTE (the programming heuristic for column k);

Fig. 4. Mutation

The crossover generates new individuals as follows: two individuals are selec-
ted (base and guide) and a new individual is created similar to the base. Each
ship assisted by the guide individual is inserted in the new individual if the cor-
responding berth can attend it. The handling sequence of the new individual
is ordered by the ships’ arrival time on the port. The crossover is presented in
Figure 5.

These operators are enclosed to PTA and its pseudo-code is shown in Figure
6. It is interesting to notice that using these processes the PTA will form pop-
ulations of several sizes, guided by the objective of selecting low cost columns
with an enough covering of the ships. The best columns should include a varied

number of ships. This fact is featured by using the training heuristic that will
guide the evolutionary process.

1. GIVEN (a base column k);

2. GIVEN (a guide column k’);

3. k’’ ← clone(k);

4. FOR (each ship i attended by column k’) DO

5. IF (the berth referring to column k’’ was able to attend the ship i)

6. INSERT (the ship i in column k’’);

7. END-IF;

8. END-FOR;

9. ORDER (the attendance sequence for column k’’);

10. EXECUTE (the programming heuristic for column k’’);

11. INSERT (the column k’’ in population);

Fig. 5. Crossover

1. CREATE (an initial population);

2. WHILE (the generation maximum number not be reached)

3. SELECT (a base individual);

4. SELECT (a guide individual);

5. k ← CROSSOVER (base,guide);

6. IF (rand() < mutation probability) MUTATION (k); END-IF;

7. CALCULATE (δ(k));

8. IF (δ(k) > α) INSERT (k in population); END-IF;

9. ORDER (the population by the individuals rank);

10. UPDATE (α);

11. FOR (every k ∈ population) DO

12. IF (δ(k) ≤ α) ELIMINATE (k); END-IF;

13. END-FOR;

24. END-WHILE;

Fig. 6. PTA algorithm

4.2 PTA and LP interaction

The interaction of PTA with LP is made through the fitness function (function
g) of the individuals in PTA. This function is defined using the dual variables
of LP. The function g is defined as follows:

g(k) =


ck

n∑
i=1

λiaik+
m∑

i=1

λibik

for

(
n∑

i=1

λiaik +
m∑

i=1

λibik > 0
)

ck for

(
n∑

i=1

λiaik +
m∑

i=1

λibik ≤ 0
) (19)

ck is the cost of column k (eq. 16) and λi is the dual variable corresponding to
constraint i. Using the concepts of the column generation technique, the reduced

cost of column k (θk) inserted in SPP+ can be calculated through the following
equation:

θk = ck −

(
n∑

i=1

λiaik +
m∑

i=1

λibik

)
(20)

We can observe through equations (19) and (20) that for negative costs (θk <
0) the value of function g will be situated inside of the interval [0, 1]. Therefore,
the training heuristic that defines the corresponding function f values (best g
in a neighborhood) will assign small differences (g - f) for columns that have
negative reduced costs. For positive costs (θk ≥ 0) the value of the g function will
be the respective cost (a “high” value). So, the population is indirectly trained for
individuals with negative reduced costs, improving the ship’s covering for SPP+,
avoiding the generation of an excessive number of columns and consequently
speeding up the process of column generation. The Figure 7 presents the pseudo-
code of PTA/LP.

1. CREATE (an initial set of columns);

2. SOLVE (LP);

3. FOR (iterations number or maximum number of columns are not reached)

4. EXECUTE (PTA);

5. REMOVE (invalid columns);

6. CALCULATE (reduced cost for new columns);

7. ADD (columns with negative reduced cost);

8. SOLVE (LP);

9. END-FOR;

10. CONVERT (LP for ILP);

11. SOLVE (ILP);

Fig. 7. PTA/LP algorithm

In PTA/LP, an initial set of columns addressed to the problem is randomly
created. This set must contain columns that form a feasible solution for SPP+.
These columns are generated running the distribution heuristic (Fig. 1) followed
by the programming heuristic (Fig. 2) for each column. The solution formed
by these columns will be probably invalid, because the columns can present
time windows violations. However, the columns with high costs (due to the
weights) will be removed from new SPP+ solutions when improved columns
were generated by PTA.

A SPP+ is formed by the initial set of columns and the LP relaxation is
solved by CPLEX. New columns are generated through PTA considering the
values of the dual variables to build the fitness functions. The valid columns
(that do not present violations in time windows) that present negative reduced
costs are added to current SPP+ and it is solved again through the LP relaxa-
tion. These processes are repeated by a certain number of iterations or while a
maximum number of generated columns is not reached.

The final SPP+ is converted to an integer linear problem and solved by
CPLEX (through the CPLEX callable library - see [5]). A feasible solution for
SPP+ is obtained, and this solution should be valid and closed of optimal for
the BAP model (eq. 1-11).

5 Computational Experience

Several experiments were performed over 30 different instances (60 ships and 13
berths). These instances were randomly generated by Cordeau et al. [3]. All the
computational tests were accomplished in a PC with AMD Athlon 64 3500 of
2.2 GHz processor with 1GB of RAM and the code was implemented in C++.

Table 1. PTA/LP details

Instance Number of SPP+ SPP+ Processing time (s)
name generated columns solved by LP solved by ILP PTA/LP ILP Total

i01 26664 1409.00 1409 72.14 2.47 74.61
i02 12752 1261.00 1261 58.92 1.83 60.75
i03 70000 1129.00 1129 94.62 40.83 135.45
i04 54612 1302.00 1302 103.16 7.02 110.17
i05 70019 1207.00 1207 72.20 52.50 124.70
i06 25990 1261.00 1261 74.22 4.12 78.34
i07 70023 1279.00 1279 86.73 27.47 114.20
i08 70005 1299.00 1299 48.77 8.30 57.06
i09 37846 1444.00 1444 91.86 4.61 96.47
i10 70005 1213.00 1213 61.81 37.59 99.41
i11 43507 1369.00 1369 95.34 4.00 99.34
i12 18508 1325.00 1325 77.39 3.30 80.69
i13 70017 1360.00 1360 62.55 27.39 89.94
i14 26221 1233.00 1233 69.05 4.91 73.95
i15 70002 1295.00 1295 71.28 2.91 74.19
i16 30063 1365.00 1365 169.81 0.55 170.36
i17 70033 1283.00 1283 32.89 13.67 46.58
i18 36108 1345.00 1345 81.78 2.23 84.02
i19 16135 1367.00 1367 122.00 1.19 123.19
i20 20528 1328.00 1328 74.25 8.05 82.30
i21 48386 1341.00 1341 103.52 4.56 108.08
i22 54140 1326.00 1326 104.17 1.20 105.38
i23 70010 1266.00 1266 41.59 2.12 43.72
i24 70008 1260.00 1260 75.81 3.09 78.91
i25 41210 1376.00 1376 95.09 1.48 96.58
i26 70011 1318.00 1318 70.00 31.11 101.11
i27 37022 1261.00 1261 77.38 5.48 82.86
i28 70004 1360.00 1360 51.52 1.39 52.91
i29 70001 1280.00 1280 196.36 7.00 203.36
i30 7837 1344.00 1344 69.62 1.39 71.02

Average 48256 1306.87 1306.87 83.53 10.46 93.99

The control parameters used by PTA/LP are presented as follows. The initial
population size was set to 10; the Step parameter was set to 0.001; the maximum
number of generations was 70; the base percentage and the mutation probability
was set to 10 and 60 respectively; the neighborhood size was set to 6, and the
parameter d was set to 0.01; the maximum number of columns was limited to
70000, and the iterations number was set to 10000. In all of the experiments
the values of gmax were obtained from the largest g evaluation on individuals

generated in the initial population. The initial value of α was set to 0 and the
weights were set to w = [1,10,10].

The Table 1 presents some details of the PTA/LP performance. The solution
value of the last SPP+ (formed by all the generated columns) was the same
when solved by LP and ILP. This fact indicates that optimal solutions are found
for the SPP+ formed by the generated columns subset (these solutions should
be close of the original problems optimal). The interaction time for PTA and LP
and the time for final SPP+ resolution through ILP were relatively low resulting
in a competitive total time of processing for PTA/LP.

In Table 2 the column “A” presents the improvement obtained by PTA/LP
over Tabu Search (TS). The column “B” presents the improvement of PTA/LP
over CPLEX. The solutions obtained by PTA/LP were compared against the
best known solutions for the used instances. These best solutions were obtained
through a Tabu Search heuristic presented in [3]. Besides, the CPLEX 10.0.1
[5] was also used in an isolated way to solve the model described in Section 3.
The CPLEX was unable to find solutions for several instances (see Table 2).
The CPLEX and Tabu Search, respectively, spent 1 hour (3600 seconds) and
approximately 120 seconds of processing time for solving each instance [3], while
PTA/LP spent an average of 93.99 seconds for each instance. This fact shows
the PTA/LP competitiveness over Tabu Search and CPLEX.

Table 2. Comparison against other methods

Instance TS CPLEX PTA/LP Improvements (%)
name Z Z Gap Z* A B

i01 1415 - - 1409 0.43 -
i02 1263 2606 3.82 1261 0.16 106.66
i03 1139 2565 4.00 1129 0.89 127.19
i04 1303 4353 8.62 1302 0.08 234.33
i05 1208 2672 4.89 1207 0.08 121.38
i06 1262 - - 1261 0.08 -
i07 1279 2887 4.73 1279 0.00 125.72
i08 1299 5177 11.69 1299 0.00 298.54
i09 1444 - - 1444 0.00 -
i10 1212 - - 1213 -0.08 -
i11 1378 - - 1369 0.66 -
i12 1325 3206 5.48 1325 0.00 141.96
i13 1360 - - 1360 0.00 -
i14 1233 - - 1233 0.00 -
i15 1295 4672 9.77 1295 0.00 260.77
i16 1375 4320 8.97 1365 0.73 216.48
i17 1283 - - 1283 0.00 -
i18 1346 3681 6.94 1345 0.07 173.68
i19 1370 2400 3.04 1367 0.22 75.57
i20 1328 - - 1328 0.00 -
i21 1346 - - 1341 0.37 -
i22 1332 3489 7.31 1326 0.45 163.12
i23 1266 - - 1266 0.00 -
i24 1261 4867 10.13 1260 0.08 286.27
i25 1379 1993 2.67 1376 0.22 44.84
i26 1330 2520 3.62 1318 0.91 91.20
i27 1261 3209 5.70 1261 0.00 154.48
i28 1365 - - 1360 0.37 -
i29 1282 4809 9.43 1280 0.16 275.70
i30 1351 - - 1344 0.52 -

Average 1309.67 3495.65 6.52 1306.87 0.21 170.46

6 Conclusions

This work presented a new hybrid column generation technique to solve the
BAP. The PTA integrated with a traditional column generation technique solves
column generation sub-problems in an implicit way. The definition of the PTA
fg-fitness using dual variables information is the essential feature for PTA/LP
performance. The computational results were very good and obtained in reas-
onable processing times compared against the Tabu Search and CPLEX.

The proposed approach doesn’t guarantee to find of optimal solutions for
BAP, because the column generation sub-problem was solved through a heuristic
method. However, the results show good quality solutions, which are probably
close to the optimal, suggesting the application to real problems of Brazilian
ports and other similar problems.

References

1. Imai, A., Nishimura, E., Papadimitriou, S.: Berthing ships at a multi-user container
terminal with a limited quay capacity. Transportation Research - Part E (2006)

2. Vis, I.F.A., Koster, R.D.: Transshipment of containers at a container terminal: An
overview. European Journal of Operational Research 147 (2003) 1–16

3. Cordeau, J.F., Laporte, G., Legato, P., Moccia, L.: Models and tabu search heur-
istics for the berth allocation problem. Transportation Science 39 (2005) 526–538

4. Filho, G.R., Lorena, L.A.N.: Constructive genetic algorithm and column gener-
ation: an application to graph coloring. In Proceedings of APORS 2000 - The
Fifth Conference of the Association of Asian-Pacific Operations Research Societies
within IFORS (2000)

5. ILOG France: ILOG CPLEX 10.0 - User’s Manual. (2006)
6. Puchinger, J., Raidl, G.R.: Models and algorithms for three-stage two-dimensional

bin packing. European Journal of Operational Research. Feature Issue on Cutting
and Packing (2006)

7. Cordeau, J.F., Laporte, G. Mercier, A.: A unified tabu search heuristic for vehicle
routing problems with time windows. Journal of the Operational Research Society
52 (2001) 928–936

8. Mauri, G.R., Lorena, L.A.N.: Método interativo para resolução do problema de es-
calonamento de tripulações. XXXVI Brazilian Symposium of Operational Research
(2004)

9. Mauri, G.R.: Novas heuŕısticas para o problema de escalonamento de tripulações.
Master Thesis in Applied Computing. Brasilian Institute for Space Research (2005)

10. Mauri, G.R., Lorena, L.A.N.: A new hybrid heuristic for driver scheduling. Inter-
national Journal of Hybrid Intelligent Systems 1(4) (2007) 39–47

11. Oliveira, A.C.M., Lorena, L.A.N.: 2-opt population training for minimization of
open stack problem. In: Bittencourt G, Ramalho GL (Eds), Advances in Artificial
Intelligence, Springer Lecture Notes in Artificial Intelligence Series 2507 (2002)
313–323

12. Lorena, L.A.N., Furtado, J.C.: Constructive genetic algorithm for clustering prob-
lems. Evolutionary Computation 3(9) (2001) 309–327

13. Mauri, G.R., Lorena, L.A.N.: Simulated annealing aplicado a um modelo geral
do problema de roteirização e programação de véıculos. XXXVIII Brazilian Sym-
posium of Operational Research (2006)

