
Chapter 13

A CONSTRUCTIVE GENETIC APPROACH TO
POINT-FEATURE CARTOGRAPHIC LABEL
PLACEMENT

Missae Yamamoto1 and Luiz A.N. Lorena2

INPE – Instituto Nacional de Pesquisas Espaciais
Caixa Postal 515
12.245-970 São José dos Campos – SP, Brazil
1 missae@dpi.inpe.br
2 lorena@lac.inpe.br

Abstract: The cartographic label placement is an important task in automated cartography
and Geographical Information Systems (GIS). Positioning the texts requires that overlap
among texts be avoided, that cartographic conventions and preference be obeyed. So, the label
placement belongs to a problem area of difficult solution. A variety of methods have been
proposed to generate quality labeling, with a wide range of results. In this work, two methods
are presented, a Constructive Genetic Algorithm (CGA) and an initial exact method for small
instances. The CGA application produced quality-labeling placements for printed maps, and
the exact method is used to confirm the superiority of these results.

Key words: Constructive genetic algorithm, point-feature cartographic label placement,
genetic algorithm and exact algorithm.

13.1 INTRODUCTION

Cartographic label placement refers to the text insertion process in maps
and is one of the most challenging problems in geoprocessing and automated
cartography [12]. Positioning the texts requires that overlap among texts be
avoided, that cartographic conventions and preferences be obeyed, that
unambiguous association be achieved between each text and its
corresponding feature and that a high level of harmony and quality be
achieved. In this article we are concerned with the placement of labels for

286 Metaheuristics: Progress as Real Problem Solvers

point features, approaching the problem from a combinatorial optimization
viewpoint.

Figure 13.1. Two points – potential label positions and corresponding conflict graph

The Point-Feature Cartographic Label Placement (PFCLP) problem

considers potential label positions for each point feature, which will be
considered as candidates. Figure 13.1 shows two points with a set of four
potential label positions and the corresponding conflict graph, where vertices
correspond to labels and edges to possible overlapping in labels. The PFCLP
considers the placement of all labels searching for the large subset of labels
with no conflict. A related but different problem appears when label
selection is permitted and a subset of points are not labeled (cannot be
labeled without conflicts). In that case the problem searches the maximum
independent set of vertices on the conflict graph [10].

Several heuristics and metaheuristics have been used to approximately
solve the PFCLP problem. They are partially reviewed by Christensen et al.
[1]. The algorithms included a version of Zoraster's integer programming
algorithm (Lagrangean relaxation) [14], a version of Hirsch's continuous
gradient-descent algorithm [3], a discrete gradient-descent algorithm, and a
stochastic optimization algorithm using simulated annealing. A Genetic
Algorithm (GA) with mask is described in [11] and [13] presented a Tabu
Search algorithm showing better results in label placement quality than all
these other methods.

This work describes the application of a Constructive Genetic Algorithm
(CGA) to PFCLP. The CGA was proposed by Lorena and Furtado [4] and
applied to timetabling [9] and Gate Matrix Layout Problems [7, 8]. Basically
it differs from other GAs for evaluating schemata directly. It also has a
number of new features compared to a traditional GA. These include a
population of dynamic size composed of schemata and structures, and the
possibility of using heuristics in the fitness function definitions.

L1L2

L3

L8

L6

L7

L5

L4

L8L7

L6 L5

L4L3

L2 L1

Genetic approach to point-feature cartographic label placement 287

A simple tree search algorithm is also proposed to validate the CGA
computational results on small-scale instances.

The work is organized as follows. Section 13.2 presents a pseudo-code
for the CGA and describes aspects of modeling for schema and structure
representations and the consideration of the PFCLP as a bi-objective
optimization problem. Section 13.3 describes some CGA operators, namely,
selection, recombination and mutation. Section 13.4 shows computational
results using instances formed by standard sets of randomly generated points
suggested in the literature. Section 13.5 presents the exact algorithm with
some computational results showed in the section 13.6.

13.2 CGA MODELING FOR PFCLP

The CGA for PFCLP is modeled as a bi-objective optimization problem
indirectly solved by an evolutionary process. We first describe the structure
and schemata representation.

Structure and schema representation: The CGA operates as an iterative
procedure on a population or pool of individuals. The individuals represent
an encoding of the problem into a form that is analogous to the
chromosomes of biological systems. Each chromosome is made up of a
string of genes, whose values are called alleles. In PFCLP, each individual or
chromosome represents a label distribution configuration for a given point
set, where each allele in the chromosome corresponds to a point feature label
and may take on one of the potential label position or the symbol #,
indicating that the point is temporarily out of the problem. So, if we use a
chromosome (individual) with length 10, sk = (1, 4, #, #, 1, 3, 2, 1, #, 2) is a
possible schema, where the numbers 1, 2, 3, 4, refer to the potential label
positions for each point feature (four potential positions) and the symbol #
represents that the corresponding point is temporarily not being considered.
The structures represent feasible solutions to PFCLP. All labels are
positioned and the symbol # is not present in the individual, for example, sk
= (1, 4, 2, 1, 1, 3, 2, 1, 4, 2) is a possible structure.

So, the CGA evaluate structures and parts of it, called schemata. In this
work we use the word individual as a generic term to cover both structure
and schema.

Fitness functions: Let X be the space of all schemata and structures sk =
(label or #, label or #, …, label or #), that can be created using the alphabet
{label, #}, where label can be any corresponding point label (in Figure 13.1:
L1, …, L8), and # is an indetermination typical of schemata.

The PFCLP is modeled using two fitness functions. Function f returns
the number of conflict free labels in sk and g returns the corresponding

288 Metaheuristics: Progress as Real Problem Solvers

number after an heuristic application in sk. The variation (g(sk) – f(sk))
reflects the local search improvement and individuals with few # labels have
higher g(sk) values (schemata have lower g(sk) values than structures).

In our CGA for the PFCLP the variation (g(sk) – f(sk)) plays two roles:
• Interval minimization: we would like to search for a sk ∈ X that

minimizes g(sk) – f(sk), since the response to the evolutionary
search is given on a very adapted individuals that have a large
number of conflict free labels.

• G maximization: we would like to search for a sk ∈ X that
maximizes g(sk), since we need to ensure feasibility. A
individual that has very few labels assigned (it is a schema in
which most points are labeled #) will not be a feasible solution
to the PFCLP. This objective can be viewed as encouraging the
process to move from schemata to structures (feasible solutions).

Hence our CGA implicitly considers the following bi-objective

optimization problem (BOP):

 Minimize g(s) – f(s)
 Maximize g(s)
 Subject to g(s) ≥ f(s), ∀s ∈ X.

The BOP defined above is not directly considered as the set X is not

completely known. Instead we consider an evolution process to attain the
objectives (interval minimisation and g maximization) of the BOP.

At the beginning of the process, two expected values are given to these
objectives:
• for the g maximization objective we use a value gmax ≥ maxs∈X g(s) that is

an upper bound on the objective value,
• for the interval minimization objective we use a value dgmax, obtained

from gmax using a real number 0 < d ≤ 1.
The evolution process proceeds using an adaptive rejection threshold,

which considers both objectives described before. Given a parameter α ≥ 0,
let gmax be the total number of labels, then an individual sk is discarded from
the population if:

)]([..)()(maxmax kkk sggdgdsfsg −−≥− α (13.1)

The right-hand side of expression (13.1) is the threshold for individual

removal from the population and is composed of a expected value dgmax
associated with the interval minimization and the measure [gmax – g(sk)],
which is the difference between gmax and g(sk) evaluations. For α = 0

Genetic approach to point-feature cartographic label placement 289

equation (13.1) is equivalent to comparing the interval length associated with
sk against the expected length dgmax. When a α > 0, individuals containing a
high number of # labels (i.e. schemata) have a higher probability of being
discarded as, in general, they have higher differences [gmax - g(sk)] since gmax
is fixed and g(sk) is smaller for schemata than for solutions.

The population is controlled by an evolution parameter (time) α ,
receiving small increments from generation to generation. The
corresponding population is denoted by Pα , and have a number of schemata
and structures, ranked by the following expression (rearranging equation
(13.1)):

)]([
)]()([)(

max

max

k

kk
k sggd

sfsggds
−

−−⋅
=δ , (13.2)

where gmax ≠ g(sk) (in general, otherwise an optimal solution was found, i.
e., all labels positioned without conflicts), considering one label for each
point of the configuration.

The size of population is then dynamically controlled by α , and can be
emptied during the evolution process. At the time they are created, structures
and/or schemata snew receive a rank value δ(snew), which is compared with the
current evolution parameter α. If α < δ(snew), the new individual is accepted.
At each generation this survival test is also applied to the individuals in the
current population. Expression (13.2) shows that better schemata or
structures have high ranks, reflected by small variations (g(sk) – f(sk)) and/or
greater g(sk) values. In this sense better individuals are those trained by the
heuristic and have a large number of conflict free labels.

The algorithm implemented in this work is showed as follows.
CGA { Constructive Genetic Algorithm }
 Given gmax , d and α = 0;
 Initialize Pα ;
 for all sk ∈ Pα compute g(sk), f(sk), δ(sk);
 while (not stop condition) do
 If α < δ(sk), add sk to Pα+1, for all sk ∈ Pα ;
 Define the selection of sbase and sguide ;
 while (number of recombinations) do

Select sbase and sguide from Pα ;
 Recombine sbase and sguide → snew ;
 Apply local search heuristic (mutation) to snew ;
 Compute g(snew), f(snew), δ(snew);

290 Metaheuristics: Progress as Real Problem Solvers

 If α < δ(snew), add snew to Pα+1;
 end_while

Do sbase mutation and keep the best solution;
Update α ;

 end_while

The best g(sk) is kept in the process, because it can be a good potential

solution. The initial population, selection, recombination, mutation, the α
updating and the heuristics used to calculate g(sk) and the local search
heuristic, are all detailed in the following.

13.3 CGA OPERATORS

The initial population is composed exclusively of schemata, considering
that for each schema, a proportion of random positions receive a label
number. The remaining positions receive labels #. Along the generations, the
population increases by addition of new offspring generated out of the
combination of two schemata.

For selection, the structures and schemata in population Pα are maintained
in ascending order by the key: [1 + [(g(sk) – f(sk)) /g(sk)]] / η(sk) , where
η(sk) is the number of points labeled in sk . The best-ranked individuals
(schemata and/or structures) appear in first order positions.

Two structures and/or schemata are selected for recombination. The first
is called the base (sbase) and is randomly selected out of the first positions in
Pα, and in general it is a good structure or a good schema. The second
structure or schema is called the guide (sguide) and is randomly selected out
of the total population. The objective of the sguide selection is the conduction
of a guided modification on sbase.

In the recombination operation, the current labels in corresponding
positions are compared. Let snew be the new structure or schema (offspring)
after recombination. The structure or schema snew is obtained by applying a
recombination with mask based in Verner et al. [11]:

Mbase = mask of sbase (0 = conflict, 1 = without conflict, 2 = #)
Mguide = mask of sguide (0 = conflict, 1 = without conflict, 2 = #)
U = 0 or 1 (randomly generated)
Repeat for each position (j) in structure or schema representation:
If Mbase (j) = 1 then snew (j) ← sbase (j)
If Mbase (j) ≠ 1 and Mguide (j) = 1 then snew (j) ← sguide (j)
If Mbase (j) ≠ 1 and Mguide (j) ≠ 1 and U = 0

Genetic approach to point-feature cartographic label placement 291

 then snew (j) ← sguide (j)
If Mbase (j) ≠ 1 and Mguide (j) ≠ 1 and U = 1

 then snew (j) ← sbase (j)

The mutation operation applies a simple local search heuristic to snew or

to sbase. If sbase is a schema, it is initially transformed in structure changing #s
by labels. The labels are positioned searching for a small number of extra
conflicts. The new individuals snew and these new structures obtained directly
from sbase, are then improved by a local search heuristic that tries to change
each conflicted label by a conflict free position. Computational tests showed
that 5 replications reached good results with reasonable processing times,
then the local search heuristic is recursively applied five times to improve
structure quality. The best solution is kept in the process, but the mutants are
not inserted into the new population.

Considering that the well-adapted individuals need to be preserved for
recombination, the evolution parameter α is started with zero, and Oliveira
and Lorena [7] suggest to increase it with step proportional to actual
population size |Pα|, following this formula:

l
Gr

Pk bottop +
−

⋅⋅+=
δδ

αα α || (13.3)

where, k is a proportionality constant, l is the minimum increment
allowed, Gr is the remaining number of generations, and (δtop-δbot) is the
actual range of values of δ. The adaptive increment of α is then affected by
the search history (population size, best and worst δ's, etc). Thus, once the
CGA achieves very good regions and does not get to improve the best rank,
the parameter α goes eliminating the individuals until the population is
emptied.

To calculated the g(sk), a recursive smallest first (RSF) heuristic is used
and drives the evolution process to a trained population. The RSF is very
simple (other sophisticated heuristics can be tried). It takes the subset of
labeled points in sk (points without #s) and their original potential label
conflicts, i. e., a subgraph of the conflict graph. The vertices of the subgraph
are then considered in non-decreasing order of degrees. The corresponding
point receives a label with no conflict and the subgraph is updated
eliminating this label (vertex) and their incident vertices and edges. The
process is then repeated until no more labels to place.

The local search heuristic (mutation) produces smaller changes to
individuals than the RSF and is also used to calculate the g(sk) on the initial
population. It allows the initial individuals to survive in the next generation,
since they will have high ranks. The heuristic looks points without #s in

292 Metaheuristics: Progress as Real Problem Solvers

natural order at each position in structure or schemata representation and
changes the label if the corresponding number of conflicts results to be
smaller.

13.4 CGA COMPUTATIONAL RESULTS

Christensen et al. [1], Verner et al. [11] and Yamamoto et al. [13]
compared several algorithms using standard sets of randomly generated
points: grid size of 792 by 612 units, fixed size label of 30 by 7 units and
page size of 11 by 8.5 inch.

In order to compare the CGA algorithm with previous works, the
standard sets of randomly generated points and the same conditions as
described by [1] are used, following the same assumptions as [11]. The set of
instances has the following characteristics (all the instances used in this
paper are available at www.lac.inpe.br/~lorena/instancias.html):
a) Number of the points: N = 100, 250, 500, 750, 1000;
b) Configurations: For each problem size, 25 different configurations with

random placement of point feature using different seeds;
c) Penalties: No penalty was attributed for labels that extended beyond the

boundary of the region;
d) 4 potential label positions were considered;
e) Cartographic preferences were not taken into account;
f) No point selection was allowed (i.e., no points are removed even if

avoiding superposition is inevitable);
The parameters used for CGA are presented in Table 13.1. These values

change in accordance with the instance and are determined executing a
preliminary battery of computational tests with different parameters values
until acceptable results were found. The computational results are presented
in Table 13.2. The results, for each problem size, present the average
percentage of labels placed without conflict for the 25 trials.

Table 13.1. CGA parameters

N 100 250 500 750 1000
Initial population size 30 75 150 200 300

k 0.01 0.01 0.01 0.01 0.01
l 0.00001 0.00001 0.00001 0.00001 0.00001

Offspring 30 30 30 30 30
Number of generations 25 25 25 25 25

d 0.2 0.2 0.2 0.2 0.2
Number of # (initial population) 1 2 10 30 70

% of sub-population Base 15% 15% 15% 15% 15%

Genetic approach to point-feature cartographic label placement 293

Table 13.2. Computational results

Algorithm 100 250 500 750 1000

CGAbest 100.00 100.00 99.6 97.1 90.7

CGAaverage 100.00 100.00 99.6 96.8 90.4

Tabu search [13] 100.00 100.00 99.2 96.8 90.00

GA with masking [11] 100.00 99.98 98.79 95.99 88.96

GA [11] 100.00 98.40 92.59 82.38 65.70

Simulated Annealing [1] 100.00 99.90 98.30 92.30 82.09

Zoraster [14] 100.00 99.79 96.21 79.78 53.06

Hirsch [3] 100.00 99.58 95.70 82.04 60.24

3-Opt Gradient Descent [1] 100.00 99.76 97.34 89.44 77.83

2-Opt Gradient Descent [1] 100.00 99.36 95.62 85.60 73.37

Gradient Descent [1] 98.64 95.47 86.46 72.40 58.29

Greedy [1] 95.12 88.82 75.15 58.57 43.41

Regarding the optimization algorithms of the literature, the CGA showed

superior results in quality of label placement. Table 13.2 shows the
percentage of labels placed without conflict for 100, 250, 500, 750 and 1000
points, considering different algorithms of the literature. The CGAaverage
reports the average result for 6 trials and CGAbest is the best result. The lines
show the percentage of labels placed without conflict by the optimization
algorithms tested on [1] (greedy-depth first, gradient descent, 2-opt gradient
descent, 3-opt gradient descent, Hirsch, Zoraster and simulated annealing),
[11] (GA without masking and GA with masking), [13] (Tabu search) and
the CGA.

Figure 13.2 shows a label placement for 1000 points after using our CGA
algorithm.

294 Metaheuristics: Progress as Real Problem Solvers

Figure 13.2. Final results after CGA application for 1000 random points (overlap = 88).

Table 13.3 compares the Tabu search of [13], CGAbest and CGAaverage

running times (seconds) to obtain the best solutions (using a Pentium II
computer). The Tabu search approach is faster than CGA.

Table 13.3. Computational times to reach the best solutions

Algorithm 100 250 500 750 1000

CGAbest 0 0.6 21.5 228.9 1227.2

CGAaverage 0 0.6 21.5 195.9 981.8

Tabu search [13] 0 0 1.3 76.0 352.9

13.5 EXACT ALGORITHM

The label placement is a combinatorial optimization problem of difficult
solution and Marks and Shieber [6] showed that the point features label
placement problem is NP-hard. The PFCLP defined in this paper have the
same characteristics and is also a difficult problem. This section describes an

Genetic approach to point-feature cartographic label placement 295

initial tree search exact algorithm to validate the CGA and Tabu search
results presented and compared in last section.

The exact algorithm to solve PFCLP problem follows the Loukakis and
Tsouros [5] algorithm for maximum independent set problems (see also
Dowsland [2]), adapting the pruning bounds and branching decisions. It
searches the tree in a depth first procedure.

The algorithm implemented in this work is showed as follows.
Exact algorithm
Given:
 n number of points

S := {} set of active label positions (solution)
 V set of all potential label positions
 M number of labels without conflicts (CGA estimative)
 P= {P1, P2,…,Pn} set of points in ascending order of vertices

degrees
While |S | ≠ n do
 Choose from V a label of point Pi and add it to S
 Compute nc (number of labels with conflicts in S)
 Compute nsc (number of labels without conflicts in S)
 If (nsc > M) then M := nsc

Verify future (number of points unlabeled that have candidate
label positions without conflict with active labels of S)

 If (nsc + future ≤ M) or (nc > n-M) execute pruning
end_while

The point ordination, labels choice, future verification, pruning and

branching, are detailed in the following.
The point ordination refers to the sequence that the points are labeled.

This sequence is set up in ascending order of vertices degrees, where vertices
are the potential label positions of all points, and vertex degree refers to the
number of conflicts of the potential label position.

The labels choice is doing in ascending order of the point potential label
positions cost. The algorithm places each label position for points in a
prescribed order. If, as the algorithm proceeds, a point cannot be labeled
(either because the number of conflicts exceeded an established boundary, or
the sum of the number of labels positioned without conflicts and the number
of labels without conflicts that can be positioned in future is smaller than the
CGA estimative of number of labels without conflicts), the algorithm returns
to the most recently labeled point and considers the next available position

296 Metaheuristics: Progress as Real Problem Solvers

(known as pruning the tree). The algorithm continues in this way until an
acceptable labeling is identified or until the entire search space has been
exhausted.

For the exact algorithm, pruning in higher tree levels becomes a very
attractive technique, as it reduces the number of the configurations to be
analyzed, taking to a lower processing time.

In the future verification, the algorithm do a foresight, verifying if at least
one potential label position, of the points unlabeled, do not have conflicts
with active labels of the labeled points.

This algorithm is in a very preliminary fashion and can be improved in
some ways, as for example, in pre-processing the initial conflict graph. If a
mathematical programming formulation was available, upper bounds
(Lagrangean for example) could be useful.

13.6 EXACT ALGORITHM RESULTS

The computational tests presented in Table 13.2 show that for the
standard set of randomly generated points (grid size of 792 by 612 units,
fixed size label of 30 by 7 units and page size of 11 by 8.5 inch) the difficult
instances have 750 and 1000 points. It appears that positioning all labels will
be impossible for these instances, particularly for the 1000 points. Then in
order to approximately get the 1000 points configuration difficulty, we
generate 8 different configurations with random placement of 25 point
features using different seeds. The same region size and the same paper size
suggested for Christensen et al. [1] is used, but the label sizes increased of
8.5%. The rest of conditions were remaining: no penalty was attributed for
labels that extended beyond the boundary of the region, 4 potential label
positions were considered, cartographic preferences were not taken into
account and no point selection was allowed. The instances used in this paper
are also available at www.lac.inpe.br/~lorena/instancias.html.

The exact algorithm, implemented in C++ language, was applied to these
instances and the results (average over 8 trials) are recorded in Table 13.4, as
follows:

Genetic approach to point-feature cartographic label placement 297

Table 13.4. Results from Exact Algorithm

Configuration Time (sec) Overlapping
labels

Not
overlapping

labels

Results (%)

1 681 2 23 92

2 876 3 22 88

3 864 3 22 88

4 1495 7 18 72

5 749 3 22 88

6 572 4 21 84

7 1726 7 18 72

8 2061 4 21 84

Results (average) 1128 4.125 20.875 83.5

Where:
a) Configuration: configuration number.
b) Time (sec.): processing time to get exact solution in a SUN – SPARC20

workstation.
c) Overlapping labels: labels placed with conflicts.
d) Not overlapping labels: labels placed without conflict.
e) Results (%): the percentage of labels placed without conflict.
f) Results (average): average of time, overlapping labels, not overlapping

labels and results (%).
The CGA and TS (Tabu search of Yamamoto et al. [13]) results are

compared with the exact solution, using this set of points.
The parameters used for TS are (see Yamamoto et al. [13]):

a) Tabu list size = 7 + INT(0.25 * number of labels that overlap).
b) Candidate list size = 1 + INT(0.05 * number of labels that overlap).
c) Number of iterations for recalculation = 50.

The parameters used for CGA are:
a) Initial population size: 500.
b) K: 0.00005.
c) l: 0.0001.
d) Offspring: 500.
e) Number of generations: 100.
f) d: 0.9
g) Number of # (initial population): 13.
h) % of sub-population Base: 15%.

Both TS and CGA algorithms showed results equal or very close to the
exact solution for the 8 configurations. The CGA approach resulted to be
better than TS. Table 13.5 shows the labels placed without conflict and

298 Metaheuristics: Progress as Real Problem Solvers

percentage of labels placed without conflict for the exact algorithm, TS and
CGA. The CGAaverage reports the average result for 6 trials and CGAbest is
the best result.

Table 13.5. Comparison of TS, CGA and Exact Algorithm (labels placed without conflict)

 Exact algorithm Tabu search CGAaverage CGAbest

Config Res % Res % Res % Res %

1 23 92 22 88 23 92 23 92

2 22 88 22 88 22 88 22 88

3 22 88 21 84 21 84 21 84

4 18 72 18 72 18 72 18 72

5 22 88 19 76 20.5 82 22 88

6 21 84 21 84 20 80 20 80

7 18 72 17 68 16 64 16 64

8 21 84 21 84 21 84 21 84

Average 20.875 83.5 20.125 80.5 20.1875 80.75 20.375 81.5

Where:
a) Config.: configuration number.
b) Res: labels placed without conflict.
c) %: percentage of labels placed without conflict.
d) Results (average): average of not overlapping labels and percentage of

labels placed without conflict, for exact algorithm, TS and CGA.
The CGA and TS algorithms were tested on a Pentium II computer, and

exact algorithm on a SUN – SPARC20 workstation, and therefore processing
times are not comparables, but the workstation was necessary to accelerate
the exact algorithm computer times.

13.7 CONCLUSION

This work has proposed and evaluated a CGA applied to the PFCLP
problem. By using a standard set of randomly generated points and the same
conditions described by [1], [11] and [13], the CGA showed better results in
label placement quality than other methods published in the literature.

The exact algorithm proposed in this work labels all points even if some
of them present conflicts. The algorithm tries to reach the exact solution in a
reasonable time, pruning the tree when the known beforehand estimative
(provided from CGA) is better.

The CGA and TS found results very close to exact solutions, and the
CGA has better results in label placement quality than TS. The low density
(in edges) of the conflict graph shows that some improvement can be done in

Genetic approach to point-feature cartographic label placement 299

CGA computer times if the graph is partitioned and solved by a computer-
distributed system.

The CGA can be recommended to solve the automatic cartographic label
placement problem for point features.

ACKNOWLEDGEMENTS

The first author acknowledges Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior (CAPES) for financial support. The second author
acknowledges Conselho Nacional de Desenvolvimento Científico e
Tecnológico - CNPq (process 300837/89-5) for partial financial research
support.

The comments and suggestions of two anonymous referees were very
useful and appreciated.

REFERENCES

1. Chistensen, J.; Marks, J.; Shieber, S. An empirical study of algorithms
for point-feature label placement. ACM Transactions on Graphics, 14
(3): 203-232, 1995.

2. Dowsland, K. A. An exact algorithm for the pallet loading problem.
European Journal of Operational Research, 31(1): 78-84, 1987.

3. Hirsch, S. A. An algorithm for automatic name placement around point
data. American Cartographer, 9(1): 5-17, 1982.

4. Lorena, L.A.N.; Furtado J.C. Constructive genetic algorithm for
clustering problems. Evolutionary Computation. 9(3): 309-327, 2001.

5. Loukakis, E. and Tsouros, C. Determining the number of internal
stability of a graph. International Journal of Computer Mathematics. 11:
207 – 220, 1982.

6. Marks, J.; Shieber, S. The Computational Complexity of Cartographic
Label Placement. TR-05-91, Center for Research in Computing
Technology, Harvard University, 1991.

7. Oliveira A.C.M.; Lorena L.A.N. A Constructive Genetic Algorithm for
Gate Matrix Layout Problems. IEEE Transactions on Computer-Aided
Designed of Integrated Circuits and Systems, 21 (8): 969-974, 2002.

8. Oliveira, A.C.M.; Lorena, L.A.N. 2-Opt Population Training for
Minimization of Open Stack Problem. In Advances in Artificial
Intelligence, G. Bittencourt and G. L. Ramalho (Eds). Springer Lecture
Notes in Artificial Intelligence 2507: 313-323, 2002.

9. Ribeiro Filho, G. and Lorena, L. A. N. "A constructive evolutionary
approach to school timetabling," In Applications of Evolutionary

300 Metaheuristics: Progress as Real Problem Solvers

Computing, Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E.,
Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H., (Eds.). Springer Lecture
Notes in Computer Science vol. 2037, pp. 130-139 - 2001

10. Strijk, T.; Verweij, B.; Aardal, K. Algorithms for Maximum Independent
Set Applied to Map Labeling. September, Technical Report UU-CS-
2000-22, Department of Computer Science, Utrecht University, 2000.
42p. Available at ftp://ftp.cs.uu.nl/pub/RUU/CS/techreps/CS-2000/2000-22.pdf

11. Verner, O. V.; Wainwright, R. L.; Schoenefeld, D. A. Placing text labels
on maps and diagrams using genetic algorithms with masking.
INFORMS J. on Computing, 9: 266-275, 1997.

12. Wolff, A.; Strijk, T. The Map Labeling Bibliography.
http://i11www.ilkd.uni-karlsruhe.de/map-labeling/bibliography/ , 1996.

13. Yamamoto, M., Camara, G. and Lorena, L. A. N. Tabu search heuristic
for point-feature cartographic label placement. GeoInformatica. Kluwer
Academic Publisher, Netherlands, 6(1): 77-90, 2002.

14. Zoraster, S. The solution of large 0-1 integer programming problems
encountered in automated cartography. Operations Research, 38(5):
752-759, 1990.

