

MIC2003: The Fifth Metaheuristics International Conference 84-1

A Constructive Genetic Approach to Point-Feature

Cartographic Label Placement

Missae Yamamoto* Luiz Antonio Nogueira Lorena†

INPE – Instituto Nacional de Pesquisas Espaciais

12.245-970 São José dos campos – SP, Brazil
*missae@dpi.linpe.br †lorena@lac.inpe.br

1 Introduction

Cartographic label placement refers to the text insertion process in maps and is one of the most
challenging problems in geoprocessing and automated cartography [8]. Positioning the texts
requires that overlap among texts be avoided, that cartographic conventions and preference be
obeyed, that unambiguous association be achieved between each text and its corresponding
feature and that a high level of harmony and quality be achieved. In this article we are concerned
with the placement of labels for point features, approaching the problem from a combinatorial
optimization viewpoint.

L8L7

L6 L5

L4L3

L2 L1

Figure 1: Two points – potential label positions and corresponding conflict graph

The Point-Feature Cartographic Label Placement (PFCLP) problem considers potential label
positions for each point feature, which will be considered as candidates. Figure 1 shows two
points with a set of four potential label positions and the corresponding conflict graph. The
PFCLP considers the placement of all labels searching for the large subset of labels with no

 Kyoto, Japan, August 25–28, 2003

84-2 MIC2003: The Fifth Metaheuristics International Conference

conflict. A related but different problem appears when label selection is permitted, and in that case
the problem searches the maximum vertex independent set on the conflict graph [6].

Several heuristics and metaheuristics have been used to solve the PFCLP problem, such as greedy
algorithms, discrete gradient descent, Hirsch's algorithm [2], Lagrangean relaxation [10],
Simulated Annealing and others. They are reviewed by [1]. A Genetic Algorithm (GA) with mask
is described in [7] and [9] presented a Tabu Search algorithm presenting better results in label
placement quality than other methods.

This paper describes the application of a Constructive Genetic Algorithm (CGA) to PFCLP. The
CGA was recently proposed by Lorena and Furtado [3] and applied to Gate Matrix Layout
Problems [4, 5]. Basically it differs from other GAs for evaluating schemata directly. It also has a
number of new features compared to a traditional GA. These include a population of dynamic size
composed of schemata and structures, and the possibility of using heuristics in structure
representation and in the fitness function definitions.

The paper is organized as follows. Section 2 presents a pseudo-code for the CGA and starts to
describe aspects of modeling for schema and structure representations and the consideration of
the PFCLP as a bi-objective optimization problem. Section 3 describes the some CGA operators,
namely, selection and recombination. Section 4 shows computational results using instances
formed by standard sets of randomly generated points suggested in the literature.

2 CGA Modeling for PFCLP

The CGA is usually modeled as a bi-objective optimization problem indirectly solved by an
evolutionary process.

Let X be the space of all schemata and structures sk = (label or #, label or #, …, label or #), that
can be created using the alphabet {label, #}, where label can be any corresponding point label (in
Figure 1: L1, …, L8), and # is an indetermination typical of schemata. The PFCLP is modeled
using two fitness functions. Function f returns the number of conflict free labels in sk and g
returns the corresponding number after a local search in sk. The variation (g(sk) – f(sk)) reflects
the local search improvement and schemata have lower absolute values than structures (schemata
instantiations).

The population is controlled by an evolution parameter (time) α , receiving small increments from
generation to generation. The corresponding population is denoted by Pα , and have a number of
schemata and structures, ranked by the following expression

)]([
)]()([)(

max

max

k

kk
k sggd

sfsggds
−

−−⋅
=δ ,

Kyoto, Japan, August 25–28, 2003

MIC2003: The Fifth Metaheuristics International Conference 84-3

gmax ≠ g(sk), where gmax is the total number of points and 0 < d ≤ 0.2. It is dynamic in size
controlled by α , and can be emptied during the process. At the time they are created, structures
and/or schemata receive their corresponding rank value δ(sk), that are compared with the current
evolution parameter α (α > δ(sk) ?). Better schemata or structures have high ranks, reflected by
small variations (g(sk) – f(sk)) and/or greater g(sk) values. In this sense better individuals are those
trained by the local search heuristic and have large number of conflict free labels.

The algorithm implemented in this work is showed as follows.

CGA { Constructive Genetic Algorithm }
 Given gmax , d and α;
 Initialize Pα ;
 for all sk ∈ Pα compute g(sk), f(sk), δ(sk);
 while (not stop condition) do
 while (number of recombination) do
 Select sbase and sguide from Pα ;
 Recombine sbase and sguide;
 Evaluate Offspring;
 Update Offspring in Pα+1;
 end_while
 for all sk ∈ Pα satisfying α > δ(sk) do
 Eliminate sk from Pα ;
 end_for

if sbase is a schema then
 Change the #s to labels giving sbase-struct;
 Evaluate sbase-struct;

end_if
update α ;

 end_while

The best g(sk) is kept in the process. The initial population, selection, transforming a schema base
in structure (sbase-filled), recombination, α updating and the local search heuristic are detailed in the
following.

3 CGA operators

The initial population is composed exclusively of schemata, considering that for each schema, a
proportion of random positions receive a unique label number. The remaining positions receive

 Kyoto, Japan, August 25–28, 2003

84-4 MIC2003: The Fifth Metaheuristics International Conference

labels #. Along the generations, the population increases by addition of new offspring generated
out of the combination of two schemata.

For selection, the structures and schemata in population Pα are maintained in descending order of
ranks. Two structures and/or schemata are selected for recombination. The first is called the base
(sbase) and is randomly selected out of the first positions in Pα, and in general it is a good structure
or a good schema. The second structure or schema is called the guide (sguide) and is randomly
selected out of the total population. The objective of the sguide selection is the conduction of a
guided modification on sbase.

In the recombination operation, the current labels in corresponding positions are compared. Let
snew be the new structure or schema (offspring) after recombination. Structure or schema snew is
obtained by applying the following operations:

{ Recombination } - Recombination with mask (based in Verner et al. (1997):

Mbase = mask of sbase (0 = conflict, 1 = without conflict, 2 = #)
Mguide = mask of sguide (0 = conflict, 1 = without conflict, 2 = #)
U = 0 or 1 (randomly generated)
Repeat for each position (j) in structure or schemata representation:
If Mbase (j) = 1 then snew (j) ← sbase (j)
If Mbase (j) ≠ 1 and Mguide (j) = 1 then snew (j) ← sguide (j)
If Mbase (j) ≠ 1 and Mguide (j) ≠ 1 and U = 0 then snew (j) ← sguide (j)
If Mbase (j) ≠ 1 and Mguide (j) ≠ 1 and U = 1 then snew (j) ← sbase (j)

If sbase is a schema, it is transformed in structure changing #s by labels. The labels are positioned
searching small number of extra conflicts.

Considering that the well-adapted individuals need to be preserved for recombination, the
evolution parameter α is started from the lowest δ value (taken from the bottom of the ranked
population), and then increases with step proportional to actual population size |Pα|,

l
Gr

Pk bottop +
−

⋅⋅+=
δδ

αα α || , where k is a proportionality constant, l is the minimum increment

allowed, Gr is the remaining number of generations, and (δtop-δbot) is the actual range of values of
δ. One can observe that the adaptive increment of α is affected by the own environment
(population size, best and worst δ's, etc). Thus, once the CGA achieves very good regions and
does not get to improve the best rank, the parameter α goes eliminating the individuals until the
population is emptied.

The local search heuristic is used to calculate g(sk) and drives the evolution process to a trained
population. The heuristic used in this paper is very simple (other sophisticated heuristics can be
tried). It takes the subset of labeled points in sk (points without #s) and their original potential

Kyoto, Japan, August 25–28, 2003

MIC2003: The Fifth Metaheuristics International Conference 84-5

label conflicts, i. e., a subgraph of the conflict graph. The vertices of the subgraph are then
considered in non-decreasing order of degrees. The corresponding point receives a label with no
conflict and the subgraph is updated eliminating this label (vertex) and their incident vertices and
edges. The process is then repeated until no more labels to place.

4 Computational results

Christensen et al. [1], Verner et al. [7] and Yamamoto et al. [9] compared several algorithms using
standard sets of randomly generated points: grid size of 792 by 612 units, fixed size label of 30 by
7 units and page size of 11 by 8.5 inch. In order to compare the CGA algorithm with previous
work, we used the standard sets of randomly generated points and simulated the same conditions
as described by [1] and followed the same assumptions as [7] (the instances used in this paper are
available at www.lac.inpe.br/~lorena/instancias):

• Number of the points: N = 100, 250, 500, 750, 1000;
• For each problem size, we generated 25 different configurations with random placement of

point feature using different seeds;
• For each problem size, we calculated the average percentage of labels placed without conflict

of the 25 trials;
• No penalty was attributed for labels that extended beyond the boundary of the region;
• 4 potential label positions were considered;
• Cartographic preferences were not taken into account;
• No point selection was allowed (i.e., no points are removed even if avoiding superposition is

inevitable);
• The parameters used for CGA are presented in Table 1.

Regarding the optimization algorithms of the literature, the CGA showed superior results in
quality of label placement. Table 2 shows the percentage of labels placed without conflict for 100,
250, 500, 750 and 1000 points, considering different algorithms of the literature. The CGA-average
reports the average result for 6 trials and CGA-best is the best result. The lines show the percentage
of labels placed without conflict by the optimization algorithms tested on [1] (greedy-depth first,
gradient descent, 2-opt gradient descent, 3-opt gradient descent, Hirsch, Zoraster and simulated
annealing), [7] (GA without masking and GA with masking), on Yamamoto [9] (Tabu search) and
the CGA.

Table 3 compares the Tabu search of [9], CGA-best and CGA-average running times to obtain the best
solutions (using a Pentium III computer). The Tabu search approach is faster than CGA.

 Kyoto, Japan, August 25–28, 2003

http://www.lac.inpe.br/~lorena/instancias):

84-6 MIC2003: The Fifth Metaheuristics International Conference

5 Conclusion

This work has proposed and evaluated a CGA applied to the PFCLP problem. By using a standard
set of randomly generated points and the same conditions described by [1], [7] and [9], we have
shown that CGA has better results in label placement quality than other methods published in the
literature.

Acknowledgments: The second author acknowledges Conselho Nacional de Desenvolvimento
Científico e Tecnológico - CNPq (process 300837/89-5) for partial financial research support.

References

1. Chistensen, J.; Marks, J.; Shieber, S. An empirical study of algorithms for point-feature
label placement. ACM Transactions on Graphics, v. 14, n. 3, p. 203-232, 1995.

2. Hirsch, S. A. An algorithm for automatic name placement around point data. American
Cartographer, v. 9, n. 1, p. 5-17, 1982.

3. Lorena, L.A.N.; Furtado J.C. Constructive genetic algorithm for clustering problems.
Evolutionary Computation. 9(3):309-327. 2001.

4. Oliveira A.C.M.; Lorena L.A.N. A Constructive Genetic Algorithm for Gate Matrix
Layout Problems. IEEE Transactions on Computer-Aided Designed of Integrated
Circuits and Systems. Vol. 21, No. 8, pp. 969-974, 2002.

5. Oliveira, A.C.M.; Lorena, L.A.N. 2-Opt Population Training for Minimization of Open
Stack Problem. Advances in Artificial Intelligence - XVI Brazilian Symposium on
Artificial Intelligence. G. Bittencourt and G. L. Ramalho (Eds).LNAI 2507. Springer.
pp.313-323. Porto de Galinhas/Recife. 2002.

6. Strijk, T.; Verweij, B.; Aardal, K. Algorithms for Maximum Independent Set Applied to
Map Labeling. September, 2000. 42p. Available at
ftp://ftp.cs.uu.nl/pub/RUU/CS/techreps/CS-2000/2000-22.ps.gz

7. Verner, O. V.; Wainwright, R. L.; Schoenefeld, D. A. Placing text labels on maps and
diagrams using genetic algorithms with masking. INFORMS J. on Computing, v. 9, p.
266-275, 1997.

8. Wolff, A.; Strijk, T. A Map Labeling Bibliography.
http://www.math-inf.uni-greifswald.de/map-labeling/bibliography/, 1996.

9. Yamamoto, M., Camara, G. and Lorena, L. A. N. Tabu search heuristic for point-feature
cartographic label placement. GeoInformatica. Kluwer Academic Publisher,

Kyoto, Japan, August 25–28, 2003

ftp://ftp.cs.uu.nl/pub/RUU/CS/techreps/CS-2000/2000-22.ps.gz
http://www.math-inf.uni-greifswald.de/map-labeling/bibliography/

MIC2003: The Fifth Metaheuristics International Conference 84-7

 Kyoto, Japan, August 25–28, 2003

Netherlands, 6:1, 77-90, 2002.

10. Zoraster, S. The solution of large 0-1 integer programming problems encountered in
automated cartography. Operations Research, v. 38, n. 5, p. 752-759, Sept.-Oct. 1990.

N 100 250 500 750 1000
Initial population size 30 75 150 200 300

k 0.01 0.01 0.01 0.01 0.01
l 0.00001 0.00001 0.00001 0.00001 0.00001

Offspring 30 30 30 30 30
Number of generations 25 25 25 25 25

d 0.2 0.2 0.2 0.2 0.2
Number of # (initial population) 1 2 10 30 70

% of sub-population Base 15% 15% 15% 15% 15%

Table 1: CGA parameters.

Algorithm 100 250 500 750 1000
CGA-best 100.00 100.00 99.6 97.1 90.7

CGA-average 100.00 100.00 99.6 96.8 90.4
Tabu search [9] 100.00 100.00 99.2 96.8 90.00

GA with masking [7] 100.00 99.98 98.79 95.99 88.96
GA [7] 100.00 98.40 92.59 82.38 65.70

Simulated Annealing [1] 100.00 99.90 98.30 92.30 82.09
Zoraster [10] 100.00 99.79 96.21 79.78 53.06

Hirsch [2] 100.00 99.58 95.70 82.04 60.24
3-Opt Gradient Descent [1] 100.00 99.76 97.34 89.44 77.83
2-Opt Gradient Descent [1] 100.00 99.36 95.62 85.60 73.37

Gradient Descent [1] 98.64 95.47 86.46 72.40 58.29
Greedy [1] 95.12 88.82 75.15 58.57 43.41

Table 2: Computational results.

Algorithm 100 250 500 750 1000

CGA-best 0 0.6 21.5 228.9 1227.2
CGA-average 0 0.6 21.5 195.9 981.8

Tabu search [9] 0 0 1.3 76.0 352.9

Table 3 – Computational times to reach the best solutions

