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Abstract 

 

The lagrangean/surrogate relaxation has been explored as a faster computational alternative to 

traditional lagrangean heuristics. This paper discusses two approaches for using 

lagrangean/surrogate heuristics to a classical clustering problem: the p-median problem, that 

is, how to locate p facilities (medians) on a network such as the sum of all the distances from 

each vertex to its nearest facility is minimized. 
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1. Introduction 

 

The search for p-median nodes on a network is a classical clustering problem. The 

objective is to locate p facilities (medians) such as the sum of the distances from each demand 

point to its nearest facility is minimized. The problem is well known to be NP-hard (Garey and 

Johnson, 1979) and several heuristics have been developed for p-median problems. The 

combined used of lagrangean relaxation and subgradient optimization in a primal-dual 

viewpoint was found to be a good solution approach to the problem (Beasley, 1985). By other 

hand, column generation is a powerful tool for solving large scale linear programming 

problems and has been a natural choice in several applications, such as the well-known 

cutting-stock problem, vehicle routing and crew scheduling (Gilmore and Gomory, 1961, 

1963; Desrochers and Soumis, 1989; Desrochers et al., 1992; Vance et al., 1994). However, 

the use of column generation to solve p-median problems was not sufficiently explored. The 

initial attempts appear to be the ones of Garfinkel et al. (1974) and Swain (1974), that report 

convergence problems, even for small instances, when the number of medians is small 

compared to the number of candidate points in the network. This observation was also 

confirmed later by Galvão (1981). The solution of large-scale instances using a stabilized 

approach is reported by du Merle et al. (1999). 

The lagrangean/surrogate relaxation has been explored recently as a faster 

computational alternative to traditional lagrangean heuristics. This new relaxation has been 

used in a number of applications, such as multidimensional knapsack problems (Freville et al., 

1990), set covering problems (Lorena and Lopes, 1994), generalized assignment problems 

(Lorena and Narciso, 1996), and also p-median problems (Senne and Lorena, 2000). 

The lagrangean/surrogate relaxation and the traditional column generation approach 

can be combined to accelerate and stabilize primal and dual bounds obtained using the reduced 

cost selection. It is well known the equivalencies of the Dantzig-Wolfe decomposition 

(Dantzig and Wolfe, 1960), column generation and lagrangean relaxation optimization. 

Solving a linear programming by Dantzig-Wolfe decomposition is the same as solving the 

lagrangean by Kelley's cutting plane method (Kelley, 1960). However, as observed before, in 

many cases a straightforward application of column generation may result in slow 

convergence. The lagrangean/surrogate relaxation can be used to stabilize and accelerate the 

column generation process, providing the selection of new productive columns. 



This paper discusses these two approaches of using lagrangean/surrogate relaxation to 

solve p-median problems: (i) combined with subgradient optimization in a primal-dual 

viewpoint, and (ii) combined with the column generation process for linear programming 

problems. The paper is organized as follows. Section 2 presents the lagrangean/surrogate 

relaxation combined with subgradient optimization heuristic. Section 3 discusses the 

combination of lagrangean/surrogate relaxation and column generation process. The 

computational tests, conducted with problems from the literature, are presented in the Section 

4. We conclude that these two approaches of using lagrangean/surrogate relaxation to solve p-

median problems are complementary and can be put to work together. 

 

2. The Lagrangean/Surrogate Relaxation and Subgradient Optimization 

 

The p-median problem can be modeled as the following binary integer programming 

problem: 
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where: [dij]nxn is a symmetric cost (distance) matrix, with dii = 0, ∀i; [xij]nxn is the 

allocation matrix, with xij = 1 if node i is allocated to node j, and xij = 0, otherwise; xii = 1 if 

node i is a median and xii = 0, otherwise; p is the number of facilities (medians) to be located; 

n is the number of nodes in the network, and N = {1, ..., n}. Constraints (1) and (3) ensure that 

each node  j  is allocated to only one node  i, which must be a median. Constraint (2) 

determines the exact number of medians to be located (p), and (4) gives the integer conditions. 

For a given λ ∈ nR +  and t ≥ 0, the lagrangean/surrrogate relaxation of (P) can be 

defined by: 
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The problem (LtSPλ) is solved considering implicitly constraint (2) and decomposing 

for index i, obtaining the following n problems: 
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The lagrangean/surrogate solution is given by: v(LtSPλ) = ∑∑
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interesting characteristic of relaxation (LtSPλ), is that for t = 1 we have the usual lagrangean 

relaxation using the multiplier λ. For a fixed multiplier λ, the best value for t can result of a 

lagrangean dual: 

   v( λ
tD ) =  

0t
max

≥
 v(LtSPλ). 

A search procedure for finding an approximate value for t is shown in (Senne and Lorena, 

2000). 

The combined use of lagrangean/surrogate and subgradient optimization is given by 

the following algorithm: 

Algorithm LSSH (lagrangean/surrogate subgradient heuristic) 

Given λ ≥ 0, λ ≠ 0; 



Set lb = - ∞, ub = + ∞; 

Repeat 

 Solve relaxation (LtSPλ) obtaining xλ and v(LtSPλ); 

 Obtain a feasible solution xf  and update vf accordingly; 

Update lb = max [lb, v(LtSPλ)]; 

Update ub = min [ub, vf];  

Set λ
ig  = 1 - Σ λ

ijx  , i ∈ N; 

Update the step size θ; 

Set λi = max { 0, λi + θ. λ
ig }, i ∈ N; 

Until (stopping tests). 

 

The initial λ used is }d{min ij
Nj

i ∈
=λ , i ∈ N. The step sizes used are: θ = π(ub - lb)/||gλ||2. 

The control of parameter π is the Held and Karp (1971) classical control. It makes 0 ≤ π ≤ 2, 

beginning with π = 2 and halving π whenever lb not increases for 30 successive iterations. The 

stopping tests used are: number of iterations greater than 1000, π ≤ 0.005, and (ub – lb) < 1. 

Solution xλ is not necessarily feasible to (P), but the set I identify median nodes that 

can be used to produce feasible solutions to (P). Two heuristics are used to make xλ primal 

feasible. The first calculates the upper bound at each iteration of LSSH while π is not halved. 

This heuristic simply makes: )dmin(v ij

n
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= . The second, as suggested by Beasley (1993), 

is an interchange heuristic which is used when π is updated to π/2. 

 

3. The Lagrangean/Surrogate Relaxation and Column Generation 

 

The p-median problem can be also modeled as the following set partition problem: 
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(1987). The same formulation can be obtained from the problem (P) applying the Dantzig-

Wolfe decomposition considered by Garfinkel et al. (1974) and Swain (1974). If S is the set of 

all subsets of N, the formulation can give an optimal solution to the p-median problem. But the 

number of subsets can be huge, and a partial set of columns should be considered. Problem 

(SPP) is also known as the restricted master problem in the column generation context 

(Barnhart et al., 1998). 

In this paper we consider the following linear programming set covering relaxation of 

(SPP): 
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Observe that dij ≥ 0, ∀i,j  and (5) can be replaced with (7) in the linear model. 

The lagrangean/surrogate relaxation is integrated to the column generation process 

transferring the multipliers jπ  (j = 1,...,n) of problem (SCP) to the problem )PLS(vMax t
0t

π

≥
. 
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results to be the one selected to produce the incoming column on the sub-problem: 
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The reduced cost (for t = 1) is rc = v(Sub1-P) - α and rc < 0 is the condition for 

incoming columns, but it well known (Barnhart et al., 1998) that, for j = 1,..., n, all the 
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pool of columns, accelerating the column generation process. 

The combined use of lagrangean/surrogate and column generation process is given by 

the following algorithm: 

Algorithm LSCG (lagrangean/surrogate column generation heuristic) 

1. Set an initial pool of columns to (SCP); 

2. Solve (SCP) obtaining the duals prices jπ , j = 1,...,n,  and α; 

3. Solve approximately a local lagrangean/surrogate dual )PLS(vMax t
0t
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≥
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5. If no columns are found in step 4 then stop; 

6. Perform tests to remove columns and return to step 2. 

 

Note that, by setting t = 1, the algorithm LSCG gives the traditional column generation 

process. 

 

4. Computational Tests 

 

The approaches discussed above were programmed in C and run on a Sun Ultra 30 

workstation. First, we have considered instances drawn from OR-Library (Beasley, 1990) for 

which optimal solutions are known. The results are reported in the table below. Table 1 reports 

the results for LSSH and LSCG algorithms and contains: 

− the number of nodes in the network and the number of medians to be located; 

− the optimal integer solution for the instance; 



− p_gap = 100 * | (v(SCP) – optimal) | / optimal, that is, the percentage deviation from 

optimal to the best primal solution value v(SCP) found; 

− d_gap = 100 * (optimal – )PLS(v t
π ) / optimal, that is, the percentage deviation from 

optimal to the best relaxation value )PLS(v t
π  found; 

− the total computational time (in seconds). 

 

Table 1: Computational results for OR-Library instances 

   LSSH LSCG 

n p optimal 
solution 

p_gap d_gap total time p_gap d_gap total time 

100 5 5819 - - 0.76 - - 36.35 
100 33 1355 - - 1.14 - - 0.37 
200 5 7824 - 0.523 5.61 - - 902.77 
200 10 5631 - - 5.87 - - 996.00 
200 67 1255 - - 12.33 - - 1.29 
300 5 7696 - 0.046 12.94 0.246 1.796 17889.12 
300 10 6634 - 0.131 14.43 - - 10749.91 
300 30 4374 - - 15.74 - - 831.22 
300 100 1729 - - 57.73 0.116 0.058 4.55 
400 5 8162 - 0.866 18.48 0.686 1.662 52807.93 
400 10 6999 - 0.440 24.23 - - 36829.25 
400 40 4809 - - 46.62 - - 1055.20 
400 133 1789 - - 231.51 0.112 0.950 6.21 
500 167 1828 - - 377.14 0.055 0.310 11.00 
600 200 1989 - - 879.95 0.302 0.285 15.81 
700 233 1847 - - 494.52 0.081 0.379 21.50 
800 267 2026 - - 1360.49 0.518 0.346 26.14 
900 300 2106 0.047 0.004 2994.11 0.518 0.827 33.37 

 

Table 1 shows that the combined use of lagrangean/surrogate and column generation 

can be very interesting, especially for large-scale problems. The results of Table 1 also show 

that for a given number of nodes, smaller the number of medians in the instance, harder is the 

problem to be solved using the column generation approach. The opposite occurs for 

lagrangean/surrogate approach combined with subgradient search methods, i.e., the instances 

for which the number of medians is about a third of the number the nodes seem to be easy to 

LSCG and hard to LSSH. 

The computational tests for a large-scale instance drawn from the TSPLIB, compiled by 

Reinelt (1998), confirm these conjectures. Table 2 shows the results for the Pcb3038 instance 



(3038 nodes). We can note that as the number of median increases, the performance of LSCG 

improves in such a way that, for p = 500, it is better than LSSH. In this table p_gap and d_gap 

are calculated as follows: 

− p_gap = 100 * | (v(SCP) – best known solution) | / best known solution 

− d_gap = 100 * (best known solution – )PLS(v t
π ) / best known solution 

 

Table 2: Computational results for OR-Library instances 

  LSSH LSCG 

p best known 
solution 

p_gap d_gap total time p_gap d_gap total time 

300 187723.46 1.305 0.056 719.04 0.043 0.044 22235.02 
350 170973.34 2.067 0.050 731.50 0.044 0.045 10505.93 
400 157030.46 1.630 0.012 919.79 0.008 0.008 4686.27 
450 145422.94 1612 0.056 745.86 0.052 0.053 1915.84 
500 135467.85 2.344 0.040 684.82 0.036 0.036 597.86 

 

5. Conclusion 

 

The combined use of lagrangean/surrogate relaxation with sugbradient optimization 

(LSSH) and with column generation (LSCG) seen to be a good approach to solve p-median 

clustering problems. In terms of computational performance we have noted that, for a given 

number of nodes (n), the most time-consuming problems for LSSH correspond to p = n/3. By 

other hand, for a given number of nodes, the computational performance of LSCG improves as 

the number of median increases. So, these two approaches have complementary computational 

behavior and can be put to work together. That will be important to develop decision support 

systems for large-scale data obtained from geographical information systems. 
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