
115

Chapter 6

LAGRANGEAN/SURROGATE HEURISTICS FOR
p-MEDIAN PROBLEMS

Edson L. F. Senne
FEG/UNESP - Universidade Estadual Paulista
Faculdade de Engenharia - Departamento de Matemática
12500-000  Guaratinguetá, SP - Brazil

Luiz A. N. Lorena
LAC/INPE - Instituto Nacional de Pesquisas Espaciais
Av. dos Astronautas, 1758 - Caixa Postal 515
12227-010  São José dos Campos, SP - Brazil

Key words: Lagrangean and surrogate relaxation, Location problems, p-median problems.

Abstract: The p-median problem is the problem of locating p facilities (medians) on a
network so as to minimize the sum of all the distances from each demand
point to its nearest facility. A successful approach to approximately solve this
problem is the use of Lagrangean heuristics, based upon Lagrangean
relaxation and subgradient optimization. The Lagrangean/surrogate is an
alternative relaxation proposed recently to correct the erratic behavior of
subgradient like methods employed to solve the Lagrangean dual. We
propose in this paper Lagrangean/surrogate heuristics to p-median
problems. Lagrangean and surrogate relaxations are combined relaxing in
the surrogate way the assignment constraints in the p-median formulation.
Then, the Lagrangean relaxation of the surrogate constraint is obtained and
approximately optimized (one-dimensional dual). Lagrangean/surrogate
relaxations are very stable (low oscillating) and reach the same good results
of Lagrangean (alone) heuristics in less computational times. Two primal
heuristics was tested, an interchange heuristic and a location-allocation
based heuristic. The paper presents several computational tests which have
been conducted with problems from the literature, a set of instances
presenting large duality gaps, a set of time consuming instances and a large
scale instance.
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1. INTRODUCTION

The search for p-median nodes on a network is a classical location
problem. The objective is to locate p facilities (medians) so as to minimize
the sum of the distances from each demand point to its nearest facility.

Hakimi (1964), (1965) was the first to formulate the problem for locating
a single and multi-medians. He also proposed a simple enumeration
procedure to solve the problem. The problem is well known to be NP-hard
(Garey and Johnson 1979). Several heuristics have been developed for p-
median problems. Some of them are used to obtain good initial solutions or
to calculate intermediate solutions on search tree nodes. Teitz and Bart
(1968) proposed simple interchange heuristics (see also (Maranzana 1964)).
More complete approaches explore a search tree. They appeared in
Efroymson and Ray (1966), Jarvinen and Rajala (1972), Neebe (1978),
Christofides and Beasley (1982), Galvão and Raggi (1989) and Beasley
(1993). The combined used of Lagrangean relaxation and subgradient
optimization in a primal-dual viewpoint was found to be a good solution
approach to the problem (Christofides and Beasley 1982), (Galvão and
Raggi 1989), (Beasley 1993).

Beasley (1993) describes very effective heuristics for a class of location
problems. They are called Lagrangean heuristics, and use Lagrangean
relaxation and subgradient optimization. At each subgradient iteration,
Lagrangean solutions are made primal feasible maintaining the median set
and reallocating the non-medians to their nearest median. The reallocation
can be improved by interchange heuristics. Lorena and Narciso (1996)
introduced relaxation heuristics for generalized assignment problems (GAP),
using a generalized subgradient algorithm. The new relaxation presented is a
surrogate relaxation that was used before in other applications, such as set
covering problems (Lorena and Lopes 1994) and multidimensional knapsack
problems (Freville et al. 1990). Narciso and Lorena (1999) complemented
their work (Lorena and Narciso 1996) considering the combined application
of Lagrangean and surrogate relaxation for GAP problems. The new
relaxation, called Lagrangean/surrogate, was applied considering three kinds
of relaxation constraints, including the Lagrangean decomposition approach
(Narciso and Lorena 1999).

The objective of this work is to present Lagrangean/surrogate heuristics
for p-median problems. The Lagrangean/surrogate combines the two well-
known Lagrangean and surrogate relaxation for the p-median problem. The
relaxations are combined relaxing in the surrogate way the assignment
constraints in the p-median formulation. Then, the Lagrangean relaxation of
the surrogate constraint is obtained and approximately optimized (one-
dimensional dual). Previous works have confirmed that
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Lagrangean/surrogate relaxations are very stable (low oscillating) and reach
the same good results of Lagrangean (alone) heuristics in less computational
times (Freville et al. 1990), (Lorena and Lopes 1994), (Lorena and Narciso
1996), (Narciso and Lorena 1999). Two primal heuristics are tested to make
feasible the intermediate dual solutions, an interchange heuristic used before
on Beasley (1993) and a location-allocation heuristic proposed by Cooper
(1963) and used before on Taillard (1996). The set of test problems is
divided in three, one with small problems presenting large dual gaps, other
with the (hard) time consuming instances of the OR-library (Beasley 1990),
i.e., the instances for which the number of medians is about 1/3 of the
number of nodes, and a large scale instance studied on Taillard (1996).

In section two we present the Lagrangean/surrogate relaxation for p-
median problems and a summary of the theory to explain their possibly good
behavior. Section three details the subgradient heuristic. The computational
tests that have been conducted with problems from the literature are
presented in the next section. We conclude confirming that the
Lagrangean/surrogate heuristic is able to obtain good results for a number of
different p-median instances.

2. THE LAGRANGEAN/SURROGATE
RELAXATION

The p-median problem considered in this paper is modeled as the
following binary integer programming problem:
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= =

n
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ijijxd
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=

=
n
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ij 1x ;  j ∈N (1)
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ii =∑

=
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iiij xx ≤ ; i , j ∈N (3)

ijx ∈{0,1}; i , j ∈N (4)

where:

[ ijd ]n×n is a symmetric cost (distance) matrix, with iid  = 0, ∀ i;

[ ijx ]n×n is the allocation matrix, with ijx  = 1 if node i is allocated to node j,

and ijx  = 0, otherwise; iix  = 1 if node i is a median and iix  = 0, otherwise;
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p is the number of facilities (medians) to be located;
n is the number of nodes in the network, and N = {1, ..., n}.

Constraints (1) and (3) ensure that each node j is allocated to only one
node i, which must be a median. Constraint (2) determines the exact number
of medians to be located (p), and (4) gives the integer conditions.

We use here relaxation heuristics to approximately solve problem (P). A
general description for Lagrangean/surrogate relaxation appeared in Narciso
and Lorena work (1999). The surrogate and Lagrangean/surrogate relaxation
are presented as follows.

As proposed by Glover (1968), for a given λ ∈ nR + , a surrogate
relaxation of (P) can be defined by:

v( λSP )  =  min  ∑ ∑
= =

n
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n
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jijjx (5)

and (2), (3) and (4).

The optimal value v(SPλ) is less than or equal to v(P), and its best value

can result in a surrogate dual 
0

max
≥λ

v(SPλ). The surrogate function s: nR + →

R, (λ, v(SPλ)) has some properties that make it difficult to find a dual
solution. Some methods proposed in the literature find the approximate
solution of the surrogate dual, such as that of Dyer (1980) and Karwan and

Rardin (1979). Note here that problem (SPλ) can not be easily solved, as it is
an integer linear problem with no special structure to explore. See (Parker
and Rardin 1988) for a book describing Lagrangean and surrogate
relaxations.

Due to the difficulties with relaxation (SPλ) we proposed to relax again
the problem, now in the Lagrangean way. For a given t ≥ 0, constraint (5) is
relaxed, and the Lagrangean/surrogate relaxation is given by:

v( λSPL t ) = min ∑∑ ∑
= = =

λ+λ−
n

1j

n
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n
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jijjij tx)td(

( λSPL t ) subject to (2), (3) and (4).

For given t ≥ 0 and λ ∈ nR + , v( λSPL t ) ≤ v( λSP ) ≤ v(P). ( λSPL t ) is

solved considering implicitly constraint (2) and decomposing for index i,
obtaining the following n problems:



Chapter # 119

min  ∑
=
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subject to (3) and (4).

Each problem is easily solved by letting:

∑
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and choosing I as the index set of the p smallest βi (here constraint (2) is

considered implicitly). Then, a solution λ
ijx  to problem ( λSPL t ) is:
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The Lagrangean/surrogate solution is given by:

∑ ∑
= =
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n
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jiiit tx)SPL(v

The interesting characteristic of relaxation ( λSPL t ), is that for t = 1 we
have the usual Lagrangean relaxation using the multiplier λ. For a fixed
multiplier λ, the best value for t can be found by solving a Lagrangean dual:

( λ
tD ) v( λ

tD ) = 
0t

max
≥

 v( λSPL t ).

It is immediate that v( λSP ) ≥ v( λ
tD ) ≥ v( λSPL1 ). It is well known that

the Lagrangean function l: +R  → R, (t, v( λSPL t )) is concave and
piecewise linear (Parker and Rardin 1988). The best Lagrangean/surrogate
relaxation value gives an improved bound to the usual Lagrangean

relaxation. An exact solution to ( λ
tD ) may be obtained by a search over

different values of t (see Minoux (1975) and Handler and Zang (1980)).
However, in general, we have an interval of values t0 ≤ t ≤ t1 (with t0=1 or
t1=1) which also produces improved bounds (see Figure 1, for the case t1=1).
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Figure 1. Lagrangean/surrogate bounds

So, in order to obtain an improved bound to the usual Lagrangean
relaxation it is not necessary to find the best value t*, as is enough to find a
value T such as t0 ≤ T ≤ t1. To find the approximate best
Lagrangean/surrogate multiplier T we have used the following search
procedure:

Search Heuristic (SH)

Let
s be the initial step size;
k be the number of iterations;
kmax be the maximum number of iterations;
t0 be the initial value of Lagrangean/surrogate multiplier;
t be the current value of Lagrangean/surrogate multiplier;
T be the value of Lagrangean/surrogate multiplier;

z be the maximum value of )SPtL( λ ;
Set

k = 0;
z = 0;
t = t0;
T = t;

+t = −t = undefined;
Repeat

k = k + 1;

Solve )SPtL( λ  obtaining xλ
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If ( )SPL(v t
λ  > z) then

z = )SPL(v t
λ ;

T = t;

Calculate µλ = ∑ ∑
= =

λ










−λ

n

1j

n

1i
ijj x1 (µλ is the slope of the

Lagrangean/surrogate function);

If (µλ < 0) then
−t = t;

z − = z;
If ( +t is undefined) then

t = t + s;
Else

Try to improve the current multiplier solving

)SPL(
)zz/()tztz(

λ
++ −+−−++ , updating T if necessary and Stop.

End_If
Else

+t = t;
z + = z;
If ( −t is undefined) then

t = t – s;
Else

Try to improve the current multiplier solving

)SPL(
)zz/()tztz(

λ
++ −+−−++ , updating T if necessary and Stop.

End_If
End_If

Else

Try to improve the current multiplier solving )SP2/stL( λ
− , updating T

if necessary and Stop.
End_If

Until (k < kmax).

3. THE SUBGRADIENT HEURISTIC

The following general subgradient algorithm is used as a base to the
relaxation heuristics proposed in this work. In this algorithm, C =

}1x|i{ ii = is the set of nodes already fixed as medians.
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Subgradient Heuristic (SubG)

Given λ ≥ 0, λ ≠ 0;
Set lb = -∞, ub = +∞, C = ∅;
Repeat

Solve relaxation ( λSPLT ) obtaining λx  and v( λSPLT );
Obtain a feasible solution xf  and their value vf using xf;

Update lb = max [lb, v( λSPLT )];
Update ub = min [ub, vf];

Fix iix = 1 if v( λSPLT
  iix = 0 ) ≥ ub, i ∈ N - C;

Update the set C accordingly;

Set ∑
=

λλ −=
n

1i
ijj x1g , j ∈ N;

Update the step size θ;

Set λj = max { 0, λj + θ λ
jg  }, j ∈ N;

Until (stopping tests).

In this algorithm, T is the approximately best value for t* obtained by the
procedure SH described in section two. SH results in a multiplier T that is
used in the Lagrangean/surrogate relaxation. However, if the search
procedure SH produces the same multiplier T for n_consec consecutive
iterations of SubG, then the next Lagrangean/surrogate relaxations will use
this fixed value T as the multiplier and the search is no more performed. In
this work we have used the following parameter values in SH: [ s = 0.5, t0 =
0.0, kmax = 10, n_consec = 5 ]. The initial λ used is }d{min ij

Ni
j

∈
=λ , j ∈ N.

The step sizes used are: θ = π (ub - lb) / || gλ ||
2

. The control of parameter π is
the Held and Karp (1971) classical control. It makes 0 ≤ π ≤ 2, beginning
with π = 2 and halving π whenever lb does not increase for 30 successive
iterations. The stopping tests used are:
a) π ≤ 0.005;
b) ub - lb < 1;

c) || gλ ||
2

 = 0
d) Every median was fixed.

Solution xλ is not necessarily feasible to (P), but the set I identifies
median nodes that can be used to produce feasible solutions to (P). The non-
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median nodes are reallocated to their nearest medians producing the initial xf

as:



 ∈
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otherwise,0
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x iif

and for all  i ≠ k:
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ij
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Solutions xf are calculated at each iteration of SubG while π is not
halved, but it produces poor upper bounds. It can be improved by two
additional heuristics. A location-allocation heuristic based in the works of
Cooper (1963) and Taillard (1996) is used whenever lb improves. Besides,
the interchange heuristic suggested by Beasley (1993) is used when π is
updated to π/2.

Considering that in expression (6) the βi (i ∈ N) are sorted in ascending
order, the interchange heuristic applies the following procedure:

Interchange Heuristic (IH)

Set

)d(minU
n

1j
ij

Ii
∑
= ∈

= , corresponding to the solution xλ associated with the

current maximum lower bound lb.
m = p/10;

For j = p+1 to p+m do
For i = 1 to p; i ∉ C do

Interchange βi with βj, updating I accordingly;

)d(minv
n

1j
ij

Ii
f ∑

= ∈
=

If  vf < U  then
U = vf

Else
interchange βi with βj and update I

End_If
End_For

End_For
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If  U < ub  then
ub = U

End_If.

The location-allocation heuristic (LAH) is based on the observation that
after the definition of xf, exactly p clusters can be identified, C1, C2, ..., Cp,
corresponding to the p medians and their allocated non-medians. Solution xf

can be improved searching for a new median inside each cluster, swapping
the current median by a non-median and reallocating. If the set I changes we

recalculate )d(minv
n

1j
ij

Ii
f ∑

= ∈
= , and if the new solution is better, we can

repeat the reallocation process inside the new clusters, and all the process
until no more improvements are reached.

4. COMPUTATIONAL TESTS

The Lagrangean/surrogate heuristics discussed above were programmed
in C and run on a Sun Ultra30 workstation (compiled using gcc compiler
with -O2 optimization option).

An initial set of instances used for the tests is drawn from OR-Library
(Beasley 1990), and can be considered easy problems for Lagrangean
approaches in the sense of duality gaps. The gaps can be almost all closed
(Beasley 1993). The second set of instances was obtained from the work of
Galvão and ReVelle (1996), and although small (n = 100 and n = 150), the
instances present duality gaps larger than 1% for some values of p (number
of medians). They can be considered hard instances for Lagrangean
approaches in the sense of duality gaps. The final instance is the Pcb3038
instance in the TSPLIB, compiled by Reinelt (1998).

For this work the objective is to show that Lagrangean/surrogate
heuristics have good performance in reduced computational times. The first
set of instances are the time consuming instances of the OR-Library. The
instances (n = 700, p = 233), (n = 800, p = 267) and (n = 900, p = 300) were
not considered in the OR-Library and their optimal values were obtained
running the Lagrangean/surrogate heuristic searching for the optimality
condition ub - lb < 1. The second set of instances (Galvão and ReVelle 1996)
is included to show the behavior of the heuristics on problems presenting
intrinsic large duality gaps for some p values. These two first set of instances
were randomly generated and present different characteristics in comparison
with the Pcb3038 instance, which correspond to spatially distributed points.
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In order to show that Lagrangean/surrogate heuristics reach the same
good results of Lagrangean heuristics and to assess the efectiveness of the
proposed procedures, we have collected the results obtained by the usual
Lagrangean heuristic as well. The results are reported in the tables below,
where the results for Lagrangean (alone) heuristic are shown enclosed in
brackets. In these tables, all the computer times shown exclude the time
needed to setup the problem. Each table contains:

a) the optimal (or the best known) solution for the instance;
b) gap_ub = (100 * [ub - optimal] / optimal), is the percentage deviation

from optimal (or the best known) to the best feasible solution value
found by the corresponding heuristic procedure;

c) gap_lb = (100 * [optimal - lb] / optimal), is the percentage deviation
from optimal (or the best known) to the best relaxation value found by
the corresponding heuristic procedure;

d) nLr = the number of Lagrangean relaxations solved. It is important to
observe that for Lagrangean heuristic the number of Lagrangean
relaxations is also the number of subgradient iterations. For
Lagrangean/surrogate heuristic however, the number of Lagrangean
relaxations solved includes the relaxations solved by the procedure SH
discussed in Section 2 and, therefore, it is greater than the corresponding
number of subgradient iterations.

e) the total computational time (in seconds).

The results of Table 1 show that almost all gaps are closed confirming
that the OR-Library instances can be considered easy instances also to the
Lagrangean/surrogate approach. In order to compare the computational
behavior of the usual Lagrangean and Lagrangean/surrogate heuristics we

have plotted (see Figure 2) the values of v(LtSPλ) obtained at each iteration
from these heuristics for the problem n = 600 and p = 200. We can observe
that the sequence of Lagrangean/surrogate relaxations is more stable than the
corresponding Lagrangean ones. The local searches in SH at the first
iterations of SubG accelerated the overall convergence of the
Lagrangean/surrogate, although without loss of quality in duality bounds.
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Figure 2. Typical computational behavior

The results obtained for the data set from Galvão and ReVelle (1996),
which presents intrinsic duality gap instances, are shown in Table 2. Table 3
reports the results on the Pcb3038 instances (n = 3038). For this last data set
the location-allocation heuristic was particularly important at the primal
feasibility phase, since the interchange heuristic proved ineffective in this
case.

Table 1 - Computational results for OR Library (Beasley 1990) instances

n p
optimal
solution gap_ub gap_lb nLr Total time

100 33 1355 − (−) − (−) 237 (226) 0.58 (0.66)
200 67 1255 − (−) − (−) 274 (253) 4.00 (4.00)
300 100 1729 − (−) − (−) 252 (316) 16.78 (20.37)
400 133 1789 − (−) − (−) 244 (348) 51.80 (60.35)
500 167 1828 − (−) − (−) 272 (312) 127.60 (171.20)
600 200 1989 − (−) − (−) 286 (306) 257.02 (302.16)
700 233 1847 − (−) − (−) 239 (240) 482.97 (488.09)
800 267 2026 − (−) − (−) 367 (310) 1374.74 (1387.71)
900 300 2106 0.047 (0.047) 0.004 (0.001) 446 (391) 3058.65 (3212.46)
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Table 2 - Computational results for Galvão and ReVelle (1996) instances

n p
optimal
solution gap_ub gap_lb nLr Total time

100 5 5703 − (−) 0.342 (0.447) 496  (485) 0.43 (0.42)
10 4426 2.643 (2.553) 3.725 (3.730) 500  (472) 0.53 (0.50)
15 3893 0.745 (0.745) 0.894 (0.899) 444  (433) 0.65 (0.64)
20 3565 − (0.084) 0.084 (0.083) 432  (443) 0.81 (0.83)
25 3291 − (−) 0.059 (0.060) 426  (394) 0.99 (0.94)
30 3032 0.066 (0.066) 0.063 (0.060) 444  (443) 1.18 (1.20)
40 2542 − (−) − (−) 196  (194) 0.59 (0.62)
50 2083 − (−) − (−) 166  (184) 0.44 (0.69)

150 5 10839 − (−) 1.404 (1.401) 482  (489) 0.85 (0.86)
10 8729 0.642 (0.252) 3.163 (3.151) 529  (484) 1.14 (1.06)
15 7390 1.353 (0.731) 4.895 (4.900) 602  (588) 1.52 (1.51)
20 6454 3.424 (3.595) 2.967 (2.969) 460  (509) 1.60 (1.66)
25 5875 1.498 (2.060) 1.010 (1.013) 458  (455) 1.92 (1.92)
30 5495 1.201 (0.564) 0.209 (0.209) 425  (502) 2.28 (2.41)
40 4907 0.061 (0.143) 0.068 (0.071) 418  (399) 3.08 (3.02)
50 4374 − (−) 0.063 (0.070) 456  (413) 3.93 (3.84)

Table 3 - Computational results for Pcb3038 instances (Reinelt 1998)

p
best known

solution gap_ub gap_lb nLr Total time
100 352704.86 2.858 (3.311) 0.098 (0.108) 494  (431) 661.76 (599.01)
150 281193.96 3.916 (4.304) 0.090 (0.086) 448  (446) 658.49 (669.10)
200 238432.02 2.726 (3.770) 0.105 (0.115) 456  (365) 712.98 (592.07)
250 209241.25 2.306 (2.360) 0.060 (0.062) 434  (444) 715.88 (742.98)
300 187723.46 1.305 (2.508) 0.056 (0.059) 411  (421) 719.04 (737.76)
350 170973.34 2.067 (2.093) 0.050 (0.055) 398  (352) 731.50 (640.66)
400 157030.46 1.630 (1.433) 0.012 (0.015) 404  (385) 919.79 (738.71)
450 145422.94 1.612 (2.341) 0.056 (0.059) 355  (435) 745.86 (847.33)
500 135467.85 2.344 (2.131) 0.040 (0.042) 333  (366) 684.82 (738.19)

In order to avoid the effect of spurious stop tests and to show that the
Lagrangean/surrogate sequences are more stable and faster than their
Lagrangean counterpart we have collected the computational times
necessary to reach some percentage deviations from optimal of lower bound
as found by Lagrangean/surrogate heuristic (LSH) and Lagrangean heuristic
(LH), for each instance. The results are reported in the tables below, which
show the ratios (computational time for LSH) / (computational time for LH)
for OR Library instances and Pcb3038 instances (the most time consuming
instances), and the average ratios.
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Table 4 - Ratios (Time for LSH) / (Time for LH) for OR Library instances
Percentage deviations from optimal of lower bound

n p 5% 4% 3% 2% 1%
100 33 0.78 0.78 0.78 0.75 0.80
200 67 0.64 0.64 0.66 0.74 0.74
300 100 0.57 0.58 0.57 0.40 0.71
400 133 0.34 0.66 0.66 0.66 0.74
500 167 0.54 0.54 0.37 0.70 0.70
600 200 0.53 0.68 0.68 0.68 0.75
700 233 0.52 0.67 0.67 0.67 0.67
800 267 0.68 0.68 0.68 0.68 0.75
900 300 1.02 1.01 1.01 0.68 1.00

Average ratio = 0.68

Table 5 - Ratios (Time for LSH) / (Time for LH) for Pcb3038 instances

Percentage deviations from optimal of lower bound
n p 5% 4% 3% 2% 1%

3038 100 0.70 0.82 1.02 1.07 1.14
150 0.75 0.95 1.34 1.12 1.09
200 0.71 0.83 1.04 1.01 1.00
250 0.78 0.79 0.85 0.85 0.78
300 0.61 0.75 0.84 0.74 0.95
350 0.63 0.69 0.82 0.83 0.85
400 0.84 1.14 1.06 1.06 1.13
450 0.59 0.74 0.74 0.77 0.81
500 0.75 0.78 0.78 0.81 0.71

Average ratio = 0.87

5. CONCLUSION

This work considers Lagrangean/surrogate heuristics for p-median
problems. The Lagrangean/surrogate approach was able to generate as good
approximate solutions as the obtained by the traditional Lagrangean
approach. However, the combination of relaxations in Lagrangean/surrogate
heuristic seems to be interesting to reduce the computational times, mainly
for large instances of p-median problems.

For the same initial multiplier, the Lagrangean/surrogate relaxation
explores different subgradient directions than the Lagrangean (alone)
counterpart. The local optimization on SH corrects wrong step sizes while
maintain convergence conditions for the subgradient method. Other
subgradient methods considered applicable on Lagrangean relaxation context
could be improved by the Lagrangean/surrogate approach.
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The use of interchange or location-allocation heuristics proved to be
useful for the primal feasibility of intermediate dual solutions. The approach
used here has been shown flexible and fast for large-scale real data obtained
using Geographical Information Systems. We hope that this feature can be
explored for even large-scale problems to produce high quality approximate
solutions at reasonable computational cost.
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