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1 Introduction  
 
Cartographic label placement refers to the text insertion process in maps and is one of the most 
challenging problems in geoprocessing and automated cartography [8]. Positioning the texts 
requires that overlap among texts be avoided, that cartographic conventions and preference be 
obeyed, that unambiguous association be achieved between each text and its corresponding 
feature and that a high level of harmony and quality be achieved. In this article we are concerned 
with the placement of labels for point features, approaching the problem from a combinatorial 
optimization viewpoint. 
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Figure 1: Two points – potential label positions and corresponding conflict graph 
 
 
The Point-Feature Cartographic Label Placement (PFCLP) problem considers potential label 
positions for each point feature, which will be considered as candidates. Figure 1 shows two 
points with a set of four potential label positions and the corresponding conflict graph. The 
PFCLP considers the placement of all labels searching for the large subset of labels with no 
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conflict. A related but different problem appears when label selection is permitted, and in that case 
the problem searches the maximum vertex independent set on the conflict graph [6].   

 
Several heuristics and metaheuristics have been used to solve the PFCLP problem, such as greedy 
algorithms, discrete gradient descent, Hirsch's algorithm [2], Lagrangean relaxation [10], 
Simulated Annealing and others. They are reviewed by [1]. A Genetic Algorithm (GA) with mask 
is described in [7] and [9] presented a Tabu Search algorithm presenting better results in label 
placement quality than other methods.  
 
This paper describes the application of a Constructive Genetic Algorithm (CGA) to PFCLP. The 
CGA was recently proposed by Lorena and Furtado [3] and applied to Gate Matrix Layout 
Problems [4, 5]. Basically it differs from other GAs for evaluating schemata directly. It also has a 
number of new features compared to a traditional GA. These include a population of dynamic size 
composed of schemata and structures, and the possibility of using heuristics in structure 
representation and in the fitness function definitions.  
 
The paper is organized as follows. Section 2 presents a pseudo-code for the CGA and starts to 
describe aspects of modeling for schema and structure representations and the consideration of 
the PFCLP as a bi-objective optimization problem. Section 3 describes the some CGA operators, 
namely, selection and recombination. Section 4 shows computational results using instances 
formed by standard sets of randomly generated points suggested in the literature.  

 

2  CGA Modeling for PFCLP 
 
The CGA is usually modeled as a bi-objective optimization problem indirectly solved by an 
evolutionary process.  
 
Let X be the space of all schemata and structures sk = (label or #, label or #, …, label or #),  that 
can be created using the alphabet {label, #}, where label can be any corresponding point label (in 
Figure 1: L1, …, L8), and # is an indetermination typical of schemata. The PFCLP is modeled 
using two fitness functions. Function  f  returns the number of conflict free labels in sk and  g  
returns the corresponding number after a local search in sk.  The variation (g(sk) – f(sk)) reflects 
the local search improvement and schemata have lower absolute values than structures (schemata 
instantiations). 
 
The population is controlled by an evolution parameter (time) α , receiving small increments from 
generation to generation. The corresponding population is denoted by  Pα , and have a number of 
schemata and structures, ranked by the following expression 
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gmax ≠ g(sk), where  gmax is  the total  number of  points and  0 < d ≤ 0.2. It is dynamic in size 
controlled by α , and can be emptied during the process. At the time they are created, structures 
and/or schemata receive their corresponding rank value δ(sk), that are compared with the current 
evolution parameter α (α > δ(sk) ?). Better schemata or structures have high ranks, reflected by 
small variations (g(sk) – f(sk)) and/or greater g(sk) values. In this sense better individuals are those 
trained by the local search heuristic and have large number of conflict free labels.  
 
The algorithm implemented in this work is showed as follows.  
 
CGA  { Constructive Genetic Algorithm } 
 Given  gmax , d and α;    
 Initialize Pα ;          
 for all  sk ∈ Pα  compute g(sk), f(sk), δ(sk);  
 while (not stop condition) do 
  while (number of recombination) do 
   Select sbase and sguide from Pα ; 
   Recombine sbase and sguide;     
   Evaluate Offspring;       
   Update Offspring in Pα+1;     
  end_while 
  for all  sk ∈ Pα  satisfying  α > δ(sk) do 
   Eliminate sk from Pα ; 
  end_for 

if sbase is a schema then 
   Change the #s to labels giving  sbase-struct; 
   Evaluate sbase-struct;    

end_if 
update α ; 

 end_while 
 
The best g(sk) is kept in the process. The initial population, selection, transforming a schema base 
in structure (sbase-filled), recombination, α updating and the local search heuristic are detailed in the 
following.  
  

 

3  CGA operators  
 
The initial population is composed exclusively of schemata, considering that for each schema, a 
proportion of random positions receive a unique label number. The remaining positions receive 

  Kyoto, Japan, August 25–28, 2003 



 
 
84-4                                          MIC2003: The Fifth Metaheuristics International Conference 

labels #. Along the generations, the population increases by addition of new offspring generated 
out of the combination of two schemata.  
 
For selection, the structures and schemata in population Pα are maintained in descending order of 
ranks. Two structures and/or schemata are selected for recombination. The first is called the base 
(sbase) and is randomly selected out of the first positions in Pα, and in general it is a good structure 
or a good schema. The second structure or schema is called the guide (sguide ) and is randomly 
selected out of the total population. The objective of the sguide selection is the conduction of a 
guided modification on sbase. 
 
In the recombination operation, the current labels in corresponding positions are compared. Let 
snew be the new structure or schema (offspring) after recombination.  Structure or schema snew is 
obtained by applying the following operations: 
 
{ Recombination } - Recombination with mask (based in Verner et al. (1997):  

Mbase =  mask of sbase  (0 = conflict, 1 = without conflict, 2 =  #) 
Mguide =  mask of sguide  (0 = conflict, 1 = without conflict, 2 =  #) 
U = 0 or 1 (randomly generated) 
Repeat for each position (j) in structure or schemata representation:  
If Mbase (j)  = 1  then   snew (j)  ←  sbase (j) 
If Mbase (j)  ≠ 1  and   Mguide (j)  = 1   then    snew (j)  ←  sguide (j) 
If Mbase (j)  ≠ 1  and   Mguide (j)  ≠ 1   and   U = 0  then  snew (j)  ←  sguide (j) 
If Mbase (j)  ≠ 1  and   Mguide (j)  ≠ 1   and   U = 1  then  snew (j)  ←  sbase (j) 

 
If  sbase is a schema, it is transformed in structure changing #s by labels. The labels are positioned 
searching small number of extra conflicts.  
 
Considering that the well-adapted individuals need to be preserved for recombination, the 
evolution parameter α is started from the lowest δ value (taken from the bottom of the ranked 
population), and then increases with step proportional to actual population size |Pα|, 
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αα α ||  , where k is a proportionality constant, l is the minimum increment 

allowed, Gr is the remaining number of generations, and (δtop-δbot) is the actual range of values of 
δ. One can observe that the adaptive increment of α is affected by the own environment 
(population size, best and worst δ's, etc). Thus, once the CGA achieves very good regions and 
does not get to improve the best rank, the parameter α goes eliminating the individuals until the 
population is emptied. 
 
The local search heuristic is used to calculate g(sk) and drives the evolution process to a trained 
population. The heuristic used in this paper is very simple (other sophisticated heuristics can be 
tried). It takes the subset of labeled points in sk (points without #s) and their original potential 
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label conflicts, i. e., a subgraph of the conflict graph. The vertices of the subgraph are then 
considered in non-decreasing order of degrees. The corresponding point receives a label with no 
conflict and the subgraph is updated eliminating this label (vertex) and their incident vertices and 
edges. The process is then repeated until no more labels to place.  

 

 

4  Computational results  
 
Christensen et al. [1], Verner et al. [7] and Yamamoto et al. [9] compared several algorithms using 
standard sets of randomly generated points: grid size of 792 by 612 units, fixed size label of 30 by 
7 units and page size of 11 by 8.5 inch. In order to compare the CGA algorithm with previous 
work, we used the standard sets of randomly generated points and simulated the same conditions 
as described by [1] and followed the same assumptions as [7] (the instances used in this paper are 
available at www.lac.inpe.br/~lorena/instancias): 
 
• Number of the points: N = 100, 250, 500, 750, 1000; 
• For each problem size, we generated 25 different configurations with random placement of 

point feature using different seeds; 
• For each problem size, we calculated the average percentage of labels placed without conflict 

of the 25 trials;  
• No penalty was attributed for labels that extended beyond the boundary of the region; 
• 4 potential label positions were considered; 
• Cartographic preferences were not taken into account; 
• No point selection was allowed (i.e., no points are removed even if avoiding superposition is 

inevitable); 
• The parameters used for CGA are presented in Table 1. 
 
Regarding the optimization algorithms of the literature, the CGA showed superior results in 
quality of label placement. Table 2 shows the percentage of labels placed without conflict for 100, 
250, 500, 750 and 1000 points,  considering different algorithms of the literature. The CGA-average 
reports the average result for 6 trials and CGA-best is the best result. The lines show the percentage 
of labels placed without conflict by the optimization algorithms tested on [1] (greedy-depth first, 
gradient descent, 2-opt gradient descent, 3-opt gradient descent, Hirsch, Zoraster and simulated 
annealing), [7] (GA without masking and GA with masking), on Yamamoto [9] (Tabu search) and 
the CGA.  
 
Table 3 compares the Tabu search of [9], CGA-best and CGA-average running times to obtain the best 
solutions (using a Pentium III computer). The Tabu search approach is faster than CGA. 
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5  Conclusion  
 
This work has proposed and evaluated a CGA applied to the PFCLP problem. By using a standard 
set of randomly generated points and the same conditions described by [1], [7] and [9], we have 
shown that CGA has better results in label placement quality than other methods published in the 
literature. 
 
Acknowledgments: The second author acknowledges Conselho Nacional de Desenvolvimento 
Científico e Tecnológico - CNPq (process 300837/89-5) for partial financial research support.  
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N 100 250 500 750 1000 
Initial population size 30 75 150 200 300 

k 0.01 0.01 0.01 0.01 0.01 
l 0.00001 0.00001 0.00001 0.00001 0.00001

Offspring 30 30 30 30 30 
Number of generations 25 25 25 25 25 

d 0.2 0.2 0.2 0.2 0.2 
Number of # (initial population) 1 2 10 30 70 

% of sub-population Base 15% 15% 15% 15% 15% 
 

Table 1: CGA parameters. 
 

Algorithm 100 250 500 750 1000 
CGA-best 100.00 100.00 99.6 97.1 90.7 

CGA-average 100.00 100.00 99.6 96.8 90.4 
Tabu search [9] 100.00 100.00 99.2 96.8 90.00 

GA with masking [7] 100.00 99.98 98.79 95.99 88.96 
GA [7] 100.00 98.40 92.59 82.38 65.70 

Simulated Annealing [1] 100.00 99.90 98.30 92.30 82.09 
Zoraster [10] 100.00 99.79 96.21 79.78 53.06 

Hirsch [2] 100.00 99.58 95.70 82.04 60.24 
3-Opt Gradient Descent [1] 100.00 99.76 97.34 89.44 77.83 
2-Opt Gradient Descent [1] 100.00 99.36 95.62 85.60 73.37 

Gradient Descent [1] 98.64 95.47 86.46 72.40 58.29 
Greedy [1] 95.12 88.82 75.15 58.57 43.41 

 
Table 2: Computational results. 

 
Algorithm 100 250 500 750 1000 

CGA-best 0 0.6 21.5 228.9 1227.2 
CGA-average 0 0.6 21.5 195.9 981.8 

Tabu search [9] 0 0 1.3 76.0 352.9 
 

Table 3 – Computational times to reach the best solutions 


