
A Constructive Genetic Algorithm for Permutation Flowshop Scheduling

Version 2

Marcelo Seido Nagano*

Department of Industrial Engineering, School of Engineering of São Carlos, University of

São Paulo

Av. Trabalhador Sãocarlense, 400, 13566-590, São Carlos, São Paulo, Brazil

 Rubén Ruiz

Department of Applied Statistics and Operations Research, Polytechnic University of

Valencia

Camino de Vera S/N, 46021, Valencia, Spain

Luiz Antonio Nogueira Lorena

Computer and Applied Mathematics Laboratory, Brazilian Space Research Institute

Av. dos Astronautas, 1758, 12227-010, São José dos Campos, São Paulo, Brazil

* Corresponding author. Tel.: +55-16-3373-9428; Fax: +55-16-3373-9425.

E-mail address: drnagano@usp.br (M.S. Nagano).

Av. Trabalhador Sãocarlense, 400 - Centro

Zip Code: 13566-590

São Carlos - SP/Brazil

A Constructive Genetic Algorithm for Permutation Flowshop Scheduling

Abstract

The general flowshop scheduling problem is a production problem where a set of n jobs

have to be processed with identical flow pattern on m machines. In permutation flowshops

the sequence of jobs is the same on all machines. A significant research effort has been

devoted for sequencing jobs in a flowshop minimizing the makespan. This paper describes

the application of a Constructive Genetic Algorithm (CGA) to makespan minimization on

flowshop scheduling. The CGA was proposed recently as an alternative to traditional GA

approaches, particularly, for evaluating schemata directly. The population initially formed

only by schemata, evolves controlled by recombination to a population of well-adapted

structures (schemata instantiation). The CGA implemented is based on the NEH classic

heuristic and a local search heuristic used to define the fitness functions. The parameters of

the CGA are calibrated using a Design of Experiments (DOE) approach. The computational

results are compared against some other successful algorithms from the literature on

Taillard’s well known standard benchmark. The computational experience shows that this

innovative CGA approach provides competitive results for flowshop scheduling problems.

Keywords: Flowshop, Constructive Genetic Algorithm, Makespan

1. Introduction

The general flowshop scheduling problem is a production problem where a set of n jobs

have to be processed with identical flow pattern on m machines. When the sequence of job

processing on all machines is the same we have the permutation flowshop sequencing

production environment. Since there is no job passing, the number of possible schedules for

n jobs is n!. Usually, the schedule performance measure is related to an efficient resource

utilization looking for a job sequence that minimizes the makespan; that is the total time to

complete the schedule and the problem is then denoted as maxF/P/m/n or as

maxC/prmu/F (Pinedo, 2002).

This scheduling problem is generally modelled on the following assumptions:

i) The operation processing times on the machines are known, fixed and some of them

may be zero if some job is not processed on a machine;

ii) Set-up times are included in the processing times and they are independent of the job

position in the sequence of jobs;

iii) At a time, every job is processed on only one machine, and every machine processes

only one job;

iv) The job operations on the machines may not be preempted.

A significant research effort has been devoted for sequencing jobs in a flowshop with the

objective of finding a sequence that minimizes the makespan. For problems with 2

machines, or 3 machines under specific constraints on job processing times, the efficient

Johnson's algorithm (Johnson, 1954) obtains an optimal solution for the problem. However,

since this scheduling problem is NP-hard (Garey et al., 1976) the search for an optimal

solution is of more theoretical than practical importance. Therefore, since the 1960s a

number of heuristic methods that provide near optimal or good solutions with limited

computation effort have been proposed for flowshop sequencing. The performance of some

earlier heuristics was evaluated by Dannenbring (1977) and King & Spachis (1980).

Heuristic methods can be classified according to two major categories: constructive or

improvement methods. The constructive algorithms obtain directly a solution for the

scheduling problem, i.e. a n-job sequence, by using some procedure which assigns to each

job a priority or an index in order to construct the solution sequence (see for example,

Palmer, 1965; Campbell et al., 1970; Gupta, 1971; Dannenbring, 1977; Nawaz et al., 1983;

Koulamas, 1998; Davoud Pour, 2001; Nagano & Moccellin, 2002; Kalczynski &

Kamburowski, 2007). An improvement method starts from a given initial solution, and

looks for a better one normally by using some neighbourhood search procedure.

Metaheuristics can also be considered as improvement heuristics. Within this type of

techniques we find genetic algorithms (GAs), simulated annealing (SA), tabu search (TS)

and other procedures or hybrid methods.

The first proposed metaheuristics for the permutation flowshop scheduling problem (PFSP)

are the simulated annealing algorithms by Osman & Potts (1989) and Ogbu & Smith

(1990). Widmer & Hertz (1989), Taillard (1990), Reeves (1993) and Nowicki & Smutnicki

(1996) demonstrated different tabu search approaches. Other algorithms are the path-based

method of Werner (1993) or the iterated local search (ILS) of Stützle (1998). Recently,

Rajendran & Ziegler (2004) have proposed two very effective ant-colony optimization

(ACO) algorithms and Grabowski & Wodecki (2004) a very fast TS approach. Ruiz &

Maroto (2005) give an updated and comprehensive review of flowshop heuristics and

metaheuristics. Another recent review is given by Hejazi & Saghafian (2005).

We focus now on work dealing with GAs and the PFSP. A genetic algorithm is a

computerized iterative search optimization technique. It is based on the mechanics of

natural selection and natural genetics. This deals with the population of solution rather than

with a single solution. This type of algorithms provide near optimal schedules. The

optimum value depends on the operators like crossover, mutation, number of iterations

(‘generations’), etc. In every generation, a new set of artificial individuals (strings) is

created. This algorithm combines survival of the fittest among string structures.

This paper describes the application of a Constructive Genetic Algorithm (CGA) to the

PFSP. The CGA has a number of new features compared to a traditional genetic algorithm.

These include a population of dynamic size composed of schemata and structures, and the

possibility of using heuristics in structure representation and in the fitness function

definitions.

The CGA is compared against some other successful algorithms from the literature on

Taillard (1993) well known standard benchmark, composed of 120 different problem

instances ranging from 20 jobs and 5 machines to 500 jobs and 20 machines. This

benchmark contains some instances that have proved to be very difficult to solve in the past

10 years.

The rest of paper is organized as follows: Section 2 presents an overview of the existing

genetic algorithms for the PFSP that are available from the literature. Section 3 describes in

detail the new proposed genetic algorithm (CGA). An extensive comparison of CGA

against some other successful algorithms from the literature is given in Section 4. Finally,

in Section 5 we provide some conclusions about the study, along with some future research

directions.

2. Genetic Algorithm for the PFSP

Flowshop scheduling is one of the most well-known problems in the area of scheduling.

Various approaches to this problem have been proposed since the pioneering work of

Johnson (1954). GAs have been applied to combinatorial optimization problems such as the

traveling salesman problem and scheduling problems (see for example, Fox & McMahon,

1991; Ishibushi et al., 1994).

One of the earliest GAs for the PFSP was proposed by Chen et al. (1995). The initial

population in this algorithm is generated by using several heuristic rules. The first 1m−

population members are generated by the 1m− sequences obtained after applying the CDS

heuristic of Campbell et al., (1970), the mth member is obtained from the rapid access

(RA) heuristic of Dannenbring. The remaining members are generated from simple job

exchanges of the already generated sequences. Only crossover is applied, there is no

mutation. The crossover operator used is the partially mapped crossover (PMX) by

Goldberg & Ling (1985). Reeves (1995) also proposed a GA. This algorithm uses a

different generational scheme, called “termination with prejudice” in which the offspring

generated after each mating do not replace the parents but members of the population with

a fitness value below average. The algorithm uses a C1 crossover, essentially similar to the

one-point order crossover. Another remarkable feature of the algorithm is the adaptive

mutation used. Reeves’ algorithm also initializes the population by using heuristics. In this

case, one of the population members is generated by applying the NEH heuristic. Murata et

al. (1996) proposed a hybrid GA with a two-point order crossover, a shift mutation and

elitism strategy. The algorithm is hybridized with local search, which resulted in a clear

performance gain over a non-hybrid version. Another hybrid GA is that of Reeves &

Yamada (1998). In this case a special crossover, called multi-step crossover fusion or

MSXF is used, coalescing a typical crossover operator with local search. Ponnambalam et

al. (2001) valuate a GA with a generalized position crossover or GPX crossover, a shift

mutation and random population initialization. Aldowaisan & Allahverdi (2003) have

proposed a simple yet effective GA for the permutation flowshop with no-wait constraints.

And more recently, Ruiz et al. (2006) have proposed two new advanced genetic algorithms

for the problem considered here that provide good results at the expense of some added

complexity in the proposed methods.

 All the previously cited work on GAs lacks a methodological approach to obtain the

correct choice of operators and parameters. Usually, authors make use of short computer

simulations or preliminary experiments to set parameters on a “one factor at a time” basis,

i.e. changing one parameter while maintaining the remaining factors unaltered. While this

approach might be useful when setting some of the algorithms’ parameters, it has several

shortcomings when setting some of the important operators (like crossover operator or

population size). In this paper we use a more comprehensive approach for calibrating the

operators and parameters.

3. Constructive Genetic Algorithm for the PFSP

Lorena & Furtado (2001) proposed recently the Constructive Genetic Algorithm (CGA) as

an alternative to a traditional GA approaches, particularly, for evaluating schemata directly.

The CGA evolves a population initially formed only by schemata, controlled by

recombination, to a population of well-adapted structures (schemata instantiation) and

schemata. It was applied to clustering problems (Lorena & Furtado, 2001), location

problems and timetabling problems (Ribeiro Filho & Lorena, 2001), gate matrix layout

problems (Oliveira & Lorena, 2002) and to point feature cartographic label placement

problems (Yamamoto & Lorena, 2005). In this paper, the concept of CGA will be first

described and then applied to the solution of the PFSP.

3.1. CGA Modeling

In this section the modeling phase of the CGA is described. The problem in consideration

(in this case the PFSP) is initially formulated as a bi-objective optimization problem (BOP)

to attain the objective of evaluating schemata and structures in a common way. Two fitness

functions are defined on the space of all schemata and structures that can be obtained using

a specific representation. The BOP is then indirectly solved by an evolution process

(described in the next section) that considers the two objectives on an adaptive rejection

threshold, which gives ranks to individuals in population and yields a dynamic population.

Very simple structure and schema representations are implemented to the PFSP. A direct

alphabet of symbols (natural numbers) represents the jobs permutation. The symbol # is

used to express indetermination (# - do not care) on schemata. For example si = (1 5 3 2 4)

is a structure representation of a PFSP with 5 jobs, while sk = (# 5 # # 4) is a possible

schema.

Let X be the space of all schemata and structures that can be created by this representation.

The PFSP is modeled as the following Bi-objective Optimization Problem (BOP):

 Min () (){ }kk sfsg −

(BOP) Max ()ksg

 Subject to () ()kk sfsg ≥ X s k ∈∀

Function g is the fitness function that reflects the makespan of a given permutation of jobs

in sk after application of NEH heuristic of Nawaz et al. (1983). Therefore, it is defined by

the following procedure:

• The jobs in sk are extracted in their relative order;

• These jobs form the initial ordering for the application of the NEH;

• After the application of the NEH heuristic, the makespan of the resulting sequence

(which might not be a complete sequence) is the value of ()ksg .

The second fitness function f is defined to drive the evolutionary process to a population

trained by a heuristic. Thus, function f is defined by the following insertion heuristic (IH):

• One job of the schedule obtained after calculating the ()ksg value is extracted at

random;

• This job is inserted in all possible positions of the sequence and the best makespan

obtained is retained.

This procedure is repeated until a local optima is achieved of)s(f k is the makespan

obtained as a result.

Considering the definition of function g, the maximization objective on BOP appears to be

a contradiction. However, it is needed to give distinct treatment to structures and schemata.

By definition, f and g are applied to structures and schemata, just differing in the amount of

information and consequently, in the values associated to them. More information means

larger values. Therefore, the g maximization objective in BOP drives the search for feasible

solutions (structures) to PFSP.

The interval minimization (g-f) shows that better individuals (schemata or structures) are

those having little improvement by IH, which indirectly reproduces the makespan

minimization in PFSP.

3.2. Evolution Process

The BOP defined above is not directly considered as the set X is not completely known.

Alternatively an evolutionary process is considered to attain the objectives (interval

minimization and g maximization) of the BOP. At the beginning of the process, two

expected values are given to these objectives:

• g maximization: a non-negative real number maxg that is expected to be an upper

bound to the PFSP makespan;

• Interval minimization: an interval length maxgd ⋅ , obtained from maxg considering a

real number 1d0 ≤< , that will be the expected improvement of IH.

The evolution process is then conducted considering an adaptive rejection threshold, which

considers both objectives in BOP. Given a parameter 0≥α , the expression

 () () ()[]kmaxmaxkk sggdgdsfsg −⋅⋅α−⋅≥− (1)

presents a condition for rejection from the current population of a schema or structure sk.

The right hand side of (1) is the threshold, composed of the expected value to the interval

minimization maxgd ⋅ , and the deviation ()kmax sgg − , that shows the difference of ()ksg

and maxg evaluations.

Expression (1) can be examined varying the value of α . For 0=α , both schemata and

structures are evaluated by the difference g-f (first objective of BOP). When α increases,

schemata are most penalized than structures by the difference ggmax − (second objective of

BOP).

Parameter α is related to time in the evolution process. Considering that the good schemata

need to be preserved for recombination, the evolution parameter α starts from 0, and then

increases slowly, in small time intervals, from generation to generation. The population at

the evolution time α , denoted by αP , is dynamic in size accordingly the value of the

adaptive parameter α , and can be emptied during the process. The parameter α is now

isolated in expression (1), thus yielding the following expression and corresponding rank to

sk:

() ()[]

()[] ()k
kmax

kkmax s
sggd

sfsggd
δ=

−
−−⋅

≥α (2)

At the time they are created, structures and/or schemata receive their corresponding rank

value ()ksδ . These ranks are compared with the current evolution parameter α . The higher

the value of ()ksδ , and better is the structure or schema to the BOP, and they also have

more surviving and recombination time.

For the PFSP, the overall bound gmax is obtained at the beginning of the CGA application,

by generating a structure and making gmax receive the g evaluation for that structure. In

order to ensure that gmax is always an upper bound, after recombination, each new structure

generated snew is rejected if ()newmax sgg ≤ .

In the case of the PFSP we have chosen to initialize the value of gmax with the NEH

heuristic rule of Nawaz et al. (1983). In this case gmax will be the makespan of this

constructed schedule.

3.2.1. Initial Population

The initial population is composed exclusively of schemata, where a proportion of jobs are

replaced by labels # (indetermination). For the PFSP, the random process of creating the

initial population of schemata is guided so that every job is present in schemata at least

once and that for every position in the permutation there is at least one schema with a label

different from #. Along the generations, the population increases by addition of new

offspring generated out of the combination of two schemata aiming the structure creation.

3.2.2. Selection

There are two purposes on the evolution process: to obtain structures (good solutions to the

g maximization objective on the BOP), and that these structures be good ones (best

solutions to the interval minimization objective on the BOP). Thus, the population is

maintained classified by rank (expression (2)), and the individuals with more genetic

information (structures or semi-complete schemata) and presenting small improvements by

heuristic IH, appear in first order places on the population.

Two structures and/or schemata are selected for recombination. The first is called the base

(sbase) and is randomly selected out of the first positions in αP , and in general it is a good

structure or a good schema. The second structure or schema is called the guide (sguide) and

is randomly selected out of the total population. The objective of the sguide selection is the

conduction of a guided modification on sbase.

3.2.3. Recombination

In the recombination operation, the current labels in corresponding positions are compared.

Let snew be the new structure or schema (offspring) after recombination. Structure or

schema snew is obtained by applying the following operations:

{Recombination}

For i from 1 to individual length

I - if sbase (i) = # and sguide (i) = # then

set snew (i) = #

II - if sbase (i) <> # and sguide (i) = # then

if sbase (i) is not in snew then

set snew (i) = sbase (i)

else set snew (i) = #

III - if sbase (i) = # and sguide (i) <> # then

if sguide (i) is not in snew then

set snew (i) = sguide (i)

else set snew (i) = #

IV - if sbase (i) <> # and sguide (i) <> # then

if sbase (i) is not in snew then

set snew (i) = sbase (i)

else

if sguide (i) is not in snew then

set snew (i) = sguide

else set snew (i) = #

Observe that sbase is a privileged individual to compose snew, but it is not totally

predominant. There is a small probability of the sguide gene information to be used instead of

sbase one.

3.2.4. The Algorithm

The Constructive Genetic Algorithm can be summed up by the following pseudo-code. The

ε increment is a linear step that increases the adaptive rejection threshold. Each distinct

value of α corresponds to a generation. The stop conditions occur with an emptied

population (assured by a sufficiently higher α) or when a predetermined stopping criterion

is met. The population increases, after the initial generations, reaching an upper limit (in

general controlled by storage conditions), and decreases for higher values of the evolution

parameter α .

CGA {Constructive Genetic Algorithm}

Given gmax and d; α := 0 ; ε;

Initialize αP ;

for all sk ∈ αP do compute g(sk), f(sk), ()ksδ ;

while (not stop condition) do

while (number of recombinations) do

Select Base and Guide from αP ;

Recombine Base and Guide;

Evaluate Offspring;

Update Offspring in αP ;

end_while

 α := α + ε;

for all sk ∈ αP satisfying α > ()ksδ do

Eliminate sk from αP ;

end_for

end_while

The CGA algorithm begins with the recombination procedures (over schemata only) and

the constructive process builds structures (full individuals) progressively at each

generation. The constructive process repeatedly uses genetic information contained in two

individuals to generate another one. However, the constructive process can be

complemented using especially designed mutation and filling heuristics, searching for a

better overall performance.

The mutation is always applied to structures, no matter how they are created (after

recombination or after the filling process). It performs an additional local search step to the

NEH method used to define the function g, applying heuristic IH more intensively than in

definition of function f. The insertion neighbourhood is fully examined to find a local

optima (i.e. if after performing an insertion move, a better schedule is obtained, all insertion

moves are performed again).

The filling heuristic is performed whenever the offspring generated is a schema. The

procedure is simple and can be summarized as follows:

• Construct a vector with the missing jobs in the schema;

• Shuffle this vector of missing jobs and apply the NEH procedure to fill the schema

(transform it into structure). The order in which the jobs are filled in the NEH

heuristic is taken from the shuffled vector;

• Apply the intensive form of the local search IH to the completed structure.

It is important to mention that the completed structures are not kept in the population.

However, the completed structure is kept if the value of the makespan is the best found so

far.

3.2.5. Calibration of parameters by means of Design of Experiments

As it has been mentioned, the proposed Constructive Genetic Algorithm has some

parameters that need to be determined to attain best performance. These parameters are the

increment ε, used for determining how fast “bad” schemata die off in the population, the

value “d” used in the interval minimization of the BOP problem inside the CGA and two

main parameters of the CGA, the size of the initial schemata population or αP and the

number of jobs that are filled in each schemata in this initial population, parameter that will

be refered to as “fill_in”. A priori, it is expected that these four parameters would have little

impact on the overall performance of the CGA since both d and ε affect only the evaluation

of schemata and αP and fill_in control the characteristics of the initial population which is

dynamic in size anyways.

Still, a correct and complete calibration is in order using a complete factorial design of

experiments (DOE) (see Montgomery, 2005) for analyzing the four aforementioned factors

at the following levels:

• αP : 6 levels, 50, 60, 70, 80, 90 and 100;

• fill_in: 6 levels, 5, 6, 7, 8, 9 and 10;

• ε: 3 levels, 0.005, 0.01 and 0.015;

• d: 3 levels, 0.05, 0.1 and 0.15.

The total number of combinations and thus, different Constructive Genetic Algorithms is

6*6*3*3=324.

In order to test all these combinations we could use Taillard’s benchmark, but this would

probably result in an algorithm calibrated for an instance set that is afterwards used for

comparative evaluations. A better approach is to “train” or calibrate the CGA with a set of

instances different from those used for testing. Thus, a new set of 340 difficult PFSP

problems that come after considering different values for n and m where

n={20,50,80,110,…,500} and m={5,10,15,20} is generated, yielding 68 combinations of n

and m with 5 repetitions per combination where the processing times have been sampled

from the distribution U[1,99] following the same methodology showed in Taillard (1993).

This set of 340 problems produced 324 combinations of parameters for the CGA that were

run with the following stopping criteria: n*(m/2)*10 elapsed milliseconds on an Athlon XP

1600 computer (running at 1400 MHz) with 512 Mbytes of RAM. This stopping criterion

assures that the same amount of time is allowed for every one of the 324 combinations

running on every instance. Also, more time is given as both n and m increase in the

instance.

With this stopping criteria the following measure is calculated:

100
LB

LBHeu
 BoundLower Over Increase % sol ⋅

−
= (3)

Where LB is the lower bound obtained as in Taillard (1993) for any of the 340 problems.

Therefore, the response variable in the experiment is the average percentage increase

obtained in the Cmax of the CGA over the LB for the set of 340 problems.

The following table shows the ANOVA results from the experimental analysis.

[Insert table 1 about here]

As can be seen, the number of jobs (n) and the number of machines (m) are by very far, the

two most important factors that explain the response variable, i.e. the average percentage

increase depends on the difficulty (size) of a given instance rather than to the four

controlled parameters in the experiment. With this result we carried out 68 different

analyses by analyzing the behavior of the four controlled parameters when n and m are

fixed to a given value from the 68 possible. In this case the best combinations of the four

controlled parameters depending on the difficulty or size of the instance are analyzed. For

example, for n=50 and m=20 the ANOVA table is:

[Insert table 2 about here]

Where the controlled factors, fill_in and αP do have a clear effect on the response variable

according to the P-Value. If the response variable is plotted against the different levels of

the factor αP the following means plot arises:

[Insert figure 1 about here]

Figure 1 shows that an initial population of 50 schemata is statistically worse than a

population of 60 or more schemata with no clear trend after a population of 60. In this case,

any value of αP but 50 results in a statistically equivalent performance.

By following the same procedure for all 68 combinations and all parameters results the

following “best-case” calibration of the proposed CGA algorithm:

• αP : 100;

• fill_in: 8;

• ε: 0.005;

• d: 0.05.

4. Computational Results

In this section the performances of the proposed CGA algorithm and the CGA algorithm

with local search (referred to as CGALS) are compared against a representative set of

genetic algorithms as well as other methods proposed in the literature.

The implemented heuristics are: the NEH heuristic of Nawaz et al (1983), the Simulated

Annealing of Osman & Potts (1989) (SAOP), the Tabu Search of Widmer & Hertz (1989)

(SPIRIT), the genetic algorithms of Chen et al. (1995) (GAChen), Murata et al. (1996)

(GAMIT), Reeves (1995) (GAReev), Ponnambalam et al. (2001) (GAPAC), Aldowaisan &

Allahverdi (2003) (GAAA). We also implement recent heuristics such as the genetic

algorithm of and Ruiz et al. (2006) (GARMA), the differential evolution method of

Onwubolu & Davendra (2006) (DE) and the adaptive-learning approach algorithm of

Agarwal et al. (2006) that uses NEH as initialization (NEH_ALA).

All these algorithms are implemented in Delphi 2006 and share datasets and functions and

are run against Taillard’s instances which comprise a set of 120 problems ranging from 20

jobs and 5 machines to 500 jobs and 20 machines which have proven to be especially

difficult in the past 10 years. For this set the heuristics are compared with the following

performance measure:

100
Best

BestHeu
 Solution Best Over the Increase %

sol

solsol ⋅
−

= (4)

Where Heusol is the best makespan obtained by a given algorithm and Bestsol is the given

optimum makespan for each instance in the OR Library

(http://mscmga.ms.ic.ac.uk/jeb/orlib/flowshopinfo.html) or the lowest known upper bound

if the optimum makespan for that instance is yet unknown.

The response variable is, therefore, the average percentage increase over the optimum or

lowest known upper bound for 120 instances. All the algorithms are run on a Pentium IV

computer running at 3.2 GHz with 2 Gbytes of RAM memory and the stopping criteria for

the metaheuristic methods is n*(m/2)*60 elapsed milliseconds. This way all the algorithms

are run with the same computer for the same amount of time which results in comparable

results for the experiment. All tested algorithms, with the exception of the constructive

heuristic NEH are stochastic. Therefore, we run 5 independent replicates of each instance in

order to have a better picture of the results. The results, averaged by instance size are

shown in Table 3.

[Insert table 3 about here]

Table 3 shows that the CGA algorithm with local search (CGALS) is considerably better

than the version without local search. Considering that for both versions are allowed the

same CPU time we can safely observe that the hybridization with the IH heuristic is very

effective.

Table 3 also shows that CGALS algorithm is better all other genetic algorithms, including

the recent GARMA algorithm although the differences with this last algorithm are small. In

any case, CGALS shows better results for most instance sizes. A simple statistical mean

test is run to check whether there are statistically significant differences between the

average percentage increases obtained by the different algorithms. This test can be carried

out by means of a one-way ANOVA test. Notice that we have 120 instances and 5

replicates for each instance and 13 different algorithms. Therefore, the number of data

points (7,800) is large enough to ascertain a very high power in the statistical test. The

ANOVA Table is:

[Insert table 4 about here]

We see that there are statistically significant differences between the different algorithms

used in the evaluation. To further clarify these differences we show the following means

plot:

[Insert figure 2 about here]

This experiment confirms the idea that the CGALS algorithm has a performance which is

statistically equivalent to that of the GARMA algorithm. However, this result is due to the

similarities in performance for the larger instances. In the small instances, and as Table 3

shows, CGALS gives better results and this is confirmed by limiting the previous

experiment to those instances. We also observe that all other algorithms are statistically

worse to CGALS and GARMA, including the very recent CGA and NEH_ALA algorithms.

This extensive experimentation shows that the CGA algorithm is a new and innovative

class of genetic algorithms for PFSP that has competitive performance as far as genetic

algorithms and other simple approaches are concerned.

5. Conclusions and future research

In this paper we have proposed the application of a new class of genetic algorithms, called

Constructive Genetic Algorithms (CGA), to the permutation flowshop scheduling problem.

The CGA maintain in population parts of schedules called schemata, where not all jobs are

given to makespan evaluation. That characteristic appears to be beneficial to the search for

good feasible complete schedules.

The simple CGA and the local search CGA have their parameters calibrated by an

extensive design of experiments and tested against other genetic, tabu search and simulated

annealing algorithms. The results are very promising and show that the CGA is competitive

with other successful methods.

Furthermore, the CGA studied could be easily modified to application in different problems

for flowshop, for example: no-wait flowshop, hybrid flowshop and sequence dependent

setup times (SDST flowshop).

References

Agarwal, A., Colak, S. & Eryarsoy, E. (2006). Improvement heuristic for the flow-shop

scheduling problem: An adaptive-learning approach. European Journal of Operational

Research, 169, 801-815.

Aldowaisan, T. & Allahverdi, A. (2003). New heuristics for no-wait flowshops to minimize

makespan. Computers and Operations Research, 30, 1219-1231.

Campbell, H.G., Dudek, R.A. & Smith M.L. (1970). A heuristic algorithm for n job, m

machine sequencing problem. Management Science, 16(10), 630-637.

Chen, C.-L., Vempati, V.S. & Aljaber, N. (1995). An application of genetic algorithms for

flow shop problems. European Journal of Operational Research, 80, 389-396.

Dannenbring, D.G. (1977). An evaluation of flow-shop sequencing heuristics. Management

Science, 23, 1174-1182.

Davoud Pour, H. (2001). A new heuristic for the n-job, m-machine flow-shop problem.

Production Planning and Control, 12(7), 648-653.

Fox, B.R. & McMahon, M.B. (1991). Genetic operations for sequencing problems,

foundations of genetic algorithms. Rawlins GJE, editor. San Mateo: Morgan Kaufmann

Publishers, 284-300.

Garey, M.R., Johnson, D.S. & Sethi, R. (1976). Complexity of flow-shop and job-shop

scheduling. Mathematics of Operations Research, 1(2), 117-129.

Goldberg, D. & Lingle Jr., R. (1985). Alleles, loci, and the travelling salesman problem. In:

Grefenstelle J.J. (Ed.), Proceedings of the first international conference on genetic

algorithms and their applications, Hillsdale, N.J., Lawrence Erlbaum associates, 154-159.

Grabowski, J. & Wodecki, M. (2004). A very fast tabu search algorithm for the permutation

flow shop problem with makespan criterion. Computer & Operations Research, 31, 1891-

1909.

Gupta, J.N.D. (1971). A functional heuristic algorithm for the flowshop scheduling

problem. Operational Research Quarterly, 22(1), 39-47.

Hejazi, S.R. & Saghafian, S. (2005). Flowshop-scheduling problems with makespan

criterion: a review. International Journal of Production Research, 43(14), 2895-2929.

Ishibuchi, H., Yamamoto, N., Murata, T. & Tanaka, H. (1994). Genetic algorithms and

neighborhood search algorithms for fuzzy flowshop scheduling problems. Fuzzy Sets and

Systems, 67, 81-100.

Johnson, S.M. (1954). Optimal two-and three-stage production schedules with setup times

included. Naval Research Logistics Quarterly, 1, 61-68.

Kalczynski, P.J. & Kamburowski, J. (2007). On the NEH heuristic for minimizing the

makespan in permutation flow shops. OMEGA, The International Journal of

Management Science, 35(1), 53-60.

King, J.R. & Spachis, A.S. (1980). Heuristics for flowshop scheduling. International

Journal of Production Research, 18, 345-357.

Koulamas, C. (1998). A new constructive heuristic for the flowshop scheduling problem.

European Journal of Operational Research, 105, 66-71.

Lorena, L.A.N. & Furtado, J.C. (2001). Constructive genetic algorithm for clustering

problems. Evolutionary Computation, 9(3), 309-327.

Montgomery, D.C. (2005). Design and analysis of experiments. Sixth Edition, New York:

John Wiley & Sons.

Murata, T., Ishibuchi, H. & Tanaka, H. (1996). Genetic algorithms for flow shop

scheduling problems. Computers and Industrial Engineering, 30, 1061-1071.

Nagano, M.S. & Moccellin, J.V. (2002). A high quality solution constructive heuristic for

flow shop sequencing. Journal of the Operational Research Society, 53, 1374-1379.

Nawaz, M., Enscore, Jr., E.E. & Ham, I. (1983). A heuristic algorithm for the m-machine,

n-job flow-shop sequencing problem. OMEGA, The International Journal of

Management Science, 11(1), 91-95.

Nowicki, E. & Smutnicki, C. (1996). A fast tabu algorithm for the permutation flow-shop

problem. Journal of Operational Research, 91, 160-175.

Ogbu F.A. & Smith D.K. (1990). The application of the simulated annealing algorithms to

the solution of the maxC/m/n flowshop problem. Computers & Operations Research,

17(3), 243-253.

Oliveira, A.C.M. & Lorena, L.A.N. (2002). A constructive genetic algorithm for gate

matrix layout problems. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems. vol. 21 (8), 969-974.

Onwubolu, G. & Davendra, D. (2006). Scheduling flow shops using differential evolution

algorithm. European Journal of Operational Research, 171, 674-692.

Osman, I.H. & Potts, C.N. (1989). Simulated annealing for permutation flow-shop

scheduling. OMEGA, The International Journal of Management Science. 17(6), 551-557.

Palmer, D.S. (1965). Sequencing jobs through a multi-stage process in the minimum total

time – a quick method of obtaining a near optimum. Operational Research Quarterly,

16(1), 101-107.

Ponnambalam, S.G., Aravindan, P. & Chandrasekaran, S. (2001). Constructive and

improvement flow shop scheduling heuristics: an extensive evaluation. Production

Planning and Control, 12(4), 335-344.

Pinedo, M. (2002). Scheduling: theory, algorithms and systems. 2nd ed., Englewood Cliffs,

NJ: Prentice Hall.

Rajendran, C. & Ziegler, H. (2004). Ant-colony algorithms for permutation flowshop

scheduling to minimize makespan/total flowtime of jobs. European Journal of

Operational Research, 155, 426-436.

Reeves, C.R. (1993). Improving the efficiency of tabu search for machine scheduling

problems. Journal of the Operational Research Society, 44(4), 375-382.

Reeves, C.R. (1995). A Genetic algorithm for flowshop sequencing. Computers and

Operations Research, 22 (1), 5-13.

Reeves, C.R. & Yamada, T. (1998). Genetic algorithms, path relinking, and the flowshop

sequencing problem. Evolutionary Computation, 6(1), 45-60.

Ribeiro Filho, G. & Lorena, L.A.N. (2001). A constructive evolutionary approach to school

timetabling. In Applications of Evolutionary Computing, Boers, E.J.W., Gottlieb, J.,

Lanzi, P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H., Springer Lecture

Notes in Computer Science. vol. 2037 (pp.130-139). Germany: Springer-Verlag.

Ruiz, R. & Maroto, C. (2005). A Comprehensive review and evaluation of permutation

flowshop heuristics. European Journal of Operational Research, 165, 479-494.

Ruiz, R., Maroto, C. & Alcaraz, J. (2006). Two new robust genetic algorithms for the

flowshop scheduling problem. OMEGA, The International Journal of Management

Science, 34, 461-476.

Stützle, T. (1998). Applying iterated local search to the permutation flow shop problem.

Technical report, AIDA-98-04, TU Darmstadt, FG Intellektik.

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of

Operational Research, 64, 278-285.

Werner, F. (1993). On the heuristic solution of the permutation flowshop problem by path

algorithms. Computers & Operations Research, 20(7), 707-722.

Widmer, M. & Hertz, A. (1989). A new heuristic method for the flow shop sequencing

problem. European Journal of Operational Research. 41, 186-193.

Yamamoto, M. & Lorena, L. A. N. (2005). A constructive genetic approach to point-feature

cartographic label placement. In Metaheuristics: Progress as real problem solvers, Ibaraki,

T., Nonobe, K., Yagiura, M. Kluwer Academic Press, 285-300.

P

50 60 70 80 90 100
3.9

3.93

3.96

3.99

4.02

4.05
Means and 95.0 Percent LSD Intervals

Av
era

ge
 pe

rce
nta

ge
 in

cre
ase

Figure 1: Means plot for population at the evolution time α (αP) factor.

Av
era

ge
 pe

rce
nta

ge
 in

cre
ase

Figure 2: Means plot for the different algorithms evaluated.

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS

A:d 0.0580 2 0.0290 0.0400 0.9585

B:fill_in 3.6931 5 0.7386 1.0800 0.3697

C:M 545629 3 181876 265669.05 0.0000

D:N 2239280 16 139955 204434.43 0.0000

E:Pα 21.5362 5 4.3073 6.2900 0.0000

F:ε 1.8928 2 0.9464 1.3800 0.2510

INTERACTIONS

AB 0.2141 10 0.0214 0.0300 1.0000

AC 0.0071 6 0.0012 0.0000 1.0000

AD 1.2082 32 0.0378 0.0600 1.0000

AE 0.1481 10 0.0148 0.0200 1.0000

AF 0.0675 4 0.0169 0.0200 0.9988

BC 2.5369 15 0.1691 0.2500 0.9986

BD 37.4064 80 0.4676 0.6800 0.9865

BE 4.5496 25 0.1820 0.2700 0.9999

BF 0.2331 10 0.0233 0.0300 1.0000

CD 419583 48 8741.3 12768.53 0.0000

CE 11.9448 15 0.7963 1.1600 0.2928

CF 0.4299 6 0.0717 0.1000 0.9959

DE 5.8213 80 0.0728 0.1100 1.0000

DF 8.9975 32 0.2812 0.4100 0.9987

EF 0.4703 10 0.0470 0.0700 1.0000

RESIDUAL 75129.8 109743 0.6846

TOTAL

(CORRECTED) 3.2797E+06 110159

Table 1: ANOVA table for the constructive genetic algorithm experiment.

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS

A:d 0.2227 2 0.1113 2.57 0.0769

B:fill_in 0.5100 5 0.1020 2.35 0.0386

C:Pα 0.9626 5 0.1925 4.44 0.0005

D:ε 0.0796 2 0.0398 0.92 0.3992

INTERACTIONS

AB 0.2542 10 0.0254 0.59 0.8261

AC 0.3076 10 0.0308 0.71 0.7159

AD 0.0341 4 0.0085 0.2 0.9402

BC 2.2084 25 0.0883 2.04 0.0018

BD 0.1899 10 0.0190 0.44 0.9282

CD 0.7655 10 0.0766 1.77 0.0619

RESIDUAL 66.5678 1536 0.0433

TOTAL

(CORRECTED) 72.1024 1619

Table 2: ANOVA table for the constructive genetic algorithm experiment (n=50 and m=20)

Instances NEH GARMA SAOP SPIRIT GAChen GAReev GAMIT GAPAC GAAA CGALS CGA DE NEH_ALA

20x5 3.35 0.29 0.93 4.01 3.54 0.53 0.57 9.07 1.69 0.05 1.33 3.98 1.38

20x10 5.02 0.63 2.59 5.65 5.17 1.79 1.75 13.10 1.60 0.19 2.42 5.86 2.22

20x20 3.73 0.41 2.33 4.84 4.29 1.40 1.48 9.80 1.61 0.08 2.08 4.53 1.78

50x5 0.84 0.06 0.48 1.90 2.14 0.19 0.24 7.00 2.40 0.02 0.32 4.28 0.46

50x10 5.12 1.76 3.34 5.84 6.47 2.11 3.38 16.86 9.88 1.65 3.72 11.48 3.44

50x20 6.31 2.62 4.47 7.46 7.86 3.60 4.92 18.85 12.35 2.67 4.98 14.73 4.66

100x5 0.46 0.07 0.28 0.93 1.32 0.16 0.24 5.71 2.15 0.02 0.21 4.27 0.46

100x10 2.13 0.60 1.53 2.96 3.99 0.80 1.53 12.39 7.88 0.60 1.46 10.42 1.54

100x20 5.23 2.52 4.68 6.26 7.99 3.32 4.87 18.65 14.27 2.84 4.52 16.08 4.49

200x10 1.43 0.43 0.99 2.06 2.72 0.48 1.00 10.17 6.95 0.35 0.99 8.34 1.30

200x20 4.52 2.24 4.14 5.17 7.37 2.87 4.18 16.95 13.75 2.56 3.79 15.44 4.11

500x20 2.24 1.28 2.21 7.59 4.81 1.47 2.54 12.47 10.61 1.22 1.93 11.58 2.24

Average 3.37 1.08 2.33 4.56 4.81 1.56 2.22 12.59 7.10 1.02 2.31 9.25 2.34

Table 3: Average percentage increase over the best solution known for the metaheuristic algorithms. Maximum elapsed time stopping

criterion. Worst values in italics and best values in bold.

Source Sum of Squares Df Mean Square F-Ratio P-Value

Between groups 87992.2 12 7332.69 931.34 0.0000

Within groups 61309.0 7787 7.87324

TOTAL

(CORRECTED) 149301.0 7799

Table 4: ANOVA table for the evaluation of the differences between algorithms

