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A Constructive Genetic Algorithm for Permutation Flowshop Scheduling 

 

Abstract 

The general flowshop scheduling problem is a production problem where a set of n jobs 

have to be processed with identical flow pattern on m machines. In permutation flowshops 

the sequence of jobs is the same on all machines. A significant research effort has been 

devoted for sequencing jobs in a flowshop minimizing the makespan. This paper describes 

the application of a Constructive Genetic Algorithm (CGA) to makespan minimization on 

flowshop scheduling. The CGA was proposed recently as an alternative to traditional GA 

approaches, particularly, for evaluating schemata directly. The population initially formed 

only by schemata, evolves controlled by recombination to a population of well-adapted 

structures (schemata instantiation). The CGA implemented is based on the NEH classic 

heuristic and a local search heuristic used to define the fitness functions. The parameters of 

the CGA are calibrated using a Design of Experiments (DOE) approach. The computational 

results are compared against some other successful algorithms from the literature on 

Taillard’s well known standard benchmark. The computational experience shows that this 

innovative CGA approach provides competitive results for flowshop scheduling problems. 
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1. Introduction 

The general flowshop scheduling problem is a production problem where a set of n jobs 

have to be processed with identical flow pattern on m machines. When the sequence of job 

processing on all machines is the same we have the permutation flowshop sequencing 

production environment. Since there is no job passing, the number of possible schedules for 

n jobs is n!. Usually, the schedule performance measure is related to an efficient resource 

utilization looking for a job sequence that minimizes the makespan; that is the total time to 

complete the schedule and the problem is then denoted as maxF/P/m/n  or as 

maxC/prmu/F  (Pinedo, 2002). 

This scheduling problem is generally modelled on the following assumptions: 

i) The operation processing times on the machines are known, fixed and some of them 

may be zero if some job is not processed on a machine; 

ii)  Set-up times are included in the processing times and they are independent of the job 

position in the sequence of jobs; 

iii)  At a time, every job is processed on only one machine, and every machine processes 

only one job; 

iv) The job operations on the machines may not be preempted. 

A significant research effort has been devoted for sequencing jobs in a flowshop with the 

objective of finding a sequence that minimizes the makespan. For problems with 2 

machines, or 3 machines under specific constraints on job processing times, the efficient 

Johnson's algorithm (Johnson, 1954) obtains an optimal solution for the problem. However, 

since this scheduling problem is NP-hard (Garey et al., 1976) the search for an optimal 

solution is of more theoretical than practical importance. Therefore, since the 1960s a 



number of heuristic methods that provide near optimal or good solutions with limited 

computation effort have been proposed for flowshop sequencing. The performance of some 

earlier heuristics was evaluated by Dannenbring (1977) and King & Spachis (1980). 

Heuristic methods can be classified according to two major categories: constructive or 

improvement methods. The constructive algorithms obtain directly a solution for the 

scheduling problem, i.e. a n-job sequence, by using some procedure which assigns to each 

job a priority or an index in order to construct the solution sequence (see for example, 

Palmer, 1965; Campbell et al., 1970; Gupta, 1971; Dannenbring, 1977; Nawaz et al., 1983; 

Koulamas, 1998; Davoud Pour, 2001; Nagano & Moccellin, 2002; Kalczynski & 

Kamburowski, 2007). An improvement method starts from a given initial solution, and 

looks for a better one normally by using some neighbourhood search procedure. 

Metaheuristics can also be considered as improvement heuristics. Within this type of 

techniques we find genetic algorithms (GAs), simulated annealing (SA), tabu search (TS) 

and other procedures or hybrid methods. 

The first proposed metaheuristics for the permutation flowshop scheduling problem (PFSP) 

are the simulated annealing algorithms by Osman & Potts (1989) and Ogbu & Smith 

(1990). Widmer & Hertz (1989), Taillard (1990), Reeves (1993) and Nowicki & Smutnicki 

(1996) demonstrated different tabu search approaches. Other algorithms are the path-based 

method of Werner (1993) or the iterated local search (ILS) of Stützle (1998). Recently, 

Rajendran & Ziegler (2004) have proposed two very effective ant-colony optimization 

(ACO) algorithms and Grabowski & Wodecki (2004) a very fast TS approach. Ruiz & 

Maroto (2005) give an updated and comprehensive review of flowshop heuristics and 

metaheuristics. Another recent review is given by Hejazi & Saghafian (2005). 



We focus now on work dealing with GAs and the PFSP. A genetic algorithm is a 

computerized iterative search optimization technique. It is based on the mechanics of 

natural selection and natural genetics. This deals with the population of solution rather than 

with a single solution. This type of algorithms provide near optimal schedules. The 

optimum value depends on the operators like crossover, mutation, number of iterations 

(‘generations’), etc. In every generation, a new set of artificial individuals (strings) is 

created. This algorithm combines survival of the fittest among string structures. 

This paper describes the application of a Constructive Genetic Algorithm (CGA) to the 

PFSP. The CGA has a number of new features compared to a traditional genetic algorithm. 

These include a population of dynamic size composed of schemata and structures, and the 

possibility of using heuristics in structure representation and in the fitness function 

definitions. 

The CGA is compared against some other successful algorithms from the literature on 

Taillard (1993) well known standard benchmark, composed of 120 different problem 

instances ranging from 20 jobs and 5 machines to 500 jobs and 20 machines. This 

benchmark contains some instances that have proved to be very difficult to solve in the past 

10 years. 

The rest of paper is organized as follows: Section 2 presents an overview of the existing 

genetic algorithms for the PFSP that are available from the literature. Section 3 describes in 

detail the new proposed genetic algorithm (CGA). An extensive comparison of CGA 

against some other successful algorithms from the literature is given in Section 4. Finally, 

in Section 5 we provide some conclusions about the study, along with some future research 

directions. 

 



2. Genetic Algorithm for the PFSP 

Flowshop scheduling is one of the most well-known problems in the area of scheduling. 

Various approaches to this problem have been proposed since the pioneering work of 

Johnson (1954). GAs have been applied to combinatorial optimization problems such as the 

traveling salesman problem and scheduling problems (see for example, Fox & McMahon, 

1991; Ishibushi et al., 1994). 

One of the earliest GAs for the PFSP was proposed by Chen et al. (1995). The initial 

population in this algorithm is generated by using several heuristic rules. The first 1m−  

population members are generated by the 1m−  sequences obtained after applying the CDS 

heuristic of Campbell et al., (1970), the mth member is obtained from the rapid access 

(RA) heuristic of Dannenbring. The remaining members are generated from simple job 

exchanges of the already generated sequences. Only crossover is applied, there is no 

mutation. The crossover operator used is the partially mapped crossover (PMX) by 

Goldberg & Ling (1985). Reeves (1995) also proposed a GA. This algorithm uses a 

different generational scheme, called “termination with prejudice” in which the offspring 

generated after each mating do not replace the parents but members of the population with 

a fitness value below average. The algorithm uses a C1 crossover, essentially similar to the 

one-point order crossover. Another remarkable feature of the algorithm is the adaptive 

mutation used. Reeves’ algorithm also initializes the population by using heuristics. In this 

case, one of the population members is generated by applying the NEH heuristic. Murata et 

al. (1996) proposed a hybrid GA with a two-point order crossover, a shift mutation and 

elitism strategy. The algorithm is hybridized with local search, which resulted in a clear 

performance gain over a non-hybrid version. Another hybrid GA is that of Reeves & 

Yamada (1998). In this case a special crossover, called multi-step crossover fusion or 



MSXF is used, coalescing a typical crossover operator with local search. Ponnambalam et 

al. (2001) valuate a GA with a generalized position crossover or GPX crossover, a shift 

mutation and random population initialization. Aldowaisan & Allahverdi (2003) have 

proposed a simple yet effective GA for the permutation flowshop with no-wait constraints. 

And more recently, Ruiz et al. (2006) have proposed two new advanced genetic algorithms 

for the problem considered here that provide good results at the expense of some added 

complexity in the proposed methods. 

 All the previously cited work on GAs lacks a methodological approach to obtain the 

correct choice of operators and parameters. Usually, authors make use of short computer 

simulations or preliminary experiments to set parameters on a “one factor at a time” basis, 

i.e. changing one parameter while maintaining the remaining factors unaltered. While this 

approach might be useful when setting some of the algorithms’ parameters, it has several 

shortcomings when setting some of the important operators (like crossover operator or 

population size). In this paper we use a more comprehensive approach for calibrating the 

operators and parameters. 

 

3. Constructive Genetic Algorithm for the PFSP 

Lorena & Furtado (2001) proposed recently the Constructive Genetic Algorithm (CGA) as 

an alternative to a traditional GA approaches, particularly, for evaluating schemata directly. 

The CGA evolves a population initially formed only by schemata, controlled by 

recombination, to a population of well-adapted structures (schemata instantiation) and 

schemata. It was applied to clustering problems (Lorena & Furtado, 2001), location 

problems and timetabling problems (Ribeiro Filho & Lorena, 2001), gate matrix layout 

problems (Oliveira & Lorena, 2002) and to point feature cartographic label placement 



problems (Yamamoto & Lorena, 2005). In this paper, the concept of CGA will be first 

described and then applied to the solution of the PFSP. 

 

3.1. CGA Modeling 

In this section the modeling phase of the CGA is described. The problem in consideration 

(in this case the PFSP) is initially formulated as a bi-objective optimization problem (BOP) 

to attain the objective of evaluating schemata and structures in a common way. Two fitness 

functions are defined on the space of all schemata and structures that can be obtained using 

a specific representation. The BOP is then indirectly solved by an evolution process 

(described in the next section) that considers the two objectives on an adaptive rejection 

threshold, which gives ranks to individuals in population and yields a dynamic population. 

Very simple structure and schema representations are implemented to the PFSP. A direct 

alphabet of symbols (natural numbers) represents the jobs permutation. The symbol # is 

used to express indetermination (# - do not care) on schemata. For example si = (1 5 3 2 4) 

is a structure representation of a PFSP with 5 jobs, while sk = (# 5 # # 4) is a possible 

schema. 

Let X be the space of all schemata and structures that can be created by this representation. 

The PFSP is modeled as the following Bi-objective Optimization Problem (BOP): 

   Min ( ) ( ){ }kk sfsg −  

(BOP)   Max ( )ksg  

   Subject to ( ) ( )kk sfsg ≥  X  s k ∈∀  



Function g is the fitness function that reflects the makespan of a given permutation of jobs 

in sk after application of NEH heuristic of Nawaz et al. (1983). Therefore, it is defined by 

the following procedure: 

• The jobs in sk are extracted in their relative order; 

• These jobs form the initial ordering for the application of the NEH; 

• After the application of the NEH heuristic, the makespan of the resulting sequence 

(which might not be a complete sequence) is the value of ( )ksg . 

The second fitness function f is defined to drive the evolutionary process to a population 

trained by a heuristic. Thus, function f is defined by the following insertion heuristic (IH): 

• One job of the schedule obtained after calculating the ( )ksg  value is extracted at 

random; 

• This job is inserted in all possible positions of the sequence and the best makespan 

obtained is retained. 

This procedure is repeated until a local optima is achieved of )s(f k  is the makespan 

obtained as a result. 

Considering the definition of function g, the maximization objective on BOP appears to be 

a contradiction. However, it is needed to give distinct treatment to structures and schemata. 

By definition, f and g are applied to structures and schemata, just differing in the amount of 

information and consequently, in the values associated to them. More information means 

larger values. Therefore, the g maximization objective in BOP drives the search for feasible 

solutions (structures) to PFSP. 



The interval minimization (g-f) shows that better individuals (schemata or structures) are 

those having little improvement by IH, which indirectly reproduces the makespan 

minimization in PFSP. 

 

3.2. Evolution Process 

The BOP defined above is not directly considered as the set X is not completely known. 

Alternatively an evolutionary process is considered to attain the objectives (interval 

minimization and g maximization) of the BOP. At the beginning of the process, two 

expected values are given to these objectives: 

• g maximization: a non-negative real number maxg  that is expected to be an upper 

bound to the PFSP makespan; 

• Interval minimization: an interval length maxgd ⋅ , obtained from maxg  considering a 

real number 1d0 ≤< , that will be the expected improvement of IH. 

The evolution process is then conducted considering an adaptive rejection threshold, which 

considers both objectives in BOP. Given a parameter 0≥α , the expression 

 ( ) ( ) ( )[ ]kmaxmaxkk sggdgdsfsg −⋅⋅α−⋅≥−       (1) 

presents a condition for rejection from the current population of a schema or structure sk. 

The right hand side of (1) is the threshold, composed of the expected value to the interval 

minimization maxgd ⋅ , and the deviation ( )kmax sgg − , that shows the difference of ( )ksg  

and maxg  evaluations. 

Expression (1) can be examined varying the value of α . For 0=α , both schemata and 

structures are evaluated by the difference g-f (first objective of BOP). When α  increases, 



schemata are most penalized than structures by the difference ggmax −  (second objective of 

BOP). 

Parameter α  is related to time in the evolution process. Considering that the good schemata 

need to be preserved for recombination, the evolution parameter α  starts from 0, and then 

increases slowly, in small time intervals, from generation to generation. The population at 

the evolution time α , denoted by αP , is dynamic in size accordingly the value of the 

adaptive parameter α , and can be emptied during the process. The parameter α  is now 

isolated in expression (1), thus yielding the following expression and corresponding rank to 

sk: 

 
( ) ( )[ ]

( )[ ] ( )k
kmax

kkmax s
sggd

sfsggd
δ=

−
−−⋅

≥α        (2) 

At the time they are created, structures and/or schemata receive their corresponding rank 

value ( )ksδ . These ranks are compared with the current evolution parameter α . The higher 

the value of ( )ksδ , and better is the structure or schema to the BOP, and they also have 

more surviving and recombination time. 

For the PFSP, the overall bound gmax is obtained at the beginning of the CGA application, 

by generating a structure and making gmax receive the g evaluation for that structure. In 

order to ensure that gmax is always an upper bound, after recombination, each new structure 

generated snew is rejected if ( )newmax sgg ≤ . 

In the case of the PFSP we have chosen to initialize the value of gmax with the NEH 

heuristic rule of Nawaz et al. (1983). In this case gmax will be the makespan of this 

constructed schedule. 

 



3.2.1. Initial Population 

The initial population is composed exclusively of schemata, where a proportion of jobs are 

replaced by labels # (indetermination). For the PFSP, the random process of creating the 

initial population of schemata is guided so that every job is present in schemata at least 

once and that for every position in the permutation there is at least one schema with a label 

different from #. Along the generations, the population increases by addition of new 

offspring generated out of the combination of two schemata aiming the structure creation. 

 

3.2.2. Selection 

There are two purposes on the evolution process: to obtain structures (good solutions to the 

g maximization objective on the BOP), and that these structures be good ones (best 

solutions to the interval minimization objective on the BOP). Thus, the population is 

maintained classified by rank (expression (2)), and the individuals with more genetic 

information (structures or semi-complete schemata) and presenting small improvements by 

heuristic IH, appear in first order places on the population. 

Two structures and/or schemata are selected for recombination. The first is called the base 

(sbase) and is randomly selected out of the first positions in αP , and in general it is a good 

structure or a good schema. The second structure or schema is called the guide (sguide) and 

is randomly selected out of the total population. The objective of the sguide selection is the 

conduction of a guided modification on sbase. 

 

3.2.3. Recombination 



In the recombination operation, the current labels in corresponding positions are compared. 

Let snew be the new structure or schema (offspring) after recombination. Structure or 

schema snew is obtained by applying the following operations: 

{Recombination} 

For i from 1 to individual length 

I -  if sbase (i) = # and sguide (i) = # then 

set snew (i) = # 

II -  if sbase (i) <> # and sguide (i) = # then 

if sbase (i) is not in snew then 

set snew (i) = sbase (i) 

else set snew (i) = # 

III -  if sbase (i) = # and sguide (i) <> # then 

if sguide (i) is not in snew then 

set snew (i) = sguide (i) 

else set snew (i) = # 

IV -  if sbase (i) <> # and sguide (i) <> # then 

if sbase (i) is not in snew then 

set snew (i) = sbase (i) 

else 

if sguide (i) is not in snew then 

set snew (i) = sguide 

else set snew (i) = # 

 



Observe that sbase is a privileged individual to compose snew, but it is not totally 

predominant. There is a small probability of the sguide gene information to be used instead of 

sbase one. 

 

3.2.4. The Algorithm 

The Constructive Genetic Algorithm can be summed up by the following pseudo-code. The 

ε increment is a linear step that increases the adaptive rejection threshold. Each distinct 

value of α  corresponds to a generation. The stop conditions occur with an emptied 

population (assured by a sufficiently higher α ) or when a predetermined stopping criterion 

is met. The population increases, after the initial generations, reaching an upper limit (in 

general controlled by storage conditions), and decreases for higher values of the evolution 

parameter α . 

 

CGA {Constructive Genetic Algorithm} 

Given gmax and d; α  := 0 ; ε; 

Initialize αP ; 

for all sk ∈ αP  do compute g(sk), f(sk), ( )ksδ ; 

while (not stop condition) do 

while (number of recombinations) do 

Select Base and Guide from αP ; 

Recombine Base and Guide; 

Evaluate Offspring; 

Update Offspring in αP ; 



end_while 

 α  := α  + ε; 

for all sk ∈ αP  satisfying α  > ( )ksδ  do 

Eliminate sk from αP ; 

end_for 

end_while 

 

The CGA algorithm begins with the recombination procedures (over schemata only) and 

the constructive process builds structures (full individuals) progressively at each 

generation. The constructive process repeatedly uses genetic information contained in two 

individuals to generate another one. However, the constructive process can be 

complemented using especially designed mutation and filling heuristics, searching for a 

better overall performance. 

The mutation is always applied to structures, no matter how they are created (after 

recombination or after the filling process). It performs an additional local search step to the 

NEH method used to define the function g, applying heuristic IH more intensively than in 

definition of function f. The insertion neighbourhood is fully examined to find a local 

optima (i.e. if after performing an insertion move, a better schedule is obtained, all insertion 

moves are performed again). 

The filling heuristic is performed whenever the offspring generated is a schema. The 

procedure is simple and can be summarized as follows: 

• Construct a vector with the missing jobs in the schema; 



• Shuffle this vector of missing jobs and apply the NEH procedure to fill the schema 

(transform it into structure). The order in which the jobs are filled in the NEH 

heuristic is taken from the shuffled vector; 

• Apply the intensive form of the local search IH to the completed structure. 

It is important to mention that the completed structures are not kept in the population. 

However, the completed structure is kept if the value of the makespan is the best found so 

far. 

 

3.2.5. Calibration of parameters by means of Design of Experiments 

As it has been mentioned, the proposed Constructive Genetic Algorithm has some 

parameters that need to be determined to attain best performance. These parameters are the 

increment ε, used for determining how fast “bad” schemata die off in the population, the 

value “d” used in the interval minimization of the BOP problem inside the CGA and two 

main parameters of the CGA, the size of the initial schemata population or αP  and the 

number of jobs that are filled in each schemata in this initial population, parameter that will 

be refered to as “fill_in”. A priori, it is expected that these four parameters would have little 

impact on the overall performance of the CGA since both d and ε affect only the evaluation 

of schemata and αP  and fill_in control the characteristics of the initial population which is 

dynamic in size anyways. 

Still, a correct and complete calibration is in order using a complete factorial design of 

experiments (DOE) (see Montgomery, 2005) for analyzing the four aforementioned factors 

at the following levels: 

• αP : 6 levels, 50, 60, 70, 80, 90 and 100; 



• fill_in: 6 levels, 5, 6, 7, 8, 9 and 10; 

• ε: 3 levels, 0.005, 0.01 and 0.015; 

• d: 3 levels, 0.05, 0.1 and 0.15. 

The total number of combinations and thus, different Constructive Genetic Algorithms is 

6*6*3*3=324. 

In order to test all these combinations we could use Taillard’s benchmark, but this would 

probably result in an algorithm calibrated for an instance set that is afterwards used for 

comparative evaluations. A better approach is to “train” or calibrate the CGA with a set of 

instances different from those used for testing. Thus, a new set of 340 difficult PFSP 

problems that come after considering different values for n and m where 

n={20,50,80,110,…,500} and m={5,10,15,20} is generated, yielding 68 combinations of n 

and m with 5 repetitions per combination where the processing times have been sampled 

from the distribution U[1,99] following the same methodology showed in Taillard (1993). 

This set of 340 problems produced 324 combinations of parameters for the CGA that were 

run with the following stopping criteria: n*(m/2)*10 elapsed milliseconds on an Athlon XP 

1600 computer (running at 1400 MHz) with 512 Mbytes of RAM. This stopping criterion 

assures that the same amount of time is allowed for every one of the 324 combinations 

running on every instance. Also, more time is given as both n and m increase in the 

instance. 

With this stopping criteria the following measure is calculated: 

100
LB

LBHeu
  BoundLower Over  Increase % sol ⋅

−
=       (3) 



Where LB is the lower bound obtained as in Taillard (1993) for any of the 340 problems. 

Therefore, the response variable in the experiment is the average percentage increase 

obtained in the Cmax of the CGA over the LB for the set of 340 problems. 

The following table shows the ANOVA results from the experimental analysis. 

[Insert table 1 about here] 

As can be seen, the number of jobs (n) and the number of machines (m) are by very far, the 

two most important factors that explain the response variable, i.e. the average percentage 

increase depends on the difficulty (size) of a given instance rather than to the four 

controlled parameters in the experiment. With this result we carried out 68 different 

analyses by analyzing the behavior of the four controlled parameters when n and m are 

fixed to a given value from the 68 possible. In this case the best combinations of the four 

controlled parameters depending on the difficulty or size of the instance are analyzed. For 

example, for n=50 and m=20 the ANOVA table is: 

[Insert table 2 about here] 

Where the controlled factors, fill_in and αP  do have a clear effect on the response variable 

according to the P-Value. If the response variable is plotted against the different levels of 

the factor αP  the following means plot arises: 

[Insert figure 1 about here] 

Figure 1 shows that an initial population of 50 schemata is statistically worse than a 

population of 60 or more schemata with no clear trend after a population of 60. In this case, 

any value of αP  but 50 results in a statistically equivalent performance. 

By following the same procedure for all 68 combinations and all parameters results the 

following “best-case” calibration of the proposed CGA algorithm: 



• αP : 100; 

• fill_in: 8; 

• ε: 0.005; 

• d: 0.05. 

 

4. Computational Results 

In this section the performances of the proposed CGA algorithm and the CGA algorithm 

with local search (referred to as CGALS) are compared against a representative set of 

genetic algorithms as well as other methods proposed in the literature. 

The implemented heuristics are: the NEH heuristic of Nawaz et al (1983), the Simulated 

Annealing of Osman & Potts (1989) (SAOP), the Tabu Search of Widmer & Hertz (1989) 

(SPIRIT), the genetic algorithms of Chen et al. (1995) (GAChen), Murata et al. (1996) 

(GAMIT), Reeves (1995) (GAReev), Ponnambalam et al. (2001) (GAPAC), Aldowaisan & 

Allahverdi (2003) (GAAA). We also implement recent heuristics such as the genetic 

algorithm of and Ruiz et al. (2006) (GARMA), the differential evolution method of 

Onwubolu & Davendra (2006) (DE) and the adaptive-learning approach algorithm of 

Agarwal et al. (2006) that uses NEH as initialization (NEH_ALA). 

All these algorithms are implemented in Delphi 2006 and share datasets and functions and 

are run against Taillard’s instances which comprise a set of 120 problems ranging from 20 

jobs and 5 machines to 500 jobs and 20 machines which have proven to be especially 

difficult in the past 10 years. For this set the heuristics are compared with the following 

performance measure: 

100
Best

BestHeu
 Solution Best  Over the Increase %

sol

solsol ⋅
−

=      (4) 



Where Heusol is the best makespan obtained by a given algorithm and Bestsol is the given 

optimum makespan for each instance in the OR Library 

(http://mscmga.ms.ic.ac.uk/jeb/orlib/flowshopinfo.html) or the lowest known upper bound 

if the optimum makespan for that instance is yet unknown. 

The response variable is, therefore, the average percentage increase over the optimum or 

lowest known upper bound for 120 instances. All the algorithms are run on a Pentium IV 

computer running at 3.2 GHz with 2 Gbytes of RAM memory and the stopping criteria for 

the metaheuristic methods is n*(m/2)*60 elapsed milliseconds. This way all the algorithms 

are run with the same computer for the same amount of time which results in comparable 

results for the experiment. All tested algorithms, with the exception of the constructive 

heuristic NEH are stochastic. Therefore, we run 5 independent replicates of each instance in 

order to have a better picture of the results. The results, averaged by instance size are 

shown in Table 3. 

[Insert table 3 about here] 

Table 3 shows that the CGA algorithm with local search (CGALS) is considerably better 

than the version without local search. Considering that for both versions are allowed the 

same CPU time we can safely observe that the hybridization with the IH heuristic is very 

effective. 

Table 3 also shows that CGALS algorithm is better all other genetic algorithms, including 

the recent GARMA algorithm although the differences with this last algorithm are small. In 

any case, CGALS shows better results for most instance sizes. A simple statistical mean 

test is run to check whether there are statistically significant differences between the 

average percentage increases obtained by the different algorithms. This test can be carried 

out by means of a one-way ANOVA test. Notice that we have 120 instances and 5 



replicates for each instance and 13 different algorithms. Therefore, the number of data 

points (7,800) is large enough to ascertain a very high power in the statistical test. The 

ANOVA Table is: 

[Insert table 4 about here] 

We see that there are statistically significant differences between the different algorithms 

used in the evaluation. To further clarify these differences we show the following means 

plot: 

[Insert figure 2 about here] 

This experiment confirms the idea that the CGALS algorithm has a performance which is 

statistically equivalent to that of the GARMA algorithm. However, this result is due to the 

similarities in performance for the larger instances. In the small instances, and as Table 3 

shows, CGALS gives better results and this is confirmed by limiting the previous 

experiment to those instances. We also observe that all other algorithms are statistically 

worse to CGALS and GARMA, including the very recent CGA and NEH_ALA algorithms. 

This extensive experimentation shows that the CGA algorithm is a new and innovative 

class of genetic algorithms for PFSP that has competitive performance as far as genetic 

algorithms and other simple approaches are concerned. 

 

5. Conclusions and future research 

In this paper we have proposed the application of a new class of genetic algorithms, called 

Constructive Genetic Algorithms (CGA), to the permutation flowshop scheduling problem.  

The CGA maintain in population parts of schedules called schemata, where not all jobs are 

given to makespan evaluation. That characteristic appears to be beneficial to the search for 

good feasible complete schedules. 



The simple CGA and the local search CGA have their parameters calibrated by an 

extensive design of experiments and tested against other genetic, tabu search and simulated 

annealing algorithms. The results are very promising and show that the CGA is competitive 

with other successful methods. 

Furthermore, the CGA studied could be easily modified to application in different problems 

for flowshop, for example: no-wait flowshop, hybrid flowshop and sequence dependent 

setup times (SDST flowshop). 
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Figure 1: Means plot for population at the evolution time α  ( αP ) factor. 
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Figure 2: Means plot for the different algorithms evaluated. 

 



Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS       

A:d 0.0580 2 0.0290 0.0400 0.9585 

B:fill_in 3.6931 5 0.7386 1.0800 0.3697 

C:M 545629 3 181876 265669.05 0.0000 

D:N 2239280 16 139955 204434.43 0.0000 

E:Pα 21.5362 5 4.3073 6.2900 0.0000 

F:ε 1.8928 2 0.9464 1.3800 0.2510 

INTERACTIONS       

AB 0.2141 10 0.0214 0.0300 1.0000 

AC 0.0071 6 0.0012 0.0000 1.0000 

AD 1.2082 32 0.0378 0.0600 1.0000 

AE 0.1481 10 0.0148 0.0200 1.0000 

AF 0.0675 4 0.0169 0.0200 0.9988 

BC 2.5369 15 0.1691 0.2500 0.9986 

BD 37.4064 80 0.4676 0.6800 0.9865 

BE 4.5496 25 0.1820 0.2700 0.9999 

BF 0.2331 10 0.0233 0.0300 1.0000 

CD 419583 48 8741.3 12768.53 0.0000 

CE 11.9448 15 0.7963 1.1600 0.2928 

CF 0.4299 6 0.0717 0.1000 0.9959 

DE 5.8213 80 0.0728 0.1100 1.0000 

DF 8.9975 32 0.2812 0.4100 0.9987 

EF 0.4703 10 0.0470 0.0700 1.0000 

RESIDUAL 75129.8 109743 0.6846     

TOTAL 

(CORRECTED) 3.2797E+06 110159      

 

Table 1: ANOVA table for the constructive genetic algorithm experiment. 



Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      

A:d 0.2227 2 0.1113 2.57 0.0769 

B:fill_in 0.5100 5 0.1020 2.35 0.0386 

C:Pα 0.9626 5 0.1925 4.44 0.0005 

D:ε 0.0796 2 0.0398 0.92 0.3992 

      

INTERACTIONS       

AB 0.2542 10 0.0254 0.59 0.8261 

AC 0.3076 10 0.0308 0.71 0.7159 

AD 0.0341 4 0.0085 0.2 0.9402 

BC 2.2084 25 0.0883 2.04 0.0018 

BD 0.1899 10 0.0190 0.44 0.9282 

CD 0.7655 10 0.0766 1.77 0.0619 

RESIDUAL 66.5678 1536 0.0433   

TOTAL 

(CORRECTED) 72.1024 1619    

 

Table 2: ANOVA table for the constructive genetic algorithm experiment (n=50 and m=20) 

 

 

 

 

 

 

 



Instances NEH GARMA  SAOP SPIRIT GAChen GAReev GAMIT  GAPAC GAAA  CGALS CGA DE NEH_ALA  

20x5 3.35 0.29 0.93 4.01 3.54 0.53 0.57 9.07 1.69 0.05 1.33 3.98 1.38 

20x10 5.02 0.63 2.59 5.65 5.17 1.79 1.75 13.10 1.60 0.19 2.42 5.86 2.22 

20x20 3.73 0.41 2.33 4.84 4.29 1.40 1.48 9.80 1.61 0.08 2.08 4.53 1.78 

50x5 0.84 0.06 0.48 1.90 2.14 0.19 0.24 7.00 2.40 0.02 0.32 4.28 0.46 

50x10 5.12 1.76 3.34 5.84 6.47 2.11 3.38 16.86 9.88 1.65 3.72 11.48 3.44 

50x20 6.31 2.62 4.47 7.46 7.86 3.60 4.92 18.85 12.35 2.67 4.98 14.73 4.66 

100x5 0.46 0.07 0.28 0.93 1.32 0.16 0.24 5.71 2.15 0.02 0.21 4.27 0.46 

100x10 2.13 0.60 1.53 2.96 3.99 0.80 1.53 12.39 7.88 0.60 1.46 10.42 1.54 

100x20 5.23 2.52 4.68 6.26 7.99 3.32 4.87 18.65 14.27 2.84 4.52 16.08 4.49 

200x10 1.43 0.43 0.99 2.06 2.72 0.48 1.00 10.17 6.95 0.35 0.99 8.34 1.30 

200x20 4.52 2.24 4.14 5.17 7.37 2.87 4.18 16.95 13.75 2.56 3.79 15.44 4.11 

500x20 2.24 1.28 2.21 7.59 4.81 1.47 2.54 12.47 10.61 1.22 1.93 11.58 2.24 

Average 3.37 1.08 2.33 4.56 4.81 1.56 2.22 12.59 7.10 1.02 2.31 9.25 2.34 

 

Table 3: Average percentage increase over the best solution known for the metaheuristic algorithms. Maximum elapsed time stopping 

criterion. Worst values in italics and best values in bold.



Source Sum of Squares Df Mean Square F-Ratio P-Value 

Between groups 87992.2 12 7332.69 931.34 0.0000 

Within groups 61309.0 7787 7.87324   

TOTAL 

(CORRECTED) 149301.0 7799    

 

Table 4: ANOVA table for the evaluation of the differences between algorithms 

 


