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Abstract

The search for p-median vertices on a network (graph) is a classical location problem.

The p facilities (medians) must be located so as to minimize the sum of the distances

from each demand vertex to its nearest facility. The Capacitated p-Median Problem

(CPMP) considers capacities for the service to be given by each median. The total

service demanded by vertices identified by p-median clusters cannot exceed their service

capacity. Primal-dual based heuristics are very competitive and provide simultaneously

upper and lower bounds to optimal solutions. The Lagrangean/surrogate relaxation has

been used recently to accelerate subgradient like methods. The dual lower bound have

the same quality of the usual Lagrangean relaxation dual but is obtained using modest

computational times. This paper explores improvements on upper bounds applying local

search heuristics to solutions made feasible by the Lagrangean/surrogate optimization

process. These heuristics are based on location-allocation procedures that swap medians

and vertices inside the clusters, reallocate vertices, and iterate until no improvements

occur. Computational results consider instances from the literature and real data

obtained using a geographical information system.

Key words: Location problems, Capacitated p-median problems, Clustering,
Lagrangean/surrogate relaxation, Subgradient method.
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1. Introduction

Clustering problems generally appear in classification of data for some purpose like

storage and retrieval or data analysis. Any clustering algorithm will attempt to determine

some inherent or natural grouping in the data, using “distance” or “similarity” measures

between individual data (Spath [17]). In this paper we examine local search heuristics to

a clustering problem in graphs, namely, the capacitated p-median problem (CPMP).

The search for p-median vertices on a network (graph) is a classical location problem.

The objective is locate p facilities (medians) so that the sum of the distances from each

demand vertex to its nearest facility is minimized. The CPMP considers capacities for the

service to be given by each median. The total service demanded by vertices identified by

p-median clusters cannot exceed their service capacity.

Apparently the CPMP problem is not as intensively studied as the classical p-median

problem. Mulvey and Beck [13] examine the Lagrangean relaxation of assignment

constraints in a 0-1 linear integer programming problem formulation.  A primal

assignment heuristic is embedded within a subgradient method, improved by

interchanging medians in clusters. Koskosidis and Powell [7] improve the Mulvey and

Beck’s results suggesting various algorithms to find initial solutions for knapsack

problems (Lagrangean subproblems). In the same lines Bramel and Simchi-Levi [1] solve

a similar problem considering fixed costs. Osman and Christofides [15] apply variations

of simulated annealing and tabu search to obtain good approximated solutions to the

problem, improving an initial set of medians.  An extensive bibliography of related

problems, and a set of test problems is also presented in [15]. Similar problems also



3

appear in Klein and Aronson [6], Mulvey and Beck [13] and Maniezzo, Mingozzi and

Baldacci [11].

The Lagrangean/surrogate approach presented in this paper goes in the lines of the early

Lagrangean heuristics, considering a binary integer programming formulation. The

Lagrangean/surrogate relaxation has been used recently to accelerate subgradient-like

methods, which are often used to optimize the corresponding Lagrangean dual problem.

It was tested before with success on Set Covering problems [8], Generalized Assignment

problems [9,14] and some Location problems [10,16]. Narciso and Lorena [14] coined

the name Lagrangean/surrogate for this kind of relaxation. The Lagrangean/surrogate

dual bound has the same quality of the usual Lagrangean dual bound but is obtained with

modest computational times.

This paper explores improvements on upper bounds, the Lagrangean/surrogate primal

counterpart. The Lagrangean/surrogate relaxation is combined with location-allocation

heuristics, proposed by Cooper [2] and used before on Taillard [18] and Senne and

Lorena [16]. The heuristics improve solutions made feasible by the Lagrangean/surrogate

optimization process, swapping medians and vertices inside the clusters, reallocating

vertices, and iterating until no more improvements occur. One of the goals of our

approach is to apply to a large scale real data obtained using Geographic Information

Systems. Our proposal compares favorably to some metaheuristics and seems to be

indicated to real data due to small computational times.

The paper is organized in the following sections. Section 2 summarizes the

Lagrangean/surrogate approach. The Lagrangean/surrogate heuristic to CPMP is

presented in section 3. Section 4 presents the local search heuristics and section 5 the
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computational results for a set of classical instances and a set of real data collected at the

central area of a Brazilian 500,000 inhabitant’s city.

2. Lagrangean/Surrogate Approach

The Lagrangean/surrogate approach is a successful substitute to the ordinary Lagrangean

relaxation. The Lagrangean/surrogate dual bound has the same quality as the usual

Lagrangean dual bound but is obtained with modest computational effort. A general

description for Lagrangean/surrogate relaxation appears in [10] and [14]. This section

reviews the Lagrangean/surrogate relaxation for a general 0-1 linear integer

programming. The next section applies the Lagrangean/surrogate relaxation to CPMP.

Let us suppose, in general, the following 0-1 linear programming problem:

                                       cxMinPv =)(

,
,)(

eDx
bAxtosubjectP

≥
≥

                                                     x n∈{ , }0 1

where  c R A R b R D R and e Rn mxn m pxn p∈ ∈ ∈ ∈ ∈, , , .

Think eDx ≥  as the easily enforced constraints and bAx ≥  as complicating ones.

Defining  X = {x n∈{ , }0 1 | eDx ≥ }, for a given multiplier   mR+∈λ  the Lagrangean

relaxation of  ( )P  is:

)( λLP  
.

)}({)(
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The Lagrangean dual is then the optimization problem in  λ , that is:
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The Lagrangean multipliers can be considered surrogate multipliers for the same set of

constraints relaxed, and a new Lagrangean relaxation is identified for the surrogate

constraint.  The surrogate problem of (P) is:

( )SPλ
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Frequently  ( )SPλ  is a difficult problem (like (P)) justifying a Lagrangean relaxation of

the surrogate constraint in problem ( )SPλ . Given a λ ∈ +Rm  , and a parameter  t ≥ 0, the

Lagrangean/surrogate relaxation of (P)  is then defined by:

)( λtLP                                
.

)}({)(
Xxtosubject

bAxtcxMinLPv t

∈
−−= λλ

Figure 1: Lagrangean/surrogate bounds.
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Parameter t is called Lagrangean/surrogate multiplier and the Lagrangean multipliers λ

are scaled by t. If t = 1 the Lagrangean/surrogate is the usual Lagrangean relaxation using

the multiplier λ. Considering the duality theory, it is well known that the Lagrangean

function is concave and piecewise linear (see Figure 1). The best Lagrangean/surrogate

multiplier t* is obtained solving the dual )()]([)( *

0

λλλ tt

t
t LPvLPvMaxDv ==

≥
. However, in

general, we have an interval of values  t0 ≤ T ≤ t1 (with t0 = 1 or t1 = 1) which also

produces improved bounds for the usual Lagrangean relaxation (in Figure 1 we set,

arbitrarily, t1 1= ).

The following naive line search is used to approximately solve )( λ
tDv , calculating a  T

belonging to the interval  10 tTt ≤≤  ( 10 =t or 11 =t ):

Search Heuristic (SH)

s is the initial step size;
k is the number of iterations;
kmax is the maximum number of iterations;
tinit is the initial value of Lagrangean/surrogate multiplier;
t is the current value of Lagrangean/surrogate multiplier;
tleft is the current best left-approximate value for t*;
tright is the current best right-approximate value for t*;
T is the value of Lagrangean/surrogate multiplier (the best approximate value found

for t*);
zleft is the value of )( λtLP  for t = tleft;

zright is the value of )( λtLP  for t = tright;

z is the maximum value found for )( λtLP , that is, the value of )( λTLP ;

Set
k = 0;
z = 0;
t = tinit;
T = t;
tleft = tright = undefined;
zleft = zright = undefined;

While (k < kmax) do
k = k + 1;
Solve )( λtLP  obtaining λx ;

If ( )( λtLPv  > z ) then
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z = )( λtLPv ;
T = t;

Calculate µλ = )bAx( −λ λ (µλ is the slope of the Lagrangean/surrogate function);

If ( µλ > 0 ) then
tleft = t;
zleft = z;
If ( tright is undefined ) then

t = t + s;
Else

t = 
zrightzleft

zrighttrightzlefttleft
+

×+×
;

If ( )( λtLPv  > z ) then

z = )( λtLPv ;
T = t;

End_If
Stop.

End_If

Else
tright = t;
zright = z;
If ( tleft is undefined ) then

t = t – s;
Else

t = 
zrightzleft

zrighttrightzlefttleft
+

×+×
;

If ( )( λtLPv  > z ) then

z = )( λtLPv ;
T = t;

End_If
Stop.

End_If
End_If

Else

2
s

tt −= ;

If ( )( λtLPv  > z ) then

z = )( λtLPv ;
T = t;

End_If
Stop.

End_If
End_While.
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The Lagrangean/surrogate relaxation can provide better bounds than their Lagrangean

(alone) counterpart. For a fixed λ  and T (after the SH application), the following

inequalities are valid:

).()()()()()( PvDvSPvDvLPvLPv t
T ≤≤≤≤≤ λ

λλλλ

The Lagrangean dual )( λD  is optimized by a subgradient method. If the

Lagrangean/surrogate relaxation is used, the new dual )( λtD will have the same bound as

)( λD , but the sequence of )( λTLPv  can provide better bounds than the sequence )( λLPv ,

accelerating the subgradient method.

3. Lagrangean/Surrogate application to CPMP

The CPMP is known to be NP-hard and some earlier approaches applying Lagrangean

heuristics to CPMP are proposed in Koskosidis and Powell [7] and in [13]. Recent

approaches apply metaheuristics, such as simulated annealing and tabu search (as in

França, Sosa and Pureza [4] and in [15]), and genetic algorithms (Maniezzo, Mingozzi

and Baldacci [11]). Good results are reported for a set of standard test problems (OR-

Library - http://mscmga.ms.ic.ac.uk/info.html).

The CPMP considered in this paper is modeled as the following binary integer

programming problem:

v(CPMP)   =   Min    ∑ ∑
∈ ∈Ni Mj

ijij xd (1)

(CPMP) subject to ∑
∈

=
Mj

ijx 1  ;  i ∈N (2)
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py
Mj

j =∑
∈

    (3)

jjij
Ni

i yQxq ≤∑
∈

 ; j ∈M (4)

yj ∈{0,1}; xij ∈{0,1}; i ∈N, j ∈M (5)

where:

N = {1,...,n} is the index set of entities to allocate and M = {1,...,m} is the index set of

possible medians, where  p  medians will be located;

qi is the demand of each entity and Qj the capacity of each possible median;

[dij]n×m is a distance matrix;

[xij]n×m is the allocation matrix, with xij=1 if entity i is allocated to median j, and xij=0,

otherwise; yj = 1 if median j is selected and yj = 0, otherwise.

Constraints (2) and (3) enforce that each entity is allocated to only one median.

Constraint (4) imposes that a total median capacity must be respected, and (5) gives the

integer conditions.

For a given λ ∈ nR +  and t ≥ 0 the Lagrangean/surrogate relaxation of CPMP is given by:

)( λtLCPMPv  = Min ∑ ∑ ∑
∈ ∈ ∈

+−
Ni Mj Ni

iijiij txtd λλ )( (6)

)( λtLCPMP subject to (3), (4) and (5).

Problem )( λtLCPMP  is solved considering the implicit constraint (3). Decomposing by

index j, the following m 0-1 knapsack problems are obtained:
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)( jknapv  = Min ∑
∈

−
Ni

ijjij xtd )( λ (7)

subject to (4) and (5).

Each problem is solved using the Horowitz and Sahni code (see Martello and Toth [12]).

Let J be the index set of the p smallest )( jknapv , j ∈ M (here constraint (3) is considered

implicitly). The Lagrangean/surrogate value is given by:

)( λtLCPMPv = ∑ ∑
∈ ∈

+
Jj Ni

i
j tknapv λ)( . (8)

The best Lagrangean/surrogate relaxation value gives an improved bound to the usual

Lagrangean relaxation. To find an approximated best Lagrangean/surrogate multiplier T

we have used the search procedure SH described in section 2.

The following general subgradient algorithm is used to optimize the

Lagrangean/surrogate dual. It combines the Lagrangean/surrogate bounds with improved

primal feasible solutions.

Subgradient Heuristic (SubG)

Given λ ≥ 0, λ ≠ 0;

Set lb = -∞, ub = +∞;

Repeat

Solve relaxation )( λTLCPMP  obtaining λx  and )( λTLCPMPv ;

Obtain a feasible solution fx  and their value vf using fx (see section 4);

Update lb = max [lb, )( λTLCPMPv ];
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Update ub = min [ub, vf];

Set ∑
∈

−=
Mj

iji xg λλ 1 , i ∈ N;

Update the step size θ;

Set λi = max { 0, λi + θ λ
ig  }, i ∈ N;

Until (stopping tests).

In this algorithm, T is the approximately optimal value for t obtained by the procedure SH

(with parameters s = 0.25, kmax = 10 and tinit = 1.0). The multiplier T is updated for each

iteration of SubG. However, if the procedure SH produces the same multiplier T for 5

consecutive iterations of SubG, then the next Lagrangean/surrogate relaxations will use

this fixed value T as the multiplier and the search SH is not performed.

The initial λ used is }{min ijMji d
∈

=λ , i ∈ N. The step sizes used are: θ = π (ub - lb) / || gλ
 
||

2
.

The control of parameter π is the Held and Karp [5] classical control. It makes 0 ≤ π ≤ 2,

beginning with π = 2 and halving π whenever lb does not increase for 30 successive

iterations. The stopping tests used are:

a) π ≤ 0.005;

b) ub - lb < 1;

c)  || gλ ||
2
 = 0.
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4. The Local Search Heuristics

The Lagrangean/surrogate approach described in section 3 is integrated with local search

heuristics to make primal feasible a sequence of intermediate dual solutions. These

heuristics will be described as follows.

Solution λx  in procedure SubG is not necessarily feasible to CPMP, but the set J

identifies median nodes that can be used to produce feasible solutions. In order to allocate

the non-median nodes to the identified set of medians we approximately solve the

following generalized assignment problem:

Max ∑∑
∈ ∈Ni Jj

f
ijij xp (9)

(GAP) subject to: j
f

ij
Ni

i Qxq ≤∑
∈

, j ∈ J (10)

∑
∈

=
Jj

f
ijx 1 , i ∈ N (11)

}1,0{∈f
ijx , i ∈ N ; j ∈ J (12)

where ijij dp −=  (i ∈ N ; j ∈ J) is the profit of node i if assigned to median j.

The algorithm MTHG proposed in [12] is used to provide approximated solutions fx  to

GAP. Heuristic MTHG uses  fij = pij  as a measure of the “desirability” of allocating item

i  to median  j. It iteratively considers all the unallocated items, determining the item  i’

having the maximum difference between the largest and the second largest  fij  (i ∈ N);  i’

is then assigned to the knapsack for which  fi´j is a maximum. If the solution obtained is

feasible, in a second part of the algorithm the current solution is improved through local

exchanges.
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Solution fx  is further improved by an additional location-allocation heuristic (LAH)

based on the observation that after the definition of fx  exactly p clusters can be

identified, C1, ..., Cp, corresponding to the p medians and their allocated non-medians.

Solution fx  can be improved by searching for a new median inside each cluster,

swapping the current median by a non-median and reallocating. If the set J changes we

recalculate the fx  value on the new GAP, and if the new solution is better, we can repeat

the reallocation process inside the new clusters, and the process until no improvements

occur.

Specifically, in order to improve solutions fx  we have used the following heuristic:

Location-Allocation Heuristic (LAH)

For each cluster jC  ( j = 1, ..., p) let mj ∈ Cj be the index of the median in the cluster Cj

and ∑
∈

=
j

j
Ck

kmj dz  be the cost of cluster Cj. Let M be the index set of possible medians

and iQ  (i ∈ M) be the capacity of each possible median.

Set  nchanges = 0;

Repeat

For ( each cluster jC , j = 1, ..., p ) do:

For ( each non-median node i ∈ jC  such that i ∈ M and Qi ≥ 
jmQ  ) do:

If ( nchanges < Max_Changes ) then

Interchange i with mj and update the cluster jC  calculating zi = ∑
∈ jCk

kid ;

If zi < zj then

nchanges = nchanges + 1;

Update the set J, excluding mj and including i;
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Else

Interchange mj with i, maintaining the cluster jC  and jz  unchanged;

End_If

End_If

End_For

End_For

Solve GAP considering the set  J  obtaining a new set of clusters p1 C...,,C ;

While  (it is possible to improve the feasible solution).

In addition, the following interchange heuristics are used, trying a further improvement to

the feasible solution:

Interchange-Transfer Heuristic (ITH)

Let jC  and jz  be as in the algorithm LAH. Let ∑
∈

=
jCk

kj qD  be the total demand of the

cluster jC , j = 1, ..., p.

For ( each cluster jC , j = 1, ..., p ) do:

For ( each cluster iC , i = 1, ..., p, i ≠ j ) do:

For ( each non-median nodes k ∈ jC  and  l ∈ iC  such as:

)qD(Qq kjjl −−≤  and

)qD(Qq liik −−≤  and

)zz()ddz()ddz( ijkmlmilmkmj iijj
+<+−++−   )

do  interchange k with l.

End_For;

For ( each non-median node k ∈ iC  and a cluster jC  such as:

jjk DQq −≤  and

)zz()dz()dz( ijkmikmj ij
+<−++   )
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do  transfer k from cluster iC  to cluster jC .

End_For;

End_For;

End_For.

The resulting algorithm that uses SubG (described in section 3) integrated with LAH and

ITH will be called in the sequence of the paper as the Lagrangean/Surrogate Local

Search Heuristic (LSLSH), and can be described as:

Lagrangean/Surrogate Local Search Heuristic (LSLSH)

Given λ ≥ 0, λ ≠ 0;

Set lb = -∞, ub = +∞;

Repeat

Use the algorithm SH with parameters s = 0.25, kmax = 10 and tinit = 1.0, to find the

best value T for t in the problem )( λtLCPMP ;

Solve relaxation )( λTLCPMP  obtaining λx  and )( λTLCPMPv ;

Update lb = max [lb, )( λTLCPMPv ];

Obtain a feasible solution fx  and their value vf using fx ;

Use the algorithms LAH and ITH while is possible to improve the feasible solution
fx ;

Update ub = min [ub, vf];

Set ∑
∈

λλ −=
Mj

iji x1g , i ∈ N;

Update the step size θ;

Set λi = max { 0, λi + θ λ
ig  }, i ∈ N;

Until (stopping tests).
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5. Computational results

Two problem sets are used in computational tests: a classical set frequently used in others

papers, and a set of real data collected at the central area of the São José dos Campos city.

The first set was used before [15] and is formed by 2 sets of 10 instances, with (50×5)

and (100×10) vertices and medians, respectively (available in the OR-Library -

http://mscmga.ms.ic.ac.uk/info.html).

The algorithm LSLSH is coded in C and the tests executed on a SUN Ultra30 machine.

The LAH parameter Max_Changes is set to 3. Table 1 reports the LSLSH application to

these instances. The results are compared to the ones of two metaheuristics, the HSS.OC

heuristic that presented the best performance among those reported on [15], and the ATS

heuristic of [4].

Columns in Table 1 are composed of: the problem identification, the best-known solution

and the gaps (%) to the best solutions. Heuristic HSS.OC is a simulated annealing

probabilistic acceptance approach that makes use of a non monotonic cooling schedule, a

systematic neighborhood search, and a termination condition based on the number of

temperature resets performed without improving the best solution. Heuristic ATS is an

adaptive tabu search algorithm that systematically perturbs selected tabu elements,

promoting intensification of the search when some indicators identify promising regions,

and diversification if improvements seem to be minimal.

The last line in Table 1 shows the average gaps for the instances. Results are very good

and LSLSH seems to be better than the corresponding metaheuristics.

Table 2 reports the average running times for the heuristics. The times for HSS.OC were

obtained with a VAX 8600, while the times for ATS were obtained on a SUN Sparc20.
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Although the tests were performed on different machines, it can be conjectured that the

LSLSH is faster than the other approaches, as it obtains a smaller number of feasible

solutions.

The second set of problems is composed of real data collected using the Geographical

Information System ArcView (ESRI [3]), and reporting the central area of São José dos

Campos city. Six instances (100×10), (200×15), (300×25), (300×30), (402×30) and

(402×40) are considered. Each point is located on a block, which presents a demand and

is also a possible place to locate medians. The demand was estimated considering the

number of houses (apartments) at each block. An empty block receives value 1.

Capacities are then estimated as  












×
= ∑

αmediansofnumber

demands
C , where α is 0.9 or 0.8.

These problems are available at http://www.lac.inpe.br/~lorena/instancias.html.

Table 3 presents the results. All the dual gaps are lower than 1% and results are obtained

at reasonable computer times.

In order to isolate the effects of the local search heuristics LAH and ITH on heuristic

LSLSH, the algorithm SubG was run without the local improvements in primal feasible

solutions. The results are compiled in Table 4. The gaps increased up to 5.5% and also, as

a side effect, the overall computational times (almost all the tests stopped at the π ≤ 0.005

condition).
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6. Conclusions

This work considers Lagrangean/surrogate local search heuristics for capacitated p-

median problems. The Lagrangean/surrogate approach was able to generate as good

approximate solutions as the obtained by metaheuristic approaches but employing small

computational times.

The use of location-allocation followed by interchange heuristics has been proved to be

useful for the primal feasibility of intermediate dual solutions. Heuristic LSLSH has been

shown flexible and fast for large-scale real data obtained using Geographical Information

Systems. These data present a spatially distributed set of points where location-allocation

based heuristics perform best.

We conjecture that these ideas can be explored for larger-scale problems to produce high

quality approximate solutions at reasonable computational cost.
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Table 1: Results for the first set of instances

Problem Vertices Medians Best known

solution

HSS.OC

gap (%)

ATS

gap (%)

LSLSH

gap (%)

1 50 5 713 0 0 0

2 50 5 740 0 0 0

3 50 5 751 0 0 0

4 50 5 651 0 0 0

5 50 5 664 0 0 0

6 50 5 778 0 0 0

7 50 5 787 0 0 0

8 50 5 820 0 0 0

9 50 5 715 0 0 0

10 50 5 829 0 0 0

11 100 10 1006 0 0 0

12 100 10 966 0 0 0

13 100 10 1026 0 0 0

14 100 10 982 0.30 0.30 0

15 100 10 1091 0 0.27 0.09

16 100 10 954 0 0 0

17 100 10 1034 0.48 0 0

18 100 10 1043 0.19 0.19 0

19 100 10 1031 0 0.19 0

20 100 10 1005 0 0 0.39

Mean 0.049 0.047 0.024



Table 2: Average CPU times - comparison (seconds)

Medians HSS.OC ATS LSLSH

50 23.23 13.89 3.81

100 338.19 304.67 37.1

Table 3: Results for São José dos Campos city set of instances

Problem Size Bound LSLSH

dual

Bound LSLSH

primal

Gap (%) Time (sec.)

1 100 x 10 17252.12 17288.99 0.21 68.62

2 200 x 15 33223.66 33395.38 0.51 2083.37

3 300 x 25 45313.43 45364.30 0.11 2604.92

4 300 x 30 40634.91 40635.90 0.00 867.68

5 402 x 30 61842.49 62000.23 0.25 27717.11

6 402 x 40 52396.54 52641.79 0.46 4649.47

Table 4: Results without local search heuristics

Problem Size Bound SubG

dual

Bound SubG

primal

Gap (%) Time (sec.)

1 100 x 10 17256.97 17288.99 0.19 55.09

2 200 x 15 33223.63 34130.32 2.66 2742.19

3 300 x 25 45315.43 45758.39 0.97 6692.47

4 300 x 30 40634.91 40635.91 0.00 2466.18

5 402 x 30 61842.65 63028.14 1.88 51887.37

6 402 x 40 52396.62 55474.61 5.55 6927.82


