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A Constructive Genetic Algorithm for Permutation Flowshop Schedling

Abstract

The general flowshop scheduling problem is a production problem wheteoarsgbs
have to be processed with identical flow pattermmomachines. In permutation flowshops
the sequence of jobs is the same on all machines. A signifieamarch effort has been
devoted for sequencing jobs in a flowshop minimizing the makespan. Tas g@ascribes
the application of a Constructive Genetic Algorithm (CGA) to mp&esminimization on
flowshop scheduling. The CGA was proposed recently as an altertatixaeditional GA
approaches, particularly, for evaluating schemata directly.pbpelation initially formed
only by schemata, evolves controlled by recombination to a populatiorelbhaapted
structures (schemata instantiation). The CGA implemented igl ltas¢he NEH classic
heuristic and a local search heuristic used to define the fiunessons. The parameters of
the CGA are calibrated using a Design of Experiments (CXpgjoach. The computational
results are compared against some other successful algoritbmsthe literature on
Taillard’s well known standard benchmark. The computational experghaes that this

innovative CGA approach provides competitive results for flowshop scheduling problems.

Keywords: Flowshop, Constructive Genetic Algorithm, Makespan



1. Introduction

The general flowshop scheduling problem is a production problem wheteoarsgbs
have to be processed with identical flow pattermmomachines. When the sequence of job
processing on all machines is the same we have the permutaticshdp sequencing
production environment. Since there is no job passing, the number of posséualss for

n jobs isn!l. Usually, the schedule performance measure is related toieirrgffesource
utilization looking for a job sequence that minimizes the makespansttiee total time to

complete the schedule and the problem is then denotedh/as/P/F,, or as
F/ prmu/ C,,, (Pinedo, 2002).

This scheduling problem is generally modelled on the following assumptions:

i)  The operation processing times on the machines are known, fixed aacb&tmem
may be zero if some job is not processed on a machine;

i)  Set-up times are included in the processing times and thegdmpeendent of the job
position in the sequence of jobs;

iii) At atime, every job is processed on only one machine, and maalyine processes
only one job;

iv) The job operations on the machines may not be preempted.

A significant research effort has been devoted for sequelminsgin a flowshop with the

objective of finding a sequence that minimizes the makespan. For mpsath 2

machines, or 3 machines under specific constraints on job processey] tira efficient

Johnson's algorithm (Johnson, 1954) obtains an optimal solution for the proloemve,

since this scheduling problem is NP-hard (Garey et al., 1976) thehskearan optimal

solution is of more theoretical than practical importance. Thexefince the 1960s a



number of heuristic methods that provide near optimal or good solutionslimvitad
computation effort have been proposed for flowshop sequencing. The perterofasome
earlier heuristics was evaluated by Dannenbring (1977) and King & Sgaéao).

Heuristic methods can be classified according to two majogaaés: constructive or
improvement methods. The constructive algorithms obtain directly @isolfor the
scheduling problem, i.e. @job sequence, by using some procedure which assigns to each
job a priority or anindexin order to construct the solution sequence (see for example,
Palmer, 1965; Campbell et al., 1970; Gupta, 1971; Dannenbring, 1977; NaWwai1 @83
Koulamas, 1998; Davoud Pour, 2001; Nagano & Moccellin, 2002; Kalczynski &
Kamburowski, 2007). An improvement method starts from a given initialisoJuand
looks for a better one normally by using some neighbourhood searcledprec
Metaheuristics can also be considered as improvement heuristitgn \Wis type of
techniques we find genetic algorithms (GAs), simulated annealiny) {(8#u search (TS)
and other procedures or hybrid methods.

The first proposed metaheuristics for the permutation flowshop schgqubblem (PFSP)
are the simulated annealing algorithms by Osman & Potts (198900ghd & Smith
(1990). Widmer & Hertz (1989), Taillard (1990), Reeves (1993) and Nowickin&t&icki
(1996) demonstrated different tabu search approaches. Other algoniénthe path-based
method of Werner (1993) or the iterated local search (ILS) of I8t{i®98). Recently,
Rajendran & Ziegler (2004) have proposed two very effective antgadptimization
(ACO) algorithms and Grabowski & Wodecki (2004) a very fast TS agmbr. Ruiz &
Maroto (2005) give an updated and comprehensive review of flowshop heuastcs

metaheuristics. Another recent review is given by Hejazi & Sagh&f0b].



We focus now on work dealing with GAs and the PFSP. A geneticitalgors a
computerized iterative search optimization technique. It is basetheormechanics of
natural selection and natural genetics. This deals with the poputhtsmtution rather than
with a single solution. This type of algorithms provide near optisthedules. The
optimum value depends on the operators like crossover, mutation, humberbbnter
(‘generations’), etc. In every generation, a new set of adlifindividuals (strings) is
created. This algorithm combines survival of the fittest among string seactur

This paper describes the application of a Constructive Geneticithlgo(CGA) to the
PFSP. The CGA has a number of new features compared to a tragdjeortc algorithm.
These include a population of dynamic size composed of schemastractdres, and the
possibility of using heuristics in structure representation andheén fithess function
definitions.

The CGA is compared against some other successful algoritltoms the literature on
Taillard (1993) well known standard benchmark, composed of 120 different mproble
instances ranging from 20 jobs and 5 machines to 500 jobs and 20 madiiges.
benchmark contains some instances that have proved to be very diffisalve in the past
10 years.

The rest of paper is organized as follows: Section 2 presents anegvef the existing
genetic algorithms for the PFSP that are available frenliterature. Section 3 describes in
detail the new proposed genetic algorithm (CGA). An extensivepanson of CGA
against some other successful algorithms from the literagugevén in Section 4. Finally,
in Section 5 we provide some conclusions about the study, along withfgtureeresearch

directions.



2. Genetic Algorithm for the PFSP

Flowshop scheduling is one of the most well-known problems in theochreegheduling.
Various approaches to this problem have been proposed since the pionemkngfw
Johnson (1954). GAs have been applied to combinatorial optimization probldmessihe
traveling salesman problem and scheduling problems (see for exdrmopl& McMahon,
1991, Ishibushi et al., 1994).

One of the earliest GAs for the PFSP was proposed by Chah €@t995). The initial
population in this algorithm is generated by using several hieuniges. The firstm-1
population members are generated byrihel sequences obtained after applying the CDS
heuristic of Campbell et al., (1970), theth member is obtained from thrapid access
(RA) heuristic of Dannenbring. The remaining members arergésd from simple job
exchanges of the already generated sequences. Only crossoygliesl,athere is no
mutation. The crossover operator used is plagtially mapped crossove(PMX) by
Goldberg & Ling (1985). Reeves (1995) also proposed a GA. This algonises a
different generational scheme, called “termination with prejudice” in whinehdffspring
generated after each mating do not replace the parents but meshtiee population with
a fitness value below average. The algorithm uses a C1 crossssentially similar to the
one-point order crossovelAnother remarkable feature of the algorithm is the adaptive
mutation used. Reeves’ algorithm also initializes the populationibyg bguristics. In this
case, one of the population members is generated by applying HhéaélEistic. Murata et
al. (1996)proposed a hybrid GA with &wo-point order crossovera shift mutation and
elitism strategy. The algorithm is hybridized with locahred, which resulted in a clear
performance gain over a non-hybrid version. Another hybrid GA is dh&eeves &

Yamada (1998). In this case a special crossover, callgdtl-step crossover fusioar



MSXF is used, coalescing a typical crossover operator with $s@alch. Ponnambalam et
al. (2001)valuate a GA with gyeneralized position crossover GPX crossover, a shift
mutation and random population initialization. Aldowaisan & Allahverdi (200&ye
proposed a simple yet effective GA for the permutation flowshop naittvait constraints.
And more recently, Ruiz et al. (2006) have proposed two new advancdat gégarithms
for the problem considered here that provide good results at the exgessme added
complexity in the proposed methods.

All the previously cited work on GAs lacks a methodological apprdacbbtain the
correct choice of operators and parameters. Usually, authors maké sisart computer
simulations or preliminary experiments to set parameters“oneafactor at a time” basis,
i.e. changing one parameter while maintaining the remainictgriaunaltered. While this
approach might be useful when setting some of the algorithmamesers, it has several
shortcomings when setting some of the important operators (likeoesyseperator or
population size). In this paper we use a more comprehensive approaaiilfcating the

operators and parameters.

3. Constructive Genetic Algorithm for the PFSP

Lorena & Furtado (2001) proposed recently the Constructive Gengjrithim (CGA) as

an alternative to a traditional GA approaches, particularly Maluating schemata directly.
The CGA evolves a population initially formed only by schemata, cdedroby

recombination, to a population of well-adapted structures (schemagatiasbn) and
schemata. It was applied to clustering problems (Lorena & dyrtd001), location
problems and timetabling problems (Ribeiro Filho & Lorena, 2001), gateixmayout

problems (Oliveira & Lorena, 2002) and to point feature cartogralalbiel placement



problems (Yamamoto & Lorena, 2005). In this paper, the concept of CQAevilirst

described and then applied to the solution of the PFSP.

3.1. CGA Modeling
In this section the modeling phase of the CGA is described. Theeprablconsideration
(in this case the PFSP) is initially formulated ds-abjective optimization problefBOP)
to attain the objective of evaluating schemata and structuesommon way. Two fitness
functions are defined on the space of all schemata and struittatesn be obtained using
a specific representation. The BOP is then indirectly solvedarbyevolution process
(described in the next section) that considers the two objectivea adagptive rejection
threshold, which gives ranks to individuals in population and yields a dynamic population.
Very simple structure and schema representations are irmplechto the PFSP. A direct
alphabet of symbols (natural numbers) represents the jobs permufdteisymbol # is
used to express indetermination (# - do not care) on schematxafgple s= (153 2 4)
is a structure representation of a PFSP with 5 jobs, white (# 5 # # 4) is a possible
schema.
Let X be the space of all schemata and structures that caradtedcby this representation.
The PFSP is modeled as the followBigobjective Optimization Proble(BOP):

Min  {g(s,)-f(s.}
(BOP) Max g(s, )

Subject tay(s, )= (s, ) Os, OX



Function g is the fitness function that reflects thakespan of a given permutation of jobs

in s after application of NEH heuristic of Nawaz et @983). Therefore, it is defined by

the following procedure:

. The jobs in gare extracted in their relative order;

. These jobs form the initial ordering for the apation of the NEH;

. After the application of the NEH heuristic, the reagan of the resulting sequence
(which might not be a complete sequence) is theevaf g(s, ).

The second fitness function f is defined to drikke evolutionary process to a population

trained by a heuristic. Thus, function f is definmdthe following insertion heuristic (IH):

. One job of the schedule obtained after calculathms g(sk) value is extracted at
random;

. This job is inserted in all possible positions lo¢ tsequence and the best makespan
obtained is retained.

This procedure is repeated until a local optimadhieved of f(s, )is the makespan

obtained as a result.

Considering the definition of function g, the maxation objective on BOP appears to be

a contradiction. However, it is needed to giveiddttreatment to structures and schemata.

By definition, f and g are applied to structured aschemata, just differing in the amount of

information and consequently, in the values assedito them. More information means

larger values. Therefore, the g maximization olpjecin BOP drives the search for feasible

solutions (structures) to PFSP.



The interval minimization (g-f) shows that bettadividuals (schemata or structures) are
those having little improvement by IH, which inditly reproduces the makespan

minimization in PESP.

3.2. Evolution Process

The BOP defined above is not directly considerethasset X is not completely known.
Alternatively an evolutionary process is consideted attain the objectives (interval
minimization and g maximization) of the BOP. At theginning of the process, two
expected values are given to these objectives:

. g maximization: a non-negative real numhgr,, that is expected to be an upper

bound to the PFSP makespan;

. Interval minimization: an interval lengtt [g obtained fromg,,,, considering a

real number0<d <1, that will be the expected improvement of IH.
The evolution process is then conducted considenmgdaptive rejection threshold, which
considers both objectives in BOP. Given a parameteeO, the expression
o(si )~ ()= d @ — 0 [ g, —9(s, )] (1)
presents a condition for rejection from the curneopulation of a schema or structuge s
The right hand side of (1) is the threshold, coneposf the expected value to the interval

minimization d (g, , and the deviatiory,, —g(s, ), that shows the difference ofs, )

max !

andg,,, evaluations.

Expression (1) can be examined varying the value ofFor a =0, both schemata and

structures are evaluated by the difference g-ét(fobjective of BOP). When increases,



schemata are most penalized than structures lgiffeeenceg, ., — g(second objective of
BOP).

Parameteix is related to time in the evolution process. Coamsid) that the good schemata
need to be preserved for recombination, the ewmiytiarameten starts from 0, and then
increases slowly, in small time intervals, from @eation to generation. The population at

the evolution timea, denoted byP, , is dynamic in size accordingly the value of the

adaptive parameten, and can be emptied during the process. The pa&earoeis now
isolated in expression (1), thus yielding the failog expression and corresponding rank to
S

dlgmax — [g(sk)_f(sk )]
d[g max g(sk )]

a2 =3(s, ) 2)

At the time they are created, structures and/oerselta receive their corresponding rank
value (s, ). These ranks are compared with the current ewsiytarameten . The higher
the value ofd(s, ), and better is the structure or schema to the BB, they also have
more surviving and recombination time.

For the PFSP, the overall boung,gis obtained at the beginning of the CGA appliagatio
by generating a structure and makingy.geceive the g evaluation for that structure. In
order to ensure that.g is always an upper bound, after recombinationh e&ev structure
generatedsyis rejected ifg, . < 9(S..,)-

In the case of the PFSP we have chosen to ingidlie value of gy with the NEH

heuristic rule of Nawaz et al. (1983). In this capex will be the makespan of this

constructed schedule.



3.2.1. Initial Population

The initial population is composed exclusively ohemata, where a proportion of jobs are
replaced by labels # (indetermination). For the PAfe random process of creating the
initial population of schemata is guided so thagrgviob is present in schemata at least
once and that for every position in the permutatiere is at least one schema with a label
different from #. Along the generations, the popiola increases by addition of new

offspring generated out of the combination of twbesnata aiming the structure creation.

3.2.2. Selection

There are two purposes on the evolution processbt@in structures (good solutions to the
g maximization objective on the BOP), and that ¢hetructures be good ones (best
solutions to the interval minimization objective d¢ime BOP). Thus, the population is
maintained classified by rank (expression (2)), &me individuals with more genetic
information (structures or semi-complete schemaial) presenting small improvements by
heuristic IH, appear in first order places on tbheydation.

Two structures and/or schemata are selected fonteimation. The first is called the base

(svas9 and is randomly selected out of the first possion P, , and in general it is a good

structure or a good schema. The second structuseh@ma is called the guidg{s) and
is randomly selected out of the total populatiohe Dbjective of thegsqde Selection is the

conduction of a guided modification ops

3.2.3. Recombination



In the recombination operation, the current lalieksorresponding positions are compared.

Let sew be the new structure or schema (offspring) afemombination. Structure or

schema gy is obtained by applying the following operations:

{Recombination}

For i from 1 to individual length

If Spase(i) = # and gige (i) = # then
set gew (i) = #
if Spase(l) <> # and guige (1) = # then
if Spase(i) IS Not in gewthen
set ew (1) = Sase(l)
else setgw (i) =#
if Spase(i) = # and guige (1) <> # then
if Sguide (1) IS NOt in §ew then
set gew (1) = Syuide (1)
else setgw (i) =#
if Spase(l) <> # and guige () <> # then
if Spase(i) IS Not in gew then
set ew (1) = Sase(l)
else
if Sguide () IS NOt in §ew then
set Sew (1) = Syuide

else setgu (i) =#



Observe that y3se is a privileged individual to composeeg but it is not totally

predominant. There is a small probability of thgssgene information to be used instead of

ShaseONeE.

3.2.4. The Algorithm

The Constructive Genetic Algorithm can be summedythe following pseudo-code. The
€ increment is a linear step that increases the mgapgjection threshold. Each distinct
value of a corresponds to a generation. The stop conditiac@irowith an emptied
population (assured by a sufficiently highey or when a predetermined stopping criterion
is met. The population increases, after the ingeherations, reaching an upper limit (in
general controlled by storage conditions), and eles®s for higher values of the evolution

parameteio .

CGA {Constructive Genetic Algorithm}

Given gnaxand d;a =0 ;¢;

Initialize P, ;

for all s 0 P, do compute g¢s f(sd), 5(s, );

while (not stop condition) do

while (number of recombinations) do

Select Base and Guide froRy ;
Recombine Base and Guide;
Evaluate Offspring;

Update Offspring inP, ;



end_while

a:=a +g;

for all s 0 P, satisfyinga > 3(s, ) do
Eliminate g from P, ;

end_for

end_while

The CGA algorithm begins with the recombinationgaures (over schemata only) and
the constructive process builds structures (fultliviluals) progressively at each
generation. The constructive process repeatedly gseetic information contained in two
individuals to generate another one. However, tlonstuctive process can be
complemented using especially designed mutation félivey heuristics, searching for a
better overall performance.

The mutation is always applied to structures, ndtenahow they are created (after
recombination or after the filling process). It feems an additional local search step to the
NEH method used to define the function g, applynegristic IH more intensively than in
definition of function f. The insertion neighboudw is fully examined to find a local
optima (i.e. if after performing an insertion moaehetter schedule is obtained, all insertion
moves are performed again).

The filling heuristic is performed whenever the spifing generated is a schema. The
procedure is simple and can be summarized as fsllow

. Construct a vector with the missing jobs in theesié;



. Shuffle this vector of missing jobs and apply thEHNprocedure to fill the schema
(transform it into structure). The order in whidhetjobs are filled in the NEH
heuristic is taken from the shuffled vector;

. Apply the intensive form of the local search IHI@ completed structure.

It is important to mention that the completed suues are not kept in the population.

However, the completed structure is kept if thaugadf the makespan is the best found so

far.

3.2.5. Calibration of parameters by means of Design of Experiments

As it has been mentioned, the proposed ConstrudBeaetic Algorithm has some
parameters that need to be determined to attairplee®rmance. These parameters are the
incremente, used for determining how fast “bad” schemataaffein the population, the
value “d” used in the interval minimization of tB®P problem inside the CGA and two

main parameters of the CGA, the size of the ingigthemata population d?, and the

number of jobs that are filled in each schemathiminitial population, parameter that will
be refered to as “fill_in". A priori, it is expeadhat these four parameters would have little
impact on the overall performance of the CGA sibeth d and: affect only the evaluation
of schemata and, and fill_in control the characteristics of théiat population which is
dynamic in size anyways.

Still, a correct and complete calibration is in erdising a complete factorial design of
experiments (DOE) (see Montgomery, 2005) for anatyzhe four aforementioned factors
at the following levels:

. P, : 6 levels, 50, 60, 70, 80, 90 and 100;



. fill_in: 6 levels, 5, 6, 7, 8, 9 and 10;

. e: 3 levels, 0.005, 0.01 and 0.015;

. d: 3 levels, 0.05, 0.1 and 0.15.

The total number of combinations and thus, diffel@anstructive Genetic Algorithms is
6*6*3*3=324.

In order to test all these combinations we coulel Taillard’s benchmark, but this would
probably result in an algorithm calibrated for astance set that is afterwards used for
comparative evaluations. A better approach istairit or calibrate the CGA with a set of
instances different from those used for testingusTha new set of 340 difficult PFSP
problems that come after considering different galufor n and m where
n={20,50,80,110,...,500} and={5,10,15,20} is generated, yielding 68 combinasaf n
andm with 5 repetitions per combination where the pssogg times have been sampled
from the distribution U[1,99] following the same thedology showed in Taillard (1993).
This set of 340 problems produced 324 combinatadnsarameters for the CGA that were
run with the following stopping criteriaa*(m/2)*10 elapsed milliseconds on an Athlon XP
1600 computer (running at 1400 MHz) with 512 MbytésR@AM. This stopping criterion
assures that the same amount of time is allowedVvery one of the 324 combinations
running on every instance. Also, more time is givanbothn and m increase in the
instance.

With this stopping criteria the following measusecalculated:

H -1LB
% IncreaséverLower Bound:% [100 (3)



Where LB is the lower bound obtained as in Taillgk®193) for any of the 340 problems.
Therefore, the response variable in the experimerthe average percentage increase
obtained in the Cmax of the CGA over the LB for sle¢ of 340 problems.
The following table shows the ANOVA results fronetexperimental analysis.

[Insert table 1 about here]
As can be seen, the number of jobsgnhd the number of machines)(are by very far, the
two most important factors that explain the respovariable, i.e. the average percentage
increase depends on the difficulty (size) of a givastance rather than to the four
controlled parameters in the experiment. With tlesult we carried out 68 different
analyses by analyzing the behavior of the four rodled parameters whem andm are
fixed to a given value from the 68 possible. Irstbase the best combinations of the four
controlled parameters depending on the difficultysiae of the instance are analyzed. For
example, fon=50 andm=20 the ANOVA table is:

[Insert table 2 about here]

Where the controlled factors, fill_in arfél do have a clear effect on the response variable

according to the P-Value. If the response variablelotted against the different levels of
the factorP, the following means plot arises:

[Insert figure 1 about here]
Figure 1 shows that an initial population of 50 esvlata is statistically worse than a
population of 60 or more schemata with no cleardrafter a population of 60. In this case,
any value ofP, but 50 results in a statistically equivalent perfance.

By following the same procedure for all 68 combimias and all parameters results the

following “best-case” calibration of the propose@& algorithm:



P, : 100;

fill_in: 8;
. e: 0.005;

d: 0.05.

4. Computational Results

In this section the performances of the proposed @@orithm and the CGA algorithm
with local search (referred to as CGALS) are comg@amgainst a representative set of
genetic algorithms as well as other methods praposthe literature.

The implemented heuristics are: the NEH heuristitNawaz et al (1983), the Simulated
Annealing of Osman & Potts (1989) (SAOP), the T&march of Widmer & Hertz (1989)
(SPIRIT), the genetic algorithms of Chen et al.989(GAChen), Murata et al. (1996)
(GAMIT), Reeves (1995) (GAReev), Ponnambalam ef24l01) (GAPAC), Aldowaisan &
Allahverdi (2003) (GAAA). We also implement recehéuristics such as the genetic
algorithm of and Ruiz et al. (2006) (GARMA), the fdifential evolution method of
Onwubolu & Davendra (2006) (DE) and the adaptiafeng approach algorithm of
Agarwal et al. (2006) that uses NEH as initialiaat{NEH_ALA).

All these algorithms are implemented in Delphi 2@0@ share datasets and functions and
are run against Taillard’s instances which compaiset of 120 problems ranging from 20
jobs and 5 machines to 500 jobs and 20 machineshwive proven to be especially
difficult in the past 10 years. For this set theisics are compared with the following

performance measure:

. H -B
% Increaséver theBestSolution= euSB"' N €Sk 1100 4)
est,,




Where Hey, is the best makespan obtained by a given algorghthBesy, is the given
optimum makespan for each instance in the OR Lybrar
(http://mscmga.ms.ic.ac.uk/jeb/orlib/flowshopinforit) or the lowest known upper bound
if the optimum makespan for that instance is yénamvn.
The response variable is, therefore, the averageeimage increase over the optimum or
lowest known upper bound for 120 instances. All algorithms are run on a Pentium IV
computer running at 3.2 GHz with 2 Gbytes of RAM noeynand the stopping criteria for
the metaheuristic methodsn¥(m/2)*60 elapsed milliseconds. This way all the algorithms
are run with the same computer for the same amaiutitne which results in comparable
results for the experiment. All tested algorithmsth the exception of the constructive
heuristic NEH are stochastic. Therefore, we rundependent replicates of each instance in
order to have a better picture of the results. fdwilts, averaged by instance size are
shown in Table 3.

[Insert table 3 about here]
Table 3 shows that the CGA algorithm with localrsba(CGALS) is considerably better
than the version without local search. Considethmag for both versions are allowed the
same CPU time we can safely observe that the hyhatidn with the IH heuristic is very
effective.
Table 3 also shows that CGALS algorithm is betteother genetic algorithms, including
the recent GARMA algorithm although the differeneath this last algorithm are small. In
any case, CGALS shows better results for most mestaizes. A simple statistical mean
test is run to check whether there are statisyicaignificant differences between the
average percentage increases obtained by theedhtfatgorithms. This test can be carried

out by means of a one-way ANOVA test. Notice tha tave 120 instances and 5



replicates for each instance and 13 different #@lyms. Therefore, the number of data
points (7,800) is large enough to ascertain a vegh power in the statistical test. The
ANOVA Table is:

[Insert table 4 about here]
We see that there are statistically significanted#nces between the different algorithms
used in the evaluation. To further clarify thesH#edences we show the following means
plot:

[Insert figure 2 about here]
This experiment confirms the idea that the CGAL§odathm has a performance which is
statistically equivalent to that of the GARMA algbm. However, this result is due to the
similarities in performance for the larger instascll the small instances, and as Table 3
shows, CGALS gives better results and this is cordd by limiting the previous
experiment to those instances. We also observeathather algorithms are statistically
worse to CGALS and GARMA, including the very rec@@A and NEH_ALA algorithms.
This extensive experimentation shows that the CGdrahm is a new and innovative
class of genetic algorithms for PFSP that has ctitiyge performance as far as genetic

algorithms and other simple approaches are congerne

5. Conclusions and future research

In this paper we have proposed the application é\& class of genetic algorithms, called
Constructive Genetic Algorithms (CGA), to the petation flowshop scheduling problem.
The CGA maintain in population parts of schedulgted schemata, where not all jobs are
given to makespan evaluation. That characteriggpears to be beneficial to the search for

good feasible complete schedules.



The simple CGA and the local search CGA have tipairameters calibrated by an
extensive design of experiments and tested agaihst genetic, tabu search and simulated
annealing algorithms. The results are very prorgisind show that the CGA is competitive
with other successful methods.

Furthermore, the CGA studied could be easily medito application in different problems
for flowshop, for example: no-wait flowshop, hybridwshop and sequence dependent

setup times (SDST flowshop).
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Figure 1: Means plot for population at the evolutiome a (P, ) factor.
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Figure 2: Means plot for the different algorithmslesated.




Source Sum of Squares Df Mean Square F-Ratio P-Value
MAIN EFFECTS
Ad 0.0580 2 0.0290 0.0400 0.9585
B:fill_in 3.6931 5 0.7386 1.0800 0.3697
C:M 545629 3 181876 265669.050.0000
D:N 2239280 16 139955 204434.430.0000
E:Pu 21.5362 5 4.3073 6.2900 0.0000
Fe 1.8928 2 0.9464 1.3800 0.2510
INTERACTIONS
AB 0.2141 10 0.0214 0.0300 1.0000
AC 0.0071 6 0.0012 0.0000 1.0000
AD 1.2082 32 0.0378 0.0600 1.0000
AE 0.1481 10 0.0148 0.0200 1.0000
AF 0.0675 4 0.0169 0.0200 0.9988
BC 2.5369 15 0.1691 0.2500 0.9986
BD 37.4064 80 0.4676 0.6800 0.9865
BE 4.5496 25 0.1820 0.2700 0.9999
BF 0.2331 10 0.0233 0.0300 1.0000
CD 419583 48 8741.3 12768.53  0.0000
CE 11.9448 15 0.7963 1.1600 0.2928
CF 0.4299 6 0.0717 0.1000 0.9959
DE 5.8213 80 0.0728 0.1100 1.0000
DF 8.9975 32 0.2812 0.4100 0.9987
EF 0.4703 10 0.0470 0.0700 1.0000
RESIDUAL 75129.8 109743 0.6846
TOTAL
(CORRECTED) 3.2797E+06 110159

Table 1: ANOVA table for the constructive genetigagithm experiment.



Source Sum of SquaresDf Mean Square F-Ratio P-Value

MAIN EFFECTS

A:d 0.2227 2 0.1113 2.57 0.0769
B:fill_in 0.5100 5 0.1020 2.35 0.0386
C:hu 0.9626 5 0.1925 4.44 0.0005
D:e 0.0796 2 0.0398 0.92 0.3992
INTERACTIONS
AB 0.2542 10 0.0254 0.59 0.8261
AC 0.3076 10 0.0308 0.71 0.7159
AD 0.0341 4 0.0085 0.2 0.9402
BC 2.2084 25 0.0883 2.04 0.0018
BD 0.1899 10 0.0190 0.44 0.9282
CD 0.7655 10 0.0766 1.77 0.0619
RESIDUAL 66.5678 1536 0.0433

TOTAL
(CORRECTED) 72.1024 1619

Table 2: ANOVA table for the constructive genetigaithm experimentr=50 andm=20)



Instances NEH GARMA SAOP SPIRIT GAChen GAReev GAMIT GAPAC GAAA CGALS CGA DE NEH_ALA

20x5 3.35 0.29 093 4.01 3.54 0.53 0.57 9.07 169 005 133 3.98 1.38
20x10 5.02 0.63 259 5.65 5.17 1.79 1.7513.10 1.60 0.19 242 5.86 2.22
20x20 3.73 0.41 233 4.84 4.29 1.40 148 980 161 0.08 2.08 4.53 1.78
50x5 0.84 0.06 048 1.90 2.14 0.19 024 700 240 0.02 0.32 4.28 0.46
50x10 5.12 1.76 3.34 5.84 6.47 2.11 3.38 16.86 9.88 165 3.72 11.48 3.44
50x20 6.31 262 447 7.46 7.86 3.60 492 18.85 1235 267 498 14.73 4.66
100x5 0.46 0.07 0.28 0.93 1.32 0.16 0.24 571 215 0.02 0.21 4.27 0.46
100x10 2.13 0.60 153 296 3.99 0.80 153 1239 7.88 0.60 146 10.42 1.54
100x20 5.23 252 468 6.26 7.99 3.32 4.87 18.65 14.27 284 452 16.08 4.49
200x10 1.43 0.43 0.99 2.06 2.72 0.48 1.00 10.17 6.95 035 099 8.34 1.30
200x20 4.52 224 414 517 7.37 2.87 418 16.95 13.75 256 3.79 1544 411

500x20 2.24 1.28 221  7.59 4.81 1.47 254 1247 1061 122 193 11.58 2.24

Average 3.37 1.08 233 4.56 4.81 1.56 2221259 710 102 231 925 2.34

Table 3: Average percentage increase over thesb&gion known for the metaheuristic algorithms. Maxm elapsed time stopping

criterion. Worst values in italics and best valurebold.



Source Sum of Squares Df Mean Square F-Ratio P-Value

Between groups 87992.2 12 7332.69 931.840000
Within groups 61309.0 7787 7.87324
TOTAL

(CORRECTED) 149301.0 7799

Table 4: ANOVA table for the evaluation of the @ifénces between algorithms



