
A New Hybrid Heuristic for Driver Scheduling

G. R. Mauri1,2 and L. A. N. Lorena2

1Rural Engineering Department - Center for Agrarian Science - CCA
Federal University of Espírito Santo - UFES

Alegre - ES - BRAZIL
2Laboratory for Computing and Applied Mathematics - LAC

National Institute for Space Research - INPE
São José dos Campos - SP - BRAZIL

E-mail: mauri@cca.ufes.br, lorena@lac.inpe.br

Abstract

This paper describes a new hybrid method based on
the application of the Population Training Algorithm
(PTA) and linear programming (LP) for generation of
schedules for drivers in a public transport system.
These methods are applied in an iterative way, where
PTA is responsible for the generation of good columns
(low cost and good covering of the tasks), and LP for
solving a set partitioning problem formed by these
columns. The PTA employs heuristics in fitness
definition, guiding the population to settle down in
search areas where the individuals cannot be improved
by such heuristics. The driver schedules are
represented by columns in a large-scale set
partitioning problem, which are formed when solving
the linear programming relaxation. The computational
results are compared against a Simulated Annealing
metaheuristic using randomly formed instances based
on real problems.

Keywords: Driver Scheduling, Population Training
Algorithm, Linear Programming, Column Generation.

1. Introduction

Since the 60’s research has been done to the
development of models dedicated to driver scheduling
generation satisfying imposed labor constraints and
providing the smallest possible cost. This is a
permanently studied problem, since the transport
system realities are in continuous transformation and
demand efficient management of the available
resources. This increasing interest is confirmed by
specialized conferences in the last decades, as for
example the International Conference on Computer-
Aided Scheduling of Public Transport (see [17], [20],
[23], [5], [4], [21] and [3]).

In spite of this, little has been done in Brazil, where
the number of constraints and syndicates rules becomes
the problem more complex than in most of the
developed countries.

Besides, the access democratization of the public
transport system in Brazil depends on the warranty of
tolerable tariffs for the users, which depends so much
of efficiency increase and reduction of operational
costs, as well as of subsidies concession in specific
situations under social control. It is well-known that in
urban public transport companies the operational labor
represents one of the largest costs, so a small reduction
can represent a considerable gain in the total cost,
reducing significantly tariffs for the final user,
justifying any effort in the sense of minimizing the
costs with labor.

Several approaches appeared before in literature to
solve the driver scheduling problem. The problem is
known to be NP-hard (difficult for large instances).

Metaheuristics such as Genetic Algorithms, Tabu
Search, Simulated Annealing, among others, allow to
easily include several types of labor conditions (see
[13], [10], [19] and [8]). Column generation techniques
also shown very good results (see [16], [22] and [3]).

This work presents a new alternative to form good
driver schedules, the evolutionary approach called
Population Training Algorithm (PTA), which forms
high quality columns to a set partitioning formulation
solved by a column generation technique.

The use of evolutionary algorithms to solve sub-
problems in column generation was suggested in [12]
for graph coloring instances.

The paper is organized as follows. Section 2
presents the problem definition and modeling. The
PTA approach is detailed in section 3, while section 4
describes the column generation process and the
PTA/Linear Programming iteration. The computational
results are presented in section 5, and conclusions are
summarized in section 6.

1

2. Problem description

The Driver Scheduling Problem [6], also known in
some European countries as Bus Driver Scheduling
Problem - BDSP [13] or Crew Scheduling [19],
consists in assigning to the drivers and collectors
(crews) the job of driving the vehicles, in such a way
that the trips of the different lines assisted by the
company are performed with the smallest possible cost.

This process of assigning tasks to the drivers, also
called of driver scheduling, is the construction of a
group of legal shifts that cover all the schedule blocks
of a vehicle, which is part of a large schedule of
vehicles reflecting all the operations of an organization
[5].

In the public transport, usually the driver
scheduling is made after programming the vehicles,
where the trips are gathered in Blocks (see Fig. 1), and
a block presents the sequence of trips distributed
successively to a vehicle beginning and finishing in the
garage.

Fig. 1: Vehicle’s block representation.

Each block also shows the Relief Points (or Relief

Opportunities [5]), that are intervals of feasible time to
driver changing (see Fig. 1). Through the trips of the
vehicles’ blocks, the Tasks are formed, and the Shifts
are created (see Fig. 2), and finally, these shifts are
assigned to drivers, which will go to perform them
during a working day.

The formation of these shifts (the driver
scheduling) must consider a group of rules that are
specific to an organization. These rules are usually
derived from national and local rules, being obligatory
or not. Typically, there are constraints in the total time
worked, in the total extension of the shift (duration
between the start and the end of the shift) etc.

The modeling approached in this work takes as a
base the entities: Tasks, Drivers (or Crews) and Shifts
(daily duties). The problem is described as the
construction of a matrix, where drivers appear in
columns and tasks in lines. Each element aij ∈ {0, 1}, i
∈ M = {1, ...,m} and j ∈ N = {1, ..., n}, where m is the
number of tasks (lines), and n the number of drivers
(columns), and aij = 1 if the task i belongs to j driver’s
shift, and 0 otherwise.

This matrix will be used to solve the following set
partitioning problem (SPP):

Minimize: (1) ∑
=

n

j
jj xc

1

Subject to: (2) mixa
n

j
jij ,...,11

1
==∑

=

 { } njx j ,...,1;1,0 =∈ (3)

where: cj is the cost of column j and xj is equal to 1 if
column j belongs to the solution, and 0 otherwise. This
is a classical formulation, constantly used in the
literature (see [16] and [22]).

The costs considered in this work penalize extra
times, idle times and overlapping times. They are
formed by

nejjejjj wITOVwOTETc ×++×+=)()((4)

where:

))]()([,0max(MWTtSTtFTET fstlst −−=

))]()([,0max(NWTtSTtFTOV fstlst −−=

∑
−

=
+−=

1

1
1)])()([,0max(

m

i
ii tSTtFTOT

...)])()([,0max(+−−= fstlst tSTtFTNWTIT

∑
−

=
+ −

1

1
1)])()([,0max(...

m

i
ii tFTtST

cj is the cost of the driver j; ETj is the piece of time (in
total time worked for j driver) that exceeds the
maximum working time (MWT) (time after 8 hours + 2
extra hours); OTj is the overlapping time of driver j
(time that a driver is, theoretically, accomplishing two
tasks at the same time); OVj is the extra-time
(overtimes) in the normal time of work (NWT) fixed by
law to driver j (8 hours); ITj is the idle time of driver j
(time the driver is not working during his shift); we is a
penalty weight factor to not attending the essential
constraints; wne is a penalty weight factor to not
attending the non-essential constraints; MWT is the
maximum working time (8 hours + 2 hours); NWT is
the normal working time (8 hours); FT(ti) is the finish
time of the task i; ST(ti) is the start time of the task I;
tfst is the first task of the j driver's shift; tlst is the last
task of the j driver's shift.

2

Fig. 2: Shift representation.

To the company is essential (obligatory) to avoid

extra times and overlapping but the idle and overtimes
are tolerable (non-essential). Columns with cost zero
are the best ones, but should not give a good shift. The
SPP requires that all the costs be minimized while all
the tasks are performed.

The number of possible columns (shifts) of matrix
A can be huge, and the PTA will be used to generate
good columns, reducing the number of columns for the
final set partitioning model.

3. Population Training Algorithm

The Population Training Algorithm – PTA (see Fig.
3) is a kind of evolutionary technique first employed in
[1], and derived of the Constructive Genetic Algorithm
(CGA).

The CGA was proposed by [15] and has a number
of innovative features compared to traditional genetic
algorithms. These include a ranked population of
dynamic size composed of schemata and structures.
The schemata and structures are directly evaluated in a
common basis, using a double fitness process, called
fg-fitness.

The schemata are not used in PTA and the fg-
fitness will be performed by heuristics. An individual
is considered well adapted if it cannot be better
regarding the employed training heuristic. The
adaptation in the population training is, therefore, used
to guide the search to promising areas.

The representation of a shift (inside of PTA) is
given by: Sk = (ti ,tj , ..., tk) or, for example, Sk = (4, 28,
..., 65), meaning that the tasks 4, 28, ..., 65 (i, j, …, k)
are in the k driver's shift.

1. Initialize the parameters;
2. create(a random initial population);
3. while(gen. number < max. number gen.)
4. select(base_column);
5. select(guide_column);
6. new_column := crossover(base,guide);
7. evaluate(new_column);
8. if (rand () < mutation percentage)
9. mutation(new_column);
10. evaluate(new_column);
11. end_if
12. calculate the rank(new_column);
13. if (rank(new_column) > alpha)
14. add(new_column in the population);
15. end_if
16. update(alpha);
17. while(exist rank(column) < alpha)
18. eliminate(column);
19. end_while
20. end_while

Fig. 3: PTA algorithm.

The two functions used in evolutionary training are

defined by g(Sk) = cost of shift k (used during the
column generation – see expression (7)), and f(Sk) =
Best g(S'k) | S'k ∈ Neighborhood(Sk) (the training
heuristic is detailed in Fig. 4).

The evolutionary process is developed privileging
the individuals presenting small differences [g(Sk) –
f(Sk)] and small g(Sk) (costs), assigning to them the
following ranks:

[] [])()()()(max kkkk SfSgSggdS −−−×=δ (5)

where gmax is random shift of high cost and d is a
constant percentage of gmax. The population is
dynamically controlled by an evolution parameter,
denominated α, and updated as

3

RG
PSStep wstbst δδ

αα
−

××+= (6)

where Step is a constant that controls the evolutionary
process speed, PS is the current population size, (δbst -
δwst) is the variation among the ranks of the best and
worst individuals, respectively, and RG is an estimated
number of remaining generations to finish the process.
The parameter α is compared to the ranks in
expression (5), and if α ≥)(kSδ then the shift Sk is
eliminated from the population. The population at the
evolution time α is dynamic in size and can be
emptied during the process. More details about PTA
can be seen in [2].

3.1. PTA operators

For the PTA application in column generation, a

simple local search heuristic is employed for the
training function f, evaluating several (size of the
neighborhood) alternative individuals in a
neighborhood (see Fig. 4).

Fig. 4: Training heuristic.

A local search mutation is also implemented

selecting a task of a certain driver's shift (randomly)
and changing to other, also randomly selected.

This process is repeated while the new shift is
invalid, that is, it not assists the essential constraints
(see Fig. 5).

The crossover generates valid individuals in the
following way: two individuals are selected (base and
guide) and merged. The population is kept classified by
decreasing values of ranks (as in expression (5)) and
the base is selected at the first portion of the
population, while the guide is selected from the total
population.

To guarantee a valid offspring, a random position is
selected in the merged individual, the tasks in previous
positions are removed and the subsequent ones inserted

in a sequential way, until the new chromosome will be
a valid shift (see Fig. 6).

Fig. 5: Mutation.

It is interesting to note that the PTA forms

populations of several sizes, guided by the objective of
choosing good costs columns (shifts), with the enough
covering of the tasks. The best columns will include a
diversified number of tasks, characterized by the
training heuristic that is driving the evolutionary
process.

1. Let Sk be any shift
2. f(Sk) := g(Sk);
3. S'k := clone(Sk);
4. for(x:=1 to size of the neighborhood)
5. i := select(a task of S'k);
6. j := select(any task);
7. remove(the task i of S'); k

8. add(the task j in S'k);
9. compute(g(S')); k

10. if(g(S') < f(Sk

11. f(S
k))

k) := g(S'k);
12. end_if
13. end_for

4. PTA/Linear Programming iteration

Solving the SPP ((1)-(3)) can be a challenge, and
the Linear Programming (LP) relaxation is used in
conjunction with the PTA to generate a manageable set
of columns to commercial solvers [14].

An initial population is randomly generated
containing only valid columns (columns that assist the
essential constraints) and covering all the tasks.

The LP is solved and new columns are formed
through PTA, considering the values of the LP dual
variables to construct the fitness functions f and g. The
g(Sk) function is defined by

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≤

>

=

∑

∑
∑

=

=

=

m

i
ikik

m

i
iki

ik

m

i
i

k

k

aforSc

afor
a

Sc

Sg

1

1

1

0),(

0,
)(

)(

λ

λ
λ (7)

\

And the corresponding reduced cost:

4

ik

m

i
ikk aSc ∑

=

−=
1

)(λθ (8)

c(Sk) is done by expression (4); θk is the reduced

cost of column k, and λi is the dual variable for task i.
We can observe through expressions (7) and (8)

that, for negative reduced costs, the g function values
are placed in the interval [0,1]. Therefore, the training

heuristic that defines the corresponding function f
values (best g in a neighborhood) will assign small
differences (g - f) for columns that have negative
reduced costs. The population is then indirectly trained
for individuals with negative reduced costs (improving
columns to LP), preventing the generation of an
excessive number of columns, and consequently,
speeding up the process.

Fig. 6: Crossover.

The columns with negative reduced costs (θk < 0)

are added to the current LP, and the new SPP is solved
again through LP. The process is repeated for a certain
number of iterations, and when the solution value of
LP stabilizes, or a certain number of iterations be
reached, the process is interrupted.

Fig. 7: PTA/PL algorithm.

Finally the LP is converted to the ILP (Integer

Linear Programming), forming the set partitioning
problem (expressions (1)-(3)), and solved by the
CPLEX [14]. The final problem still could be large to
be solved exactly, and so the best feasible solution is
kept after some time limit or gap limit (percentage
difference of best ILP and LP values).

The algorithm described in Fig. 7 resumes the
PTA/LP iteration.

5. Computational results

For validation of the implemented method, some
tests were performed on randomly formed instances
based on real problems of a Brazilian company of
public transport. The number of tasks on instances is:
25, 50, 100, 250 and 500. These instances contain tasks
(start time and finish time) randomly selected of a real
problem. They are available at
www.lac.inpe.br/~lorena/instancias.html.

1. create(population addressed to the
problem);

2. solve(LP);
3. while(improving LP)
4. execute(PTA);
5. remove(invalid columns);
6. calculate(reduced costs for new

columns);
7. add(columns with negative reduced

costs);
8. solve(LP);
9. end_while
10. convert(LP to ILP);
11. solve(ILP);

All the tests are performed in a laptop with Intel
Celeron® processor of 2.0 GHz and 256Mb of RAM
memory. The whole implementation was developed in
the C++ language with calls out to the CPLEX library
[14].

The parameters’ values used by PTA are shown in
Table 1, and the computational results are shown in
Table 2. Besides, in all the tests, the gmax values used
were got starting from the largest g function of the
generated individuals in the initial population. The
value of d was fixed to 1/gmax, in all the tests.

In Table 2, it is also had the results presented by the
method PTA/LP*, that was presented in [10].
Basically, the difference among PTA/LP* and PTA/LP
is that the first uses the same "weight" to punish the
essential and non-essential constraints (with value 1),
and PTA/LP uses differentiated weights (with value 1
for the non-essential constraints and with value 1000
for the essentials ones).

5

Number of tasks 25 50 100 250 500

Size of the initial population 100 100 100 100 100
Step 10-17 10-17 10-17 10-17 10-17

Maximum number of generations 500 1000 1000 1000 500
Base percentage 40 40 40 40 40

Mutation’s probability 0.2 0.2 0.2 0.2 0.2
Neighborhood size 7 7 7 7 7

Table 1: PTA parameters.

Number
of tasks

Used
method

Number
of drivers

Overtimes
(minutes)

Idle time
(minutes)

Total
cost

Times
(seconds)

 PTA/LP 12 15 2356 2371 0.10
25 PTA/LP* 12 15 2356 2371 0.30

 SA 12 15 2356 2371 1.90
 SA_20 12 15 2356 2371 35.48
 PTA/LP 20 0 2600 2600 4.63

50 PTA/LP* 20 0 2600 2600 41.64
 SA 20 27 2627 2654 42.87
 SA_20 20 0 2600 2600 949.04
 PTA/LP 40 0 7395 7395 1.88

100 PTA/LP* 40 0 7395 7395 4.98
 SA 40 0 7395 7395 7.60
 SA_20 40 0 7395 7395 173.26
 PTA/LP 81 1103 7751 8854 70.90

250 PTA/LP* 82 1058 8186 9244 229.68
 SA 85 815 9383 10198 199.86
 SA_20 83 1112 8720 9832 3749.02
 PTA/LP 145 1601 8115 9716 6567.80

500 PTA/LP* 151 1567 10961 12528 6717.30
 SA 153 1254 11608 12862 7061.52
 SA_20 153 1096 11450 12546 143565.20

Table 2: Computational results.

Besides, PTA/LP* was performed in a "fewer

iterative" way, that is, with a lot of PTA generations
and few iterations among PTA and LP. The PTA/LP
was performed in a "more iterative" way, which few
PTA generations and a large number of iterations
among PTA and LP than in PTA/LP*.

The PTA/LP approach was capable to form good
quality schedules for all instances in reasonable
computational times. All the essential constraints were
assisted and the nonessential are minimized. The
results are compared against a Simulated Annealing
(SA) approach applied to an initial set of columns
randomly generated and searching on the

neighborhood to take moves on the space of solutions.
The penalties in column costs are the same defined in
expression (4). Two SA solutions are reported differing
by the number of executions (SA_20 performed 20
executions for distinct initial sets of columns).

The SA approach used in this work is based on a
previous work that got excellent results (best than other
methods [9]) for real problems [11].

It is noticed by the Table 2, that for the instances
with 25, 50 and 100 tasks PTA/LP got solutions with
similar costs to SA_20. The SA got similar solutions to
PTA/LP and to SA_20 only for instances with 25 and
100 tasks.

6

Number
of tasks Test 1 Test 2 Test 3 Test 4 Test 5 Mean

time (s)
Deviation

(%)

Cost 2371 2371 2371 2371 2371 25 Time 0.10 0.10 0.10 0.10 0.11 0.10 0.000

Cost 2600 2600 2600 2602 2600 50 Time 4.63 4.84 4.60 4.74 4.83 4.73 0.015

Cost 7395 7395 7395 7395 7395 100 Time 1.88 1.48 1.53 1.49 1.47 1.57 0.000

Cost 8854 8854 8854 8860 8854 250 Time 70.90 61.44 98.28 66.58 59.48 71.34 0.014

Cost 9716 9716 10016 9726 9916 500 Time 6567.80 6570.20 6599.76 6637.38 6608.16 6596.66 1.049

Table 3: PTA/LP - Mean times and deviations.

Besides, in all these cases, the PTA/LP processing

times were significantly smaller than both SA based
applications and PTA/LP*. For large instances with
250 and 500 tasks, the PTA/LP also obtained better
solutions and processing times than SA, SA_20 and
PTA/LP*.

Trying to give a measure to the PTA/LP
performance, four additional experiments were
performed for each instance. These experiments were
done starting from the use of random "seeds". They are
joined to the experiment reported in Table 2 and used
to calculate the deviations (see expression (9)).

CostBest
CostBestAverageCostDeviation

_
__ −

= (9)

Cost_Average is the average of solutions costs

obtained in the experiments and Best_Cost is the
smallest (best) known cost for the problems. The
deviation and the mean processing time for each
instance used in this work are presented in Table 3.

PTA/LP presented a small deviation for all of the
instances, and the processing time was practically
constant among the experiments, showing a good
performance of the proposed method.

Number
of tasks 25 50 100 250 500

Number
of

iterations
3 50 15 700 10000

Number
of

columns
351 1113 2375 29834 78082

Table 4: PTA/LP details.

Table 4 shows the number of iterations and number
of columns generated by the PTA/LP algorithm in
computational tests. It should be noted that in the last

experiment (500 tasks) described in Table 2, the ILP
was interrupted after 6000 seconds of execution.

6. Conclusion

This paper described an application of the PTA to
generate good schedules to drives in public transport.
The PTA is integrated to traditional column generation
techniques and was capable to solve the sub-problem
that generates new columns in an implicitly way. This
is performed defining properly the fg-fitness with dual
prices information. It is somewhat general and can be
used in other problems that column generation is an
indicated solution method.

PTA was capable to generate columns with
negative reduced cost during all the iteration with LP,
and the value of the function objective of LP doesn't
stabilize, resulting in an excellent solution to the driver
scheduling problem. Regarding the method started in
[10], the PTA/LP presented in this work improves the
iterativity among the PTA and LP techniques. The
PTA generates few columns for iteration, but such
columns get to improve the LP solution.

The PTA/LP computational results are very good
and obtained in reasonable execution times, compared
against a Simulated Annealing metaheuristic.

This research can be complemented applying the
PTA/LP to driver scheduling instances of the literature
and to other NP-hard problems, testing new crossover
types (see [7]) and comparing against other hybrid
methods, as for example Genetic Algorithms with
Linear Programming (see [18]).

7. Acknowledgements

The authors acknowledge FAPESP (process
03/04547-2) and CNPq (process 304598/2003-8) for
the financial support given to the development of this
work.

7

References

[1] A. C. M. Oliveira and L. A. N. Lorena, 2-opt Population
Training for Minimization of Open Stack Problem, In:
Bittencourt, G. and Ramalho, G. L. (eds) Springer Lecture
Notes in Artificial Intelligence, Vol. no. 2507, pp. 313–323,
2002.

[2] A. C. M. Oliveira and L. A. N. Lorena, Population
Training Heuristics. In EvoCOP 2005, Gottlieb, J. and Raidl,
G. R. (eds). Springer Lecture Notes in Computer Science
Series, Vol. no. 3448, pp. 166–176, 2005.

[3] A. Dallaire, C. Fleurent and J. M. Rousseau, Dynamic
Constraint Generation in CrewOpt, a Column Generation
Approach for Transit Crew Scheduling, 9th International
Conference on Computer-Aided Scheduling of Public
Transport (CASPT), San Diego – California, 2004.

[4] A. Kwan, M. Parker, R. Kwan, S. Fores, L. Proll and A.
Wren, Recent Advances in TRACS, 9th International
Conference on Computer-Aided Scheduling of Public
Transport (CASPT), San Diego – California, 2004.

[5] A. Wren, Scheduling Vehicles and Their Drivers - Forty
Years’ Experience, 9th International Conference on
Computer-Aided Scheduling of Public Transport (CASPT),
San Diego – California, 2004.

[6] A. Wren, S. Fores, A. Kwan, R. Kwan, M. Parker and L.
Proll, A flexible system for scheduling drivers, Journal of
Scheduling, Vol. no. 6, pp. 437–455, 2003.

[7] C. C. Aggarwal, J. R. Orlin and R. P. Tai, Optimized
Crossover for the Independent Set Problem, Operations
Research 45(2):226-234, 1997.

[8] C. K. Lee, The Integrated Scheduling and Rostering
Problem of Train Driver Using Genetic Algorithm, 9th
International Conference on Computer-Aided Scheduling of
Public Transport (CASPT), San Diego – California, 2004.

[9] E. H. Marinho and M. J. F. Souza, Resolução do
Problema de Programação de Tripulações de um Sistema de
Transporte Público via Método de Pesquisa em Vizinhança
Variável. Technical Report 01/2003, Computer Science
Department – Federal University of Ouro Preto, Brazil. 2003.
Available on:
<http://www.decom.ufop.br/prof/marcone/Orientacoes/PPTvi
aVNS.pdf>.

[10] G. R. Mauri and L. A. N. Lorena, Driver Scheduling
Generation Using a Population Training Algorithm,
Proceedings of I Brazilian Workshop On Evolutionary
Computation, In: SBRN’04 - Brazilian Symposium in Neural
Networks, São Luís, Maranhão – Brazil, 2004.

[11] G. R. Mauri and M. J. F. Souza, Resolução do problema
de programação de tripulações de um sistema de transporte
público via Simulated Annealing. Technical Report 02/2003,

Computer Science Department – Federal University of Ouro
Preto, Brazil. 2003. Available on:
<http://www.decom.ufop.br/prof/marcone/Orientacoes/PPTvi
aSimulatedAnnealing.pdf>.

[12] G. Ribeiro Filho and L. A. N. Lorena, Constructive
Genetic Algorithm and Column Generation: An Application
to Graph Coloring, In Proceedings of APORS 2000 - The
Fifth Conference of the Association of Asian-Pacific
Operations Research Societies within IFORS, 2000.

[13] H. R. Lourenço, J. P. Paixão and R. Portugal,
Multiobjective metaheuristics for the bus-driver scheduling
problem, Transportation Science, Vol. no. 35, pp. 331–343,
2001.

[14] ILOG CPLEX 7.5 Reference Manual. September 2001.
© Copyright 2001 by ILOG.

[15] L. A. N. Lorena and J. C. Furtado, Constructive genetic
algorithm for clustering problems, Evolutionary Computation
9 (3): 309-327, 2001.

[16] M. Desrochers and F. Soumis, A Column Generation
Approach to the Urban Transit Crew Scheduling Problem,
Transportation Science 23: 1-13, 1989.

[17] N. H. M. Wilson, Computer-Aided Transit Scheduling,
Proceedings of the Seventh International Workshop on
Computer-Aided Scheduling of Public Transport, Berlin:
Springer-Verlag, 1999.

[18]. R. Clement and A. Wren. Greedy Genetic Algorithms,
Optimizing Mutations and Bus Driver Scheduling, 6th.
International Workshop on Computer Aided Scheduling of
Public Transportation, Lisboa, 1993.

[19] S. Groot and D. Huisman, Vehicle and Crew
Scheduling: Solving Large Real-World Instances with an
Integrated Approach, 9th International Conference on
Computer-Aided Scheduling of Public Transport (CASPT),
San Diego – California, 2004.

[20] S. Voβ and J. Daduna, Computer-Aided Scheduling of
Public Transport, Lecture Notes in Economics and
Mathematical Systems, 505, Springer, Berlin, pp. 73-90,
2001.

[21] V. Gintner, N. Kliewer and L. Suhl, A Crew Scheduling
Approach for Public Transit Enhanced with Aspects from
Vehicle Scheduling, 9th International Conference on
Computer-Aided Scheduling of Public Transport (CASPT),
San Diego – California, 2004.

[22] W. E. Wilhelm, “A Technical Review of Column
Generation in Integer Programming”, Optimization and
Engineering, 2, pp. 159-200, 2001.

[23] Y. Shen and R. S. K. Kwan, “Tabu Search for driver
scheduling”, in S. Voβ and J. R. Daduna (eds), Computer-
Aided Scheduling of Public Transport, Springer-Velag,
Berlin, pp. 121-135, 2001.

8

http://www.lac.inpe.br/~lorena/cga/cga_clus.PDF
http://www.lac.inpe.br/~lorena/cga/cga_clus.PDF
http://mitpress.mit.edu/journal-home.tcl?issn=10636560

