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Abstract 

 

This paper describes a branch-and-price algorithm for the p-median location problem. 

The objective is to locate p facilities (medians) such as the sum of the distances from 

each demand point to its nearest facility is minimized. The traditional column 

generation process is compared with a stabilized approach that combines the column 

generation and Lagrangean/surrogate relaxation. The Lagrangean/surrogate multiplier 

modifies the reduced cost criterion, providing the selection of new productive 

columns at the search tree. Computational experiments are conducted considering 

especially difficult instances to the traditional column generation and also with some 

large-scale instances. 

 

 

Keywords: p-median, column generation, Lagrangean/surrogate relaxation, branch-

and-price. 
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1 Introduction 

 

This paper describes a branch-and price algorithm for the p-median location problem. 

The search for p-median nodes on a network is a classical location problem. The 

objective is to locate p facilities (medians) such that the sum of the distances from 

each demand point to its nearest facility is minimized. The problem is well known to 

be NP-hard and several heuristics have been developed for p-median problems. 

 

The combined use of Lagrangean/surrogate relaxation and subgradient optimization 

in a primal-dual viewpoint was found to be a good solution approach to the problem 

[19]. The Lagrangean/surrogate generalizes the standard Lagrangean relaxation using 

the local surrogate information of constraints relaxed in Lagrangean relaxation, in 

order to accelerate subgradient-like methods. A local search is conducted at some 

initial iteration of the subgradient algorithm, correcting wrong step sizes. The gain in 

computational times can be substantial for large-scale problems [17, 19]. 

 

Column generation is a powerful tool for solving large-scale linear programming 

problems. Such linear programming problems may arise when the columns in the 

problem are not known in advance and a complete enumeration of all columns is not 

an option, or the problem is rewritten using Dantzig-Wolfe decomposition (the 

columns correspond to all extreme points of a certain constraint set) [5]. Column 

generation is explored in several applications, such as the well-known cutting-stock 

problem, vehicle routing and crew scheduling [6, 7, 8, 12, 13, 22, 23, 24]. In classical 

implementations of column generation, the algorithm iterates between a restricted 
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master problem and a column generation subproblem. Solving the master problem 

yields a certain dual solution, which is used in the subproblem to determine whether 

there is any column that might be an incoming column. 

 

In many cases a straightforward application of column generation may result in slow 

convergence [18]. Senne and Lorena [20] recently presented a stabilized algorithm to 

p-median problems (see also [15]). The Lagrangean/surrogate relaxation performs as 

an acceleration process to column generation, generating new productive sets of 

columns. The known stability problems of column generation are reduced, mainly for 

large-scale problems. Other attempts to stabilize the dual appeared before, like the 

Boxstep method [16], the Bundle methods and the Analytic Center Cutting Plane 

method [9]. Neame [18] describes these and other recent alternative methods to 

stabilize the dual [10]. 

 

The branch-and-price [1] method was initially proposed to solve large-scale 

combinatorial optimization problems. It is implemented as a search tree algorithm 

employing column generation at each search node. We find applications of this 

method in generalized assignment, crew scheduling [1] and capacitated p-median 

problem [3], among others. 

 

In this work, some aspects, like the branching rule and the tree search, are readily 

determined considering the uncapacited p-median problem as a clustering problem. 

The Lagrangean/surrogate multiplier modifies the reduced cost criterion, providing 

the selection of new productive columns at the root node and also at the search tree 
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nodes. Computational experiments are conducted comparing the 

Lagrangean/surrogate and Lagrangean relaxations in a branch-and-price approach, 

considering especially difficult instances to the traditional column generation and also 

with some large-scale instances. 

 

The paper is organized as follows. Section 2 summarizes the stabilized column 

generation approach to p-median presented in [20]. Section 3 presents the relevant 

aspects considered in our branch-and-price implementation. Section 4 presents the 

algorithms and Section 5 gives computational results. 

 

 

2 A stabilized column generation for p-median problems 

 

The p-median problem considered in this paper can be formulated as the following 

binary integer-programming problem: 
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where: 

[dij]n×n is a symmetric cost (distance) matrix, with dii = 0, ∀i ∈ N; 

p is the number of facilities (medians) to be located; 

 n is the number of nodes in the network, N = {1, ..., n}; 

 [xij]n×n is the allocation matrix, with xij = 1 if node j is allocated to median i, 

and xij = 0, otherwise; xii = 1 if node i is a median and xii = 0, otherwise. 

 

Constraints (1) and (3) ensure that each node j is allocated to only one node i, which 

must be a median. Constraint (2) determines the exact number p of medians to be 

located, and (4) gives the integer conditions. 

 

The problem (Pmed) is a classical formulation explored in many papers. Garfinkel et 

al. [11] and Swain [21] proposed a set partition formulation to (Pmed), given by: 
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}...,,{ 1 mSSS = , is the set of all subsets of N; 

Ak = [aik]n×1, with aik = 1, if kSi ∈ , and aik = 0 otherwise; 

[xk]m×1 indicates if subset Sk is in the solution (xk = 1), or not (xk = 0); and 









= ∑

∈
∈

k
k Si

ijSjk dMinc . 

 

In this formulation (set partitioning problem with cardinality constraint), each subset 

Sk corresponds to a column Ak in constraint set (5), representing a cluster in which the 

median node is decided when the cost ck is calculated, and so the columns of (SP-

Pmed) implicitly consider the constraint set (3) in (Pmed). Constraints (1) and (2) are 

conserved and respectively updated to (5) and (6). 

 

The Dantzig-Wolfe decomposition process is applied to (SP-Pmed) by relaxing the 

integrality requirements (xk ∈ [0,1]). A restricted master problem (LP-Pmed) is then 

defined, in the column generation context [1], by dropping columns in the 

formulation of (SP-Pmed). 

 

Senne and Lorena [19] presented the Lagrangean/surrogate relaxation for the p-

median problem. A general description of the Lagrangean/surrogate relaxation 

appeared in the work of Narciso and Lorena [17]. For a given t ∈ R and π ∈ Rn, the 

Lagrangean/surrogate relaxation of problem (Pmed) is given by: 
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Problem (LStPmedπ) is solved considering constraint (2) implicitly and decomposing 

the problem for index i, obtaining the following n subproblems: 
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The Lagrangean/surrogate solution is given by v(LStPmedπ) = ∑∑
==

+
n

j
j
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i
iii tx

11

πβ . 

The usual Lagrangean relaxation results from (LStPmedπ) if t is set to 1. For a fixed 

multiplier π, the best value for t can be found solving approximately a local 

Lagrangean dual )( πPmedLSvMax t
Rt∈

. A dichotomous search used to find an 

approximate value for t is presented in [19]. 

 

The Lagrangean/surrogate is integrated to the column generation process transferring 

the multipliers jπ  (j = 1, ..., n) of the restricted master problem (LP-Pmed) to the 

problem )( πPmedLSvMax t
Rt∈

. The median (and its allocated non-median nodes) with 

smallest contribution on v[ )( πPmedLSvMax t
Rt∈

] results to be the one selected to 

produce the incoming column on the subproblem: 
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Let α be the dual variable corresponding to constraint (6) and j* be the vertex index 

reaching the overall minimum on v(SubtPmed). The new sets Sj are {i : aij = 1 in 

(SubtPmed)} and the column 
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
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can be added to the pool of columns. For t = 1 (Lagrangean case) this is also known 

as multi-pricing in column generation context [1]. 

 

 

3 The branch-and-price steps 

 

The branch-and-price is detailed in this section, examining separately, the root node, 

the branching rule, and the search tree and pruning conditions. 

 

3.1 The root node 

 

The following algorithm is used on the root node: 

 

Algorithm CG(t) 

(i) Set an initial pool of columns to (LP-Pmed); 

(ii) Solve (LP-Pmed) using CPLEX [14] and return the duals prices πj, 

j = 1, ..., n and α; 
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(iii) Solve approximately (by a dichotomous search) a local 

Lagrangean/surrogate dual )( πPmedLSvMax t
Rt∈

, returning the 

corresponding columns of (SubtPmed); 

(iv) Append to (SP-Pmed) the columns 







1

jA
 satisfying expression (7); 

(v) If no columns are found in step (iv) or [ ])()( πPmedLSvPmedSPv t−− < 1, 

then stop; 

(vi) Perform tests to remove columns and return to (ii). 

 

Assuming t = 1, the algorithm CG(1) gives the traditional column generation process. 

In this case, the dichotomous search in step (iii) is not necessary and the usual 

Lagrangean bound (LS1Pmedπ) implicitly solves the (Sub1Pmed) problem. In any 

case, the bounds v(LP-Pmed) and v(LStPmedπ) are calculated at each iteration. 

 

The following algorithm is used to set an initial pool of columns to (LP-Pmed): 

 

Algorithm IC 

Let 

Max_Cols  be the maximum number of columns for the initial pool of 

columns. 

ncols = 0; 

While (ncols < Max_Cols) do 

 Let M = { 1n , ..., pn } ⊂ N be a randomly generated set of nodes. 
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 For each i = 1, ..., p do 
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 in the initial pool of columns. 

 End_For; 

 ncols = ncols + p; 

End_While; 

 

The following algorithm is used in step (vi) of CG(t): 

 

Algorithm RC 

Let  

rc_mean  be the average of the reduced costs for the initial pool of 

columns (after algorithm IC) of (LP-Pmed) 

 m  be the total number of columns in the current (LP-Pmed) 

irc   be the reduced cost of the columns in the current (LP-Pmed) 

(i = 1, ..., m) 
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For i = 1, ..., m do 

 Delete column i from the current (LP-Pmed) if irc > rc_mean. 

End_For; 

 

3.2 The branching rule 

 

The branching rule considers the partitioning with identical subsets described in 

Wolsey [22]. Let q and r be the indices of rows presenting pairs of fractional columns 

like 







11
10

 in the restricted master final solution. The pair (q, r) is identified as 

follows. 

 

Assume that |A| denotes the cardinality of a set A. Let X = {x1, ..., xm} be the set of 

fractional decision variables corresponding to the set S = {S1, ..., Sm} of columns of 

(LP-Pmed). Let QS(i) = {Sj : i ∈ Sj, j = 1, ..., m} for each row index i (i = 1, ..., n). 

Then, q is chosen as the row index such that |QS(q)| > |QS(i)|, ∀i (i = 1, ..., n). Note 

that, if |QS(q)| = 1, then X is a feasible solution of (LP-Pmed). 

 

Let RS(i) = {Sj ∈ QS(q) : i ∈ Sj, j = 1, ..., m} for each row index i (i = 1, ..., n). Let T 

be the set of row index i for which the set RS(i) is non-empty, that is, T = {i : 

RS(i) ≠ ∅, i = 1, ..., n}. Then, r is chosen as the row index such that |RS(r)| < |RS(i)|, 

∀i ∈ T. 
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Once determined the pair (q, r) of row indices, the following problem is solved on the 

left branch nodes: 

v(SubtPmed) ( ) 







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=
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n

i
ijiijaNj

atdMinMin
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subject to   aqj = arj, j = 1, ..., n. 

 

And, on the right branch nodes, the following problem is solved: 

v(SubtPmed) ( ) 







−= ∑

=
∈∈

n

i
ijiijaNj

atdMinMin
ij 1

}1,0{
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subject to   aqj + arj ≤ 1, j = 1, ..., n. 

 

Observe that the integer binary problem at each node of the search tree is a 

combination of several problems such as (8) and (9), depending on the path from the 

root to the considered node. 

 

3.3 The search tree and pruning conditions 

 

The search tree is built in a depth first search and, at each node, the corresponding 

problems (8) and (9) are solved using CPLEX [14]. A tree node is pruned if the 

corresponding v(LP-Pmed) or v(LStPmedπ) are not less than the current best feasible 

solution. 
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4 The computational tests 

 

The branch-and-price method described above was coded in C language and executed 

in a Pentium III 1.13 GHz microcomputer. We compared the computational results of 

the branch-and-price algorithms, when the variable t is fixed to 1, corresponding to 

the Lagrangean relaxation case, and for t calculated by dichotomous search, 

corresponding to the Lagrangean/surrogate relaxation. Table I shows the results for 

some problems obtained from OR-Library [2]. In this table: 

 

n  is the number of nodes; 

p  is the number of medians; 

solution is the calculated optimal solution value; 

Num_Cols is the maximum problem size, in terms of number of columns; 

Tree size is the number of nodes generated; 

Time  is the total computational time (in seconds). 

 

Table I – Results for OR-Library instances. 

 

As can be observed from Table I, the branch-and-price approach using the 

Lagrangean/surrogate relaxation explores smaller trees to obtain new (fewer) 

columns to the restricted master problem, generally resulting in smaller 

computational times. 
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Christofides and Beasley [4] observed that the relation n/p determines the complexity 

of instances of p-median problems solved by the combined use of Lagrangean 

relaxation and subgradient optimization. In the column generation approach, the 

bigger the relation n/p, the harder the solution process. Table II presents the results of 

algorithms CG(1) and CG(t) for instances where n/p ≥ 10. 

 

Table II – Results for OR-Library harder instances. 

 

The results confirm the superiority of Lagrangean/surrogate relaxation in the column 

generation process. 

 

5 Conclusion 

 

In this paper we present a branch-and-price method for p-median location problems. 

This method uses a column generation process that differs from the traditional 

because employs Lagrangean/surrogate relaxation. The Lagrangean/surrogate 

multiplier modifies the reduced cost criterion, providing the selection of more 

productive columns at each search tree node than the traditional column generation 

approach. The algorithm proposed is able to find the optimal solution of p-median 

problems exploring smaller search trees, and in shorter computational times. 
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Table I – Computational results for OR-Library instances 

 

   

Branch-and-price 

Lagrangean 

Branch-and-price 

Lagrangean/surrogate 

n p solution Num_Cols Tree size Time Num_Cols Tree size Time 

100 20 3034 2172 1 0,28 2124 1 0,31

100 33 1355 1614 1 0,11 1603 1 0,12

200 40 2734 3344 9 39,23 3442 7 67,61

200 67 1255 2046 3 2,81 2013 1 0,49

300 60 2968 4051 15 113,95 3231 5 42,31

300 100 1729 2352 1 1,39 2384 1 1,38

400 80 2845 3669 1 24,29 3167 1 9,83

400 133 1789 2798 1 1,30 2708 1 1,57

500 100 2961 23191 9 3394,57 14417 7 1288,72

500 167 1828 3237 3 59,20 3620 9 223,94

600 120 3033 28357 25 9064,46 6453 5 304,56

600 200 1989 3499 7 204,45 3532 5 241,11

700 140 3013 48579 3 22688,06 7860 1 170,54

700 233 1847 3950 5 91,52 3966 5 159,10

800 267 2026 4966 21 787,65 3756 1 18,75

900 300 2106 3900 5 233,55 4643 15 1390,87

  Average 8857,8 6,9 2294,2 4307,4 4,1 245,1 

 

The columns contains: 

n  is the number of nodes; 

p  is the number of medians; 

solution is the calculated optimal solution value; 

Num_Cols is the maximum problem size, in terms of number of columns; 

Tree size is the number of nodes generated; 

Time  is the total computational time (in seconds). 
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Table II – Results for OR-Library harder instances 

 

   

Branch-and-price 

Lagrangean 

Branch-and-price 

Lagrangean/surrogate 

n p solution Num_Cols Tree size Time Num_Cols Tree size Time 

100 5 5819 3230 1 12,98 3444 1 13,61

100 10 4093 5510 9 52,57 3830 7 42,80

100 10 4250 3626 31 78,65 3298 23 84,30

200 20 4445 7657 1 123,56 7409 1 94,75

300 30 4374 6686 1 458,56 8430 3 601,73

400 40 4809 54830 39 21694,66 14297 19 1742,25

500 50 4619 40243 3 19550,80 13911 3 1921,23

  Average 17397,4 12,1 5996,0 7802,7 8,1 643,0 

 

The columns contains: 

n  is the number of nodes; 

p  is the number of medians; 

solution is the calculated optimal solution value; 

Num_Cols is the maximum problem size, in terms of number of columns; 

Tree size is the number of nodes generated; 

Time  is the total computational time (in seconds). 

 


