
Driver Scheduling Generation Using a Population Training Algorithm

Geraldo Regis Mauri
Luiz Antonio Nogueira Lorena

National Institute for Space Research
Computing and Applied Mathematics Laboratory

São Jośe dos Campos SP, Brazil
{mauri,lorena}@lac.inpe.br

Abstract

This paper describes an application of the Population
Training Algorithm (PTA) to generate driver schedules for
public bus transportation. The PTA employs heuristics in
fitness definition, guiding the population to settle down in
search areas where the individuals cannot be improved by
such heuristics. The drive schedules are represented by co-
lumns in a large scale set partitioning problem, which are
generated when solving the linear programming relaxation.
The computational results are compared against a Simu-
lated Annealing metaheuristic, using randomly generated
instances based on real problems.

1. Introduction

Since the 60’s research has been done to the develop-
ment of models dedicated to crew scheduling generation sa-
tisfying imposed labor restrictions and providing the smal-
lest possible cost. This is a permanently studied problem,
since the transportation system realities are in continuous
transformation and demand efficient management of the
available resources. This increasing interest is confirmed by
specialized conferences in the last decades, as for example
the International Conference on Computer-Aided Schedu-
ling of Public Transport [4],[5], [14], [12] and [11].

In spite of this, little has been done in Brazil, where the
number of restrictions becomes the problem more complex
than in most of the developed countries. Besides, the access
democratization of the public transportation system in Bra-
zil depends on the warranty of tolerable tariffs for the users,
which depends so much of efficiency increase and reduc-
tion of operational costs, as well as of subsidies concession
in specific situations under social control [1].

It is well known that in urban public transportation com-
panies the operational labor represents one of the largest

costs [3]. A small reduction can represent a considerable
gain in the total cost, reducing significantly tariffs for the
final user, justifying any effort in the sense of minimizing
the costs with labor.

Several approaches appeared before in literature to solve
the driver scheduling problem. The problem is known to
be NP-hard (difficult for large instances). Metaheuristics
such asGenetic Algorithms, Tabu Search, Simulated Anne-
aling, among others, allow to easily include several types of
labor conditions ([11],[9],[8]). Column generation techni-
ques also shown very good results ([6],[13]).

This work presents a new alternative to generate good
driver schedules, the evolutionary approach called Popula-
tion Training Algorithm (PTA), which generates high qua-
lity columns to a set partitioning formulation solved by a
column generation technique. The paper is organized as
follows. Section 2 presents the problem definition and mo-
deling. The PTA approach is detailed in section 3, while
section 4 describes the column generation process and the
PTA/Linear Programming interaction. The computational
results are presented in section 5, and conclusions are sum-
marized in section 6.

2. Problem Description and Modeling

The Driver Scheduling Problem - DSP, also known in the
European countries as Crew Scheduling Problem - CSP [15]
or Bus Driver Scheduling Problem - BDSP [8], consists in
attributing to the drivers and collectors (crews) the job of
driving the vehicles, in such a way that the trips of the dif-
ferent lines assisted by the company are executed with the
smallest possible cost. This process of attributing tasks to
the crews, also called of driver scheduling, is the construc-
tion of a group of legal shifts that cover all of the schedule
blocks of a vehicle, that is part of a large scale of vehicles
reflecting all the operations of an organization [15].

The driver scheduling must consider a group of rules that
are specific to an organization. These rules are usually de-



rived from national and local rules, being obligatory or not.
Typically, there are restrictions in the total time worked, in
the total extension of the shift (duration between the start
and the end of the shift) etc.

The modeling approached in this work takes as base the
entities proposed by Mauri [9] due to its identification with
others found in the literature, its clarity and the results ob-
tained for real problems. This modeling treats the problem
through the entities:Tasks, Drivers (or Crews) andShifts
(daily duties).

The problem is described as the one of formation of a
matrix, where drivers appear in columns and tasks in li-
nes (see Figure 1). Each elementaij ∈ {0, 1}, i ∈ M
= {1, ...,m} and j ∈ N = {1, ..., n}, wherem is the num-
ber of tasks (lines), andn the number of drivers (columns),
andaij = 1 if the taski belongs toj driver’s shift, and 0
otherwise.

Figure 1. DSP representation.

This matrix will be used to solve the following set
partitioning problem (SPP):

Minimize:
n∑

j=1

cjxj (1)

Subject to:

n∑
j=1

aijxj = 1 i = 1, ...,m (2)

xj ∈ {0, 1} j = 1, ..., n (3)

where: cj is the cost of columnj andxj is equal to 1 if
column j belongs to the solution, and 0 otherwise. This
is a classic formulation, constantly used in the literature
([6],[13]).

The costs considered in this work penalize extra times,
idle times and overlapping times. They are formed by

cj = ETj + OTj + OVj + ITj (4)

where:

ETj = max(0, [FT (tlst)− ST (tfst)]−MWT )

OVj = max(0, [FT (tlst)− ST (tfst)]−NWT )

OT =
m−1∑
i=1

max(0, [FT (ti)− ST (ti+1)])

ITj = max(0, NWT − [FT (tlst)− ST (tfst)]) +

...
m−1∑
i=1

max(0, [ST (ti+1)− FT (ti)])

cj is the cost of the driverj; ETj is the extra-time in the total
time worked for thej driver (time after 8 hours + 2 extra
hours);OTj is the overlapping time of driverj (time that a
driver is, theoretically, accomplishing two tasks at the same
time); OVj is the extra-time in the normal time of work
established by law (also known as overtimes) to driverj (8
hours);ITj is the idle time of driverj (time the driver is not
working during his shift);MWT is the maximum working
time (8 hours + 2 hours) ;NWT is the normal working time
(8 hours);FT (ti): is the finish time of the taski; ST (ti)
is the start time of the taski; tfst is the first task of thej
driver’s shift;tlst is the last task of thej driver’s shift.

To the company is essential (obligatory) to avoid extra ti-
mes and overlapping but the idle and overtimes are tolerable
(non-essential). Columns with cost zero are the best ones,
but should not give a good shift. The SPP requires that all
the costs be minimized while all the tasks are performed.

The number of possible columns (shifts) of matrixA can
be huge, and the PTA will be used to generate good co-
lumns, reducing the number of columns for the final set
partitioning model.

3. Population Training Algorithm

The Population Training Algorithm (PTA) is a kind of
evolutionary technique first employed in [10], and derived
of the Constructive Genetic Algorithm (CGA). The CGA
was proposed by Lorena and Furtado [7] and has a number
of innovative features compared to traditional genetic algo-
rithms. These include a ranked population of dynamic size
composed of schemata and structures. The schemata and
structures are directly evaluated in a common basis, using a
double fitness process, called fg-fitness.

The schemata are not used in PTA and the fg-fitness will
be performed by heuristics. An individual is considered
well adapted if it cannot be better regarding the employed
training heuristic. The adaptation in the population training
is, therefore, used to guide the search to promising areas.

The representation of a shift is given by:Sk = (a1k,
a2k,..., amk) or, for example,Sk = (1, 0, 1, 1,..., 0), mea-
ning that the tasks 1, 3, 4,..., are in thek driver’s shift.



The two functions used in evolutionary training are de-
fined byg(Sk) = cost of shiftk (used during the columns
generation - see expression (7)), andf(Sk) = Bestg(S′

k) |
S′

k ∈ Neighborhood(Sk) (the training heuristic is detailed
in Figure 2).

The evolutionary process is developed privileging the in-
dividuals presenting small differences [g(Sk) - f(Sk)] and
smallg(Sk) (costs), attributing to them the following ranks:

δ(Sk) = d× [gmax − g(Sk)]− [g(Sk)− f(Sk)] (5)

wheregmax is random shift of high cost andd is a constant
percentage ofgmax. The population is dynamically control-
led by an evolution parameter, denominatedα, and updated
as

α = α + Step× PS × δbst − δwst

RG
(6)

whereStepis a constant that controls the evolutionary pro-
cess speed,PS is the current population size, (δbst - δwst)
is the variation among theranksof the best and worst in-
dividuals, respectively, andRG is the number of remaining
generations to finish the process.

The parameterα is compared to the ranks in expression
(5), and ifα ≥ δ(Sk) then the shiftSk is eliminated from
the population. The population at the evolution timeα is
dynamic in size and can be emptied during the process.

3.1. PTA Operators

For the PTA application in column generation, a simple
local search heuristic is employed for the training function
f, evaluating several (size of the neighborhood) alternative
individuals in a neighborhood (see Figure 2).

Figure 2. Training heuristic.

A local search mutation is also implemented selecting
a task of a certain driver’s shift (randomly) and changing
to other, also randomly selected. This process is repeated
while the new shift is invalid, i. e., it not assist the essential
restrictions (see Figure 3).

The crossover generates valid individuals in the fol-
lowing way: two individuals are selected (base and guide)

and merged. The population is maintained classified by de-
creasing values of ranks (as in expression (5)) and the base
is selected at the first portion of the population, while the
guide is selected from the total population. To guarantee a
valid offspring, a random position is selected in the merged
individual, the tasks in previous positions are removed and
the subsequent ones inserted in a sequential way, until the
new chromosome will be a valid shift (see Figure 4).

Figure 3. Mutation.

Figure 4. Crossover.

Figure 5 gives a pseudo-code of the PTA implemented. It
is interesting to note that the PTA forms populations of se-
veral sizes, guided by the objective of choosing good costs
columns (shifts), with the enough covering of the tasks. The
best columns will include a diversified number of tasks, cha-
racterized by the training heuristic that is driving the evolu-
tionary process.

4. PTA/Linear Programming Interaction

Solving the SPP ((1)-(3)) can be a challenge, and the Li-
near Programming (LP) relaxation is used in conjunction
with the PTA to generate a manageable set of columns to
commercial solvers [2]. The algorithm described in Figure
6 resumes the PTA/LP interaction.

An initial population is randomly generated containing
only valid columns (columns that assist the essential restric-
tions) and covering all the tasks. The LP is solved and new
columns are generated through PTA, considering the values
of the LP dual variables to construct the fitness functionsf
andg.

Theg(Sk) function is defined by

g(Sk) =
c(Sk)

m∑
i=1

λiaik

(7)



θk = c(Sk)−
m∑

i=1

λiaik (8)

wherec(Sk) is done by expression (4);θk is the reduced
cost of columnk, andλi is the dual variable for taski.

Figure 5. PTA algorithm.

We can observe through expressions (7) and (8) that, for
negative reduced costs, theg function values are situated in
the interval [0,1]. Therefore, the training heuristic that defi-
nes the corresponding functionf values (bestg in a neigh-
borhood) will assign small differences (g - f ) for columns
that have negative reduced costs. The population is then in-
directly trained for individuals with negative reduced costs
(improving columns to LP), preventing the generation of an
excessive number of columns, and consequently, accelera-
ting the process.

The columns with negative reduced costs (θk < 0) are
added to the current LP, and the new SPP is solved again
through LP. The process is repeated for a certain number of
iterations, and when the solution value of LP stabilizes (the
same objective values are obtained for 5 consecutive iterati-
ons PTA/LP), or a certain number of iterations be reached,
the process is interrupted.

However, the solution value of LP can stabilize very
early, resulting in poor solutions when the SPP is solved.
To prevent this, when LP stabilizes, instead of just add to
the new LP the columns with negative reduced costs, all va-
lid columns generated by PTA are added. This correction
refreshes the column generation and the process continues
converging.

Finally the LP is converted to the SPP and solved by the
CPLEX [2]. The final problem still could be large to be
solved exactly, and so the best feasible solution is kept after

some time limit or gap limit (percentage difference of best
SPP and LP values).

Figure 6. PTA/LP algorithm.

5. Computational Tests

For validation of the implemented method, some tests
were accomplished on randomly generated instances based
on real problems of a Brazilian company of public trans-
portation. The number of tasks on instances is: 25, 50, 100,
250 and 500. These instances contain tasks (start time and
finish time) randomly selected of a real problem.

All the tests are performed in a laptop with Intel
CeleronR© processor of 2.0 GHz and 256Mb of RAM me-
mory. The whole implementation was developed in the C++
language with calls out to the CPLEX software (see [2]).

The parameters’ values used by PTA are shown in Ta-
ble 1. Besides, in all the tests, thegmax values used were
obtained starting from the largestg function of the genera-
ted individuals in the initial population. The value ofd was
fixed to1/gmax, in all the tests.

Table 1. PTA parameters.
NT 25 50 100 250 500

SIP 103 103 103 3×103 6×103

Step 10−5 10−5 10−5 10−7 10−10

MNG 2×103 2×103 2×103 5×103 8×103

PB 0.4 0.4 0.4 0.4 0.4
PM 0.2 0.2 0.2 0.2 0.2
NS 7 7 7 7 7

Table 1 provide the following information:

– NT: number of tasks (that also identify the ins-
tance);

– SIP: size of the initial population;



– Step: constant that controls the speed of the evo-
lutionary process (see expression (6));

– MNG: maximum number of generations;

– PB: individuals’ percentage of the population se-
lected as a base for crossover (base percentage);

– PM: probability of a mutation’s occurrence;

– NS: neighborhood size.

The computational results are shown in Table 2. The
PTA/LP approach was capable to generate good quality
schedules for all instances in reasonable computational ti-
mes. All the essential restrictions were assisted and the non-
essential are minimized.

The results are compared against a Simulated Annealing
(SA) approach applied to an initial set of columns randomly
generated and searching on the training heuristic (Figure 2)
neighborhood to take moves on the space of solutions. The
penalties in column costs are the same defined in expression
(4). Two SA solutions are reported, differing by the number
of executions. SA-20 performed 20 executions for distinct
initial sets of columns.

Table 2. Computational tests.
Number

of ND OV IT Times
tasks (min) (min) (seg)

PTA/LP 12 15 2356 0.30
25 SA 12 15 2356 1.98

SA-20 12 15 2356 ≈ 39.60
PTA/LP 20 0 2600 41.64

50 SA 20 7 2607 95.79
SA-20 20 0 2600 ≈1915.80

PTA/LP 40 0 7395 4.98
100 SA 40 0 7395 67.19

SA-20 40 0 7395 ≈1343.80
PTA/LP 82 1058 8186 229.68

250 SA 84 907 8995 434.80
SA-20 82 1216 8344 ≈8696.00

PTA/LP 151 1567 10961 6717.30
500 SA 153 1246 11600 12132.34

SA-20 153 1198 11552 ≈242646.80

Table 2 displays the following information:

– ND: number of drivers;

– OV: total of overtimes (minutes);

– IT: total idle time (minutes);

– Times : execution times (seconds);

– PTA/LP: proposed algorithm;

– SA: Simulated Annealing [9].

Table 3 shows the number of iterations and number of
columns generated by the PTA/LP algorithm in computati-
onal tests. It should be noted that in the last two experiments

described in Table 2, the SPP was interrupted after 150 and
6000 seconds of execution, respectively.

Table 3. PTA/LP details.
Number

of 25 50 100 250 500
tasks

Number
of 5 21 9 121 501

iterations
Number of
columns 522 11614 2315 18825 138674
generated

6. Conclusion

This paper described an application of the PTA to gene-
rate good schedules to drives in public transportation. The
PTA is integrated to traditional column generation techni-
ques and was capable to solve the sub-problem that genera-
tes new columns in an implicitly way. This is performed de-
fining properly the fg-fitness with dual prices information.
It is somewhat general and can be used in other problems
that column generation is an indicated solution method. The
PTA/LP computational results are very good and obtained
in reasonable execution times, compared to a Simulated An-
nealing metaheuristic.

7. Acknowledgements

The authors acknowledge FAPESP (process 03/04547-2)
and CNPq (process 304598/2003-8) for the financial sup-
port given to the development of this work.

References

[1] Associaç̃ao nacional de transporte público - ANTP website.
[online]. Available: http://www.antp.org.br.

[2] Ilog cplex 7.5 reference manual.c©copyright 2001 by ilog.
September 2001.

[3] C. F. Bouzada. Ańalise das despesas administrativas no
custo do transporte coletivo porônibus no munićıpio de belo
horizonte. Dissertation (Master’s degree), School of Go-
vernment, Jõao Pinheiro Foundation, Belo Horizonte, Bra-
zil, 2002.

[4] J. R. Daduna, I. Branco, and J. M. P. Paixão. Proceedings
of the sixth international workshop on computer-aided sche-
duling of public transport.Computer-Aided Transit Schedu-
ling, Springer-Verlag, 1995.

[5] M. Desrochers and J. M. Rousseau. Proceedings of the
fifth international workshop on computer-aided scheduling
of public transport. Computer-Aided Transit Scheduling,
Springer-Verlag, 1992.



[6] M. Desrochers and F. Soumis. A column generation appro-
ach to the urban transit crew scheduling problem.Transpor-
tation Science, 23:1–13, 1989.

[7] L. A. N. Lorena and J. C. Furtado. Constructive genetic al-
gorithm for clustering problems.Evolutionary Computation,
3(9):309–327, 2001.

[8] H. R. Lourenço, J. P. Paixão, and R. Portugal. Multiobjec-
tive metaheuristics for the bus-driver scheduling problem.
Transportation Science, 35:331–343, 2001.

[9] G. R. Mauri. Resoluç̃ao do problema de programação de
tripulaç̃oes de um sistema de transporte público via simu-
lated annealing.Technical Report 02/2003, Department of
Computer Science - Federal University of Ouro Preto, Bra-
zil, 2003.

[10] A. C. M. Oliveira and L. A. N. Lorena. 2-opt popula-
tion training for minimization of open stack problem in: G.
Bittencourt and G. L. Ramalho (eds.).Advances in Artificial
Intelligence, Springer Lecture Notes in Artificial Intelligence
Series, 2507:313–323, 2002.

[11] Y. Shen and R. S. K. Kwan. Tabu search for driver schedu-
ling, in S. Voss and J. R. Daduna (eds).Computer-Aided
Scheduling of Public Transport, Berlin: Springer-Velag, pa-
ges 121–135, 2001.

[12] S. Voss and J. Daduna. Lecture notes in economics and
mathematical systems.Computer-Aided Scheduling of Pu-
blic Transport, Springer, Berlin, 2001.

[13] W. E. Wilhelm. A technical review of column generation
in integer programming. Optimization and Engineering,
2:159–200, 2001.

[14] N. H. M. Wilson. Proceedings of the seventh internatio-
nal workshop on computer-aided scheduling of public trans-
port. Computer-Aided Transit Scheduling, Berlin: Springer-
Verlag, 1999.

[15] A. Wren and J. Rousseau. Bus driver scheduling - an over-
view in: J. R. Daduna, I. Branco and J. M. P. Paixão (eds.).
Computer-Aided Transit Scheduling Transport, Springer
verlag, pages 173–87, 1995.


