
A New Hybrid Heuristic for Driver Scheduling 
 
 

G. R. Mauri1,2 and L. A. N. Lorena2

1Rural Engineering Department - Center for Agrarian Science - CCA 
Federal University of Espírito Santo - UFES 

Alegre - ES - BRAZIL 
2Laboratory for Computing and Applied Mathematics - LAC 

National Institute for Space Research - INPE 
São José dos Campos - SP - BRAZIL 

E-mail: mauri@cca.ufes.br, lorena@lac.inpe.br 
 

Abstract 
 

This paper describes a new hybrid method based on 
the application of the Population Training Algorithm 
(PTA) and linear programming (LP) for generation of 
schedules for drivers in a public transport system. 
These methods are applied in an iterative way, where 
PTA is responsible for the generation of good columns 
(low cost and good covering of the tasks), and LP for 
solving a set partitioning problem formed by these 
columns. The PTA employs heuristics in fitness 
definition, guiding the population to settle down in 
search areas where the individuals cannot be improved 
by such heuristics. The driver schedules are 
represented by columns in a large-scale set 
partitioning problem, which are formed when solving 
the linear programming relaxation. The computational 
results are compared against a Simulated Annealing 
metaheuristic using randomly formed instances based 
on real problems. 
 
Keywords: Driver Scheduling, Population Training 
Algorithm, Linear Programming, Column Generation. 
 
 

1. Introduction 
 

Since the 60’s research has been done to the 
development of models dedicated to driver scheduling 
generation satisfying imposed labor constraints and 
providing the smallest possible cost. This is a 
permanently studied problem, since the transport 
system realities are in continuous transformation and 
demand efficient management of the available 
resources. This increasing interest is confirmed by 
specialized conferences in the last decades, as for 
example the International Conference on Computer-
Aided Scheduling of Public Transport (see [17], [20], 
[23], [5], [4], [21] and [3]). 

In spite of this, little has been done in Brazil, where 
the number of constraints and syndicates rules becomes 
the problem more complex than in most of the 
developed countries. 

Besides, the access democratization of the public 
transport system in Brazil depends on the warranty of 
tolerable tariffs for the users, which depends so much 
of efficiency increase and reduction of operational 
costs, as well as of subsidies concession in specific 
situations under social control. It is well-known that in 
urban public transport companies the operational labor 
represents one of the largest costs, so a small reduction 
can represent a considerable gain in the total cost, 
reducing significantly tariffs for the final user, 
justifying any effort in the sense of minimizing the 
costs with labor. 

Several approaches appeared before in literature to 
solve the driver scheduling problem. The problem is 
known to be NP-hard (difficult for large instances). 

Metaheuristics such as Genetic Algorithms, Tabu 
Search, Simulated Annealing, among others, allow to 
easily include several types of labor conditions (see 
[13], [10], [19] and [8]). Column generation techniques 
also shown very good results (see [16], [22] and [3]).  

This work presents a new alternative to form good 
driver schedules, the evolutionary approach called 
Population Training Algorithm (PTA), which forms 
high quality columns to a set partitioning formulation 
solved by a column generation technique. 

The use of evolutionary algorithms to solve sub-
problems in column generation was suggested in [12] 
for graph coloring instances. 

The paper is organized as follows. Section 2 
presents the problem definition and modeling. The 
PTA approach is detailed in section 3, while section 4 
describes the column generation process and the 
PTA/Linear Programming iteration. The computational 
results are presented in section 5, and conclusions are 
summarized in section 6. 
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2. Problem description 
 

The Driver Scheduling Problem [6], also known in 
some European countries as Bus Driver Scheduling 
Problem - BDSP [13] or Crew Scheduling [19], 
consists in assigning to the drivers and collectors 
(crews) the job of driving the vehicles, in such a way 
that the trips of the different lines assisted by the 
company are performed with the smallest possible cost. 

This process of assigning tasks to the drivers, also 
called of driver scheduling, is the construction of a 
group of legal shifts that cover all the schedule blocks 
of a vehicle, which is part of a large schedule of 
vehicles reflecting all the operations of an organization 
[5]. 

In the public transport, usually the driver 
scheduling is made after programming the vehicles, 
where the trips are gathered in Blocks (see Fig. 1), and 
a block presents the sequence of trips distributed 
successively to a vehicle beginning and finishing in the 
garage. 

 

 
Fig. 1: Vehicle’s block representation. 

 
Each block also shows the Relief Points (or Relief 

Opportunities [5]), that are intervals of feasible time to 
driver changing (see Fig. 1). Through the trips of the 
vehicles’ blocks, the Tasks are formed, and the Shifts 
are created (see Fig. 2), and finally, these shifts are 
assigned to drivers, which will go to perform them 
during a working day. 

The formation of these shifts (the driver 
scheduling) must consider a group of rules that are 
specific to an organization. These rules are usually 
derived from national and local rules, being obligatory 
or not. Typically, there are constraints in the total time 
worked, in the total extension of the shift (duration 
between the start and the end of the shift) etc. 

The modeling approached in this work takes as a 
base the entities: Tasks, Drivers (or Crews) and Shifts 
(daily duties). The problem is described as the 
construction of a matrix, where drivers appear in 
columns and tasks in lines. Each element aij ∈ {0, 1}, i 
∈ M = {1, ...,m} and j ∈ N = {1, ..., n}, where m is the 
number of tasks (lines), and n the number of drivers 
(columns), and aij = 1 if the task i belongs to j driver’s 
shift, and 0 otherwise. 

This matrix will be used to solve the following set 
partitioning problem (SPP): 
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where: cj is the cost of column j and xj is equal to 1 if 
column  j belongs to the solution, and 0 otherwise. This 
is a classical formulation, constantly used in the 
literature (see [16] and [22]). 

The costs considered in this work penalize extra 
times, idle times and overlapping times. They are 
formed by  
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cj is the cost of the driver j; ETj is the piece of time (in 
total time worked for j driver) that exceeds the 
maximum working time (MWT) (time after 8 hours + 2 
extra hours); OTj is the overlapping time of driver j 
(time that a driver is, theoretically, accomplishing two 
tasks at the same time); OVj is the extra-time 
(overtimes) in the normal time of work (NWT) fixed by 
law to driver j (8 hours); ITj is the idle time of driver j 
(time the driver is not working during his shift); we is a 
penalty weight factor to not attending the essential 
constraints; wne is a penalty weight factor to not 
attending the non-essential constraints; MWT is the 
maximum working time (8 hours + 2 hours); NWT is 
the normal working time (8 hours); FT(ti) is the finish 
time of the task i;  ST(ti) is the start time of the task I;  
tfst is the first task of  the j driver's shift;  tlst is the last 
task of the j driver's shift. 
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Fig. 2: Shift representation. 

 
To the company is essential (obligatory) to avoid 

extra times and overlapping but the idle and overtimes 
are tolerable (non-essential). Columns with cost zero 
are the best ones, but should not give a good shift. The 
SPP requires that all the costs be minimized while all 
the tasks are performed. 

The number of possible columns (shifts) of matrix 
A can be huge, and the PTA will be used to generate 
good columns, reducing the number of columns for the 
final set partitioning model.  
 
3. Population Training Algorithm 
 

The Population Training Algorithm – PTA (see Fig. 
3) is a kind of evolutionary technique first employed in 
[1], and derived of the Constructive Genetic Algorithm 
(CGA). 

The CGA was proposed by [15] and has a number 
of innovative features compared to traditional genetic 
algorithms. These include a ranked population of 
dynamic size composed of schemata and structures. 
The schemata and structures are directly evaluated in a 
common basis, using a double fitness process, called 
fg-fitness.   

The schemata are not used in PTA and the fg-
fitness will be performed by heuristics. An individual 
is considered well adapted if it cannot be better 
regarding the employed training heuristic. The 
adaptation in the population training is, therefore, used 
to guide the search to promising areas.   

The representation of a shift (inside of PTA) is 
given by: Sk = (ti ,tj , ..., tk) or, for example, Sk = (4, 28, 
..., 65), meaning that the tasks 4, 28, ..., 65 (i, j, …, k) 
are in the k driver's shift.  

 

   

1. Initialize the parameters;   
2. create(a random initial population);  
3. while(gen. number < max. number gen.)  
4.   select(base_column);   
5.   select(guide_column);   
6.   new_column := crossover(base,guide); 
7.   evaluate(new_column);   
8.   if (rand () < mutation percentage)  
9.     mutation(new_column);   
10.     evaluate(new_column);     
11.   end_if   
12.   calculate the rank(new_column);   
13.   if (rank(new_column) > alpha)   
14.     add(new_column in the population); 
15.   end_if   
16.   update(alpha);   
17.   while(exist rank(column) < alpha)   
18.     eliminate(column);   
19.   end_while 
20. end_while 

Fig. 3: PTA algorithm. 
 
The two functions used in evolutionary training are 

defined by g(Sk) = cost of shift k (used during the 
column generation – see expression (7)), and f(Sk)  = 
Best g(S'k) | S'k ∈ Neighborhood(Sk) (the training 
heuristic is detailed in Fig. 4).   

The evolutionary process is developed privileging 
the individuals presenting small differences [g(Sk) – 
f(Sk)] and small g(Sk) (costs), assigning to them the 
following ranks: 
 

[ ] [ ])()()()( max kkkk SfSgSggdS −−−×=δ                  (5) 
 
where gmax is random shift of high cost and d is a 
constant percentage of gmax. The population is 
dynamically controlled by an evolution parameter, 
denominated α, and updated as 
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where Step is a constant that controls the evolutionary 
process speed, PS is the current population size, (δbst - 
δwst) is the variation among the ranks of the best and 
worst individuals, respectively, and RG is an estimated 
number of remaining generations to finish the process. 
The parameter α is compared to the ranks in 
expression (5), and if α ≥ )( kSδ  then the shift Sk is 
eliminated from the population. The population at the 
evolution time α  is dynamic in size and can be 
emptied during the process. More details about PTA 
can be seen in [2]. 

 
3.1. PTA operators 

 
For the PTA application in column generation, a 

simple local search heuristic is employed for the 
training function f, evaluating several (size of the 
neighborhood) alternative individuals in a 
neighborhood (see Fig. 4). 

 

 
Fig. 4: Training heuristic. 

 
A local search mutation is also implemented 

selecting a task of a certain driver's shift (randomly) 
and changing to other, also randomly selected. 

This process is repeated while the new shift is 
invalid, that is, it not assists the essential constraints 
(see Fig. 5). 

The crossover generates valid individuals in the 
following way: two individuals are selected (base and 
guide) and merged. The population is kept classified by 
decreasing values of ranks (as in expression (5)) and 
the base is selected at the first portion of the 
population, while the guide is selected from the total 
population. 

To guarantee a valid offspring, a random position is 
selected in the merged individual, the tasks in previous 
positions are removed and the subsequent ones inserted 

in a sequential way, until the new chromosome will be 
a valid shift (see Fig. 6).   

 

 
Fig. 5: Mutation. 

 
It is interesting to note that the PTA forms 

populations of several sizes, guided by the objective of 
choosing good costs columns (shifts), with the enough 
covering of the tasks. The best columns will include a 
diversified number of tasks, characterized by the 
training heuristic that is driving the evolutionary 
process. 

1. Let Sk be any shift   
2. f(Sk) := g(Sk);   
3. S'k := clone(Sk);   
4. for(x:=1 to size of the neighborhood) 
5.   i := select(a task of S'k);   
6.   j := select(any task);   
7.   remove(the task i of S' );   k

8.   add(the task j in S'k);   
9.   compute(g(S' ));   k

10.   if(g(S' ) < f(Sk

11.     f(S
k))   

k) := g(S'k);   
12.   end_if  
13. end_for 

 
4. PTA/Linear Programming iteration 
 

Solving the SPP ((1)-(3)) can be a challenge, and 
the Linear Programming (LP) relaxation is used in 
conjunction with the PTA to generate a manageable set 
of columns to commercial solvers [14].  

An initial population is randomly generated 
containing only valid columns (columns that assist the 
essential constraints) and covering all the tasks. 

The LP is solved and new columns are formed 
through PTA, considering the values of the LP dual 
variables to construct the fitness functions f and g. The 
g(Sk) function is defined by 
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And the corresponding reduced cost: 
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c(Sk) is done by expression (4); θk is the reduced 

cost of column k, and λi is the dual variable for task i. 
We can observe through expressions (7) and (8) 

that, for negative reduced costs, the g function values 
are placed in the interval [0,1]. Therefore, the training 

heuristic that defines the corresponding function f 
values (best g in a neighborhood) will assign small 
differences (g - f) for columns that have negative 
reduced costs. The population is then indirectly trained 
for individuals with negative reduced costs (improving 
columns to LP), preventing the generation of an 
excessive number of columns, and consequently, 
speeding up the process. 

 

 
Fig. 6: Crossover. 

 
The columns with negative reduced costs (θk < 0) 

are added to the current LP, and the new SPP is solved 
again through LP. The process is repeated for a certain 
number of iterations, and when the solution value of 
LP stabilizes, or a certain number of iterations be 
reached, the process is interrupted. 

 

     
Fig. 7: PTA/PL algorithm. 

 
Finally the LP is converted to the ILP (Integer 

Linear Programming), forming the set partitioning 
problem (expressions (1)-(3)), and solved by the 
CPLEX [14]. The final problem still could be large to 
be solved exactly, and so the best feasible solution is 
kept after some time limit or gap limit (percentage 
difference of best ILP and LP values).   

The algorithm described in Fig. 7 resumes the 
PTA/LP iteration. 

 

5. Computational results 
 

For validation of the implemented method, some 
tests were performed on randomly formed instances 
based on real problems of a Brazilian company of 
public transport. The number of tasks on instances is: 
25, 50, 100, 250 and 500. These instances contain tasks 
(start time and finish time) randomly selected of a real 
problem. They are available at 
www.lac.inpe.br/~lorena/instancias.html. 

1. create(population addressed to the 
problem);   

2. solve(LP);   
3. while(improving LP)   
4.   execute(PTA);   
5.   remove(invalid columns);   
6. calculate(reduced costs for new   

columns);   
7.   add(columns with negative reduced

costs);   
8.   solve(LP);   
9. end_while 
10. convert(LP to ILP);   
11. solve(ILP); 

All the tests are performed in a laptop with Intel 
Celeron® processor of 2.0 GHz and 256Mb of RAM 
memory. The whole implementation was developed in 
the C++ language with calls out to the CPLEX library 
[14]. 

The parameters’ values used by PTA are shown in 
Table 1, and the computational results are shown in 
Table 2. Besides, in all the tests, the gmax values used 
were got starting from the largest g function of the 
generated individuals in the initial population. The 
value of d was fixed to 1/gmax, in all the tests. 

In Table 2, it is also had the results presented by the 
method PTA/LP*, that was presented in [10]. 
Basically, the difference among PTA/LP* and PTA/LP 
is that the first uses the same "weight" to punish the 
essential and non-essential constraints (with value 1), 
and PTA/LP uses differentiated weights (with value 1 
for the non-essential constraints and with value 1000 
for the essentials ones). 
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Number of tasks 25 50 100 250 500 
      

Size of the initial population 100 100 100 100 100 
Step 10-17 10-17 10-17 10-17 10-17

Maximum number of generations 500 1000 1000 1000 500 
Base percentage 40 40 40 40 40 

Mutation’s probability 0.2 0.2 0.2 0.2 0.2 
Neighborhood size 7 7 7 7 7 

Table 1: PTA parameters. 
 
 

Number 
of tasks 

Used 
method 

Number 
of drivers 

Overtimes 
(minutes) 

Idle time 
(minutes) 

Total 
cost 

Times 
(seconds) 

       

 PTA/LP 12 15 2356 2371 0.10 
25 PTA/LP* 12 15 2356 2371 0.30 

 SA 12 15 2356 2371 1.90 
 SA_20 12 15 2356 2371 35.48 
 PTA/LP 20 0 2600 2600 4.63 

50 PTA/LP* 20 0 2600 2600 41.64 
 SA 20 27 2627 2654 42.87 
 SA_20 20 0 2600 2600 949.04 
 PTA/LP 40 0 7395 7395 1.88 

100 PTA/LP* 40 0 7395 7395 4.98 
 SA 40 0 7395 7395 7.60 
 SA_20 40 0 7395 7395 173.26 
 PTA/LP 81 1103 7751 8854 70.90 

250 PTA/LP* 82 1058 8186 9244 229.68 
 SA 85 815 9383 10198 199.86 
 SA_20 83 1112 8720 9832 3749.02 
 PTA/LP 145 1601 8115 9716 6567.80 

500 PTA/LP* 151 1567 10961 12528 6717.30 
 SA 153 1254 11608 12862 7061.52 
 SA_20 153 1096 11450 12546 143565.20 

Table 2: Computational results. 
 
 
 
Besides, PTA/LP* was performed in a "fewer 

iterative" way, that is, with a lot of PTA generations 
and few iterations among PTA and LP. The PTA/LP 
was performed in a "more iterative" way, which few 
PTA generations and a large number of iterations 
among PTA and LP than in PTA/LP*. 

The PTA/LP approach was capable to form good 
quality schedules for all instances in reasonable 
computational times. All the essential constraints were 
assisted and the nonessential are minimized. The 
results are compared against a Simulated Annealing 
(SA) approach applied to an initial set of columns 
randomly generated and searching on the 

neighborhood to take moves on the space of solutions. 
The penalties in column costs are the same defined in 
expression (4). Two SA solutions are reported differing 
by the number of executions (SA_20 performed 20 
executions for distinct initial sets of columns). 

The SA approach used in this work is based on a 
previous work that got excellent results (best than other 
methods [9]) for real problems [11].  

It is noticed by the Table 2, that for the instances 
with 25, 50 and 100 tasks PTA/LP got solutions with 
similar costs to SA_20. The SA got similar solutions to 
PTA/LP and to SA_20 only for instances with 25 and 
100 tasks. 
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Number 
of tasks  Test 1 Test 2 Test 3 Test 4 Test 5 Mean 

time (s) 
Deviation 

(%) 
         

Cost 2371 2371 2371 2371 2371 25 Time 0.10 0.10 0.10 0.10 0.11 0.10 0.000 

Cost 2600 2600 2600 2602 2600 50 Time 4.63 4.84 4.60 4.74 4.83 4.73 0.015 

Cost 7395 7395 7395 7395 7395 100 Time 1.88 1.48 1.53 1.49 1.47 1.57 0.000 

Cost 8854 8854 8854 8860 8854 250 Time 70.90 61.44 98.28 66.58 59.48 71.34 0.014 

Cost 9716 9716 10016 9726 9916 500 Time 6567.80 6570.20 6599.76 6637.38 6608.16 6596.66 1.049 

Table 3: PTA/LP - Mean times and deviations. 
 
Besides, in all these cases, the PTA/LP processing 

times were significantly smaller than both SA based 
applications and PTA/LP*. For large instances with 
250 and 500 tasks, the PTA/LP also obtained better 
solutions and processing times than SA, SA_20 and 
PTA/LP*. 

Trying to give a measure to the PTA/LP 
performance, four additional experiments were 
performed for each instance. These experiments were 
done starting from the use of random "seeds". They are 
joined to the experiment reported in Table 2 and used 
to calculate the deviations (see expression (9)).  
 

CostBest
CostBestAverageCostDeviation

_
__ −

=            (9) 

 
Cost_Average is the average of solutions costs 

obtained in the experiments and Best_Cost is the 
smallest (best) known cost for the problems. The 
deviation and the mean processing time for each 
instance used in this work are presented in Table 3. 

PTA/LP presented a small deviation for all of the 
instances, and the processing time was practically 
constant among the experiments, showing a good 
performance of the proposed method. 

 
Number 
of tasks 25 50 100 250 500 

      

Number 
of 

iterations 
3 50 15 700 10000 

Number 
of 

columns  
351 1113 2375 29834 78082 

Table 4: PTA/LP details. 
 

Table 4 shows the number of iterations and number 
of columns generated by the PTA/LP algorithm in 
computational tests. It should be noted that in the last 

experiment (500 tasks) described in Table 2, the ILP 
was interrupted after 6000 seconds of execution. 

 
6. Conclusion 
 

This paper described an application of the PTA to 
generate good schedules to drives in public transport. 
The PTA is integrated to traditional column generation 
techniques and was capable to solve the sub-problem 
that generates new columns in an implicitly way. This 
is performed defining properly the fg-fitness with dual 
prices information. It is somewhat general and can be 
used in other problems that column generation is an 
indicated solution method.  

PTA was capable to generate columns with 
negative reduced cost during all the iteration with LP, 
and the value of the function objective of LP doesn't 
stabilize, resulting in an excellent solution to the driver 
scheduling problem. Regarding the method started in 
[10], the PTA/LP presented in this work improves the 
iterativity among the PTA and LP techniques. The 
PTA generates few columns for iteration, but such 
columns get to improve the LP solution. 

The PTA/LP computational results are very good 
and obtained in reasonable execution times, compared 
against a Simulated Annealing metaheuristic.  

This research can be complemented applying the 
PTA/LP to driver scheduling instances of the literature 
and to other NP-hard problems, testing new crossover 
types (see [7]) and comparing against other hybrid 
methods, as for example Genetic Algorithms with 
Linear Programming (see [18]). 
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