
A Column Generation Approach to Capacitated p-Median Problems

Luiz A. N. Lorena(*)

lorena@lac.inpe.br
FAX: +55(12)39456553

LAC - Laboratório Associado de Computação e Matemática Aplicada
INPE – Instituto Nacional de Pesquisas Espaciais

Caixa Postal 515
12245-970 São José dos Campos, SP – Brazil

Edson L. F. Senne
elfsenne@feg.unesp.br

FEG/UNESP - Universidade Estadual Paulista
Faculdade de Engenharia - Departamento de Matemática

Caixa Postal 205
12515-410 Guaratinguetá, SP – Brazil

Scope and purpose

The location of facilities is a central problem for strategic decisions. Many applications
have been explored and the resulting mathematical problems are considered by heuristics
and exact methods. We revive in this paper the application of column generation to a
capacitated p-median location problem. There has been renewed interest in the column
generation approach as it can be faster than nonlinear subgradient methods. However, in
many cases a straightforward application of column generation may result in slow
convergence. We explore in this paper an alternative to stabilize the column generation
when applied to the location problem.

Abstract

The Capacitated p-median problem (CPMP) seeks to solve the optimal location of p
facilities, considering distances and capacities for the service to be given by each median.
In this paper we present a column generation approach to CPMP. The identified restricted
master problem optimizes the covering of 1-median clusters satisfying the capacity
constraints, and new columns are generated considering knapsack subproblems. The
Lagrangean/surrogate relaxation has been used recently to accelerate subgradient like
methods. In this work the Lagrangean/surrogate relaxation is directly identified from the
master problem dual and provides new bounds and new productive columns through a
modified knapsack subproblem. The overall column generation process is accelerated, even
when multiple pricing is observed. Computational tests are presented using instances taken
from real data from São José dos Campos’ city.

Key words: Location problems, Capacitated p-median problems, Column generation,
Lagrangean/surrogate relaxation.
--
(*) Corresponding author

1. Introduction

The search for p-median vertices on a network (graph) is a classical location problem. The

objective is to locate p facilities (medians) so as to minimize the sum of the distances from

each demand vertex to its nearest facility. The capacitated p-median problem (CPMP)

considers capacities for the service to be given by each median. The total service demanded

by vertices identified by p-median clusters cannot exceed their service capacity.

In general, the CPMP has not seem as intensively studied as the classical p-median

problem. Related problems have appeared in Bramel and Simchi-Levi [3], Klein and

Aronson [18], Mulvey and Beck [29] and Osman and Christofides [32]. An extensive

bibliography of related problems, and also a set of test problems are presented in [32]. The

CPMP is known to be NP-hard. Some earlier approaches applying Lagrangean heuristics to

the CPMP are proposed in Koskosidis and Powell [19] and in [29]. Recent approaches

apply metaheuristics, such as simulated annealing and tabu search (as in França, Sosa and

Pureza [13] and in [32]), and genetic algorithms (Maniezzo, Mingozzi and Baldacci [25]

and Lorena and Furtado [20]). Good results are reported for a set of standard test problems

(OR-Library - http://mscmga.ms.ic.ac.uk/info.html [2]).

The Lagrangean/surrogate relaxation has been used recently to accelerate subgradient like

methods, which are often used to optimize the corresponding Lagrangean dual problem as

in Lorena and Lopes [21], Lorena and Narciso [22], Lorena and Senne [23, 24], Narciso

and Lorena [30], and Senne and Lorena [34]. Lorena and Senne [24] explored the

Lagrangean/surrogate relaxation combination with location-allocation heuristics, proposed

by Cooper [5] and used before by Senne and Lorena [34].

Column generation is a powerful tool for solving large-scale linear programming problems.

Such linear programming may arise when the columns in the problem are not known in

advance and a complete enumeration of all columns is not an option, or the problem is

rewritten using Dantzig-Wolfe decomposition (the columns correspond to all extreme

points of a certain constraint set) [6]. It appears that this approach was not tried before for

the CPMP, but has been successfully explored in several other applications, such as the

well-known cutting-stock problem, vehicle routing and crew scheduling [1, 4, 6, 7, 8, 9, 14,

15, 35, 36]. However, in many cases a straightforward application of column generation

may result in slow convergence. The Lagrangean/surrogate relaxation is showed in this

paper to be an acceleration process to the column generation, generating new productive

sets of columns.

In this paper we examine a column generation approach to the CPMP. The identified

restricted master problem optimizes the covering of 1-median clusters satisfying a set of

capacity constraints, and new columns are generated solving capacitated subproblems,

which consider the restricted master dual variables and the clusters capacities. In this work

the Lagrangean/surrogate relaxation is directly identified from the master problem dual and

provides new bounds and new productive columns through a modified knapsack

subproblem. The overall column generation process is accelerated, even when multiple

pricing is observed. Computational tests are presented using instances taken from the

literature.

The paper is organized as follows. Section two presents CPMP formulations used in this

paper. The next section presents the Lagrangean/surrogate relaxation and the column

generation approach to the CPMP, comparing the traditional process and the one improved

by Lagrangean/surrogate multipliers. Section three presents the basic algorithms for the

column generation, including the initial pool of columns and the management of columns.

Section four provides computational results to illustrate the benefits of the new approach.

2. CPMP formulations

The CPMP considered in this paper is modeled in two ways. The first is the following

binary integer-programming problem (P):

(P) v(P) = Min ∑ ∑
∈ ∈Ni Nj

ijij xd (1)

 subject to ∑
∈

=
Nj

ijx 1 ; i ∈N (2)

px
Nj

jj =∑
∈

 (3)

jjij
Ni

i xQxq ≤∑
∈

 ; j ∈N (4)

xij ∈{0,1}; i ∈N, j ∈N (5)

where:

N = {1,...,n} is the index set of entities to allocate and also of possible medians, where p
medians will be located;
qi is the demand of each entity and Q the capacity of each possible median;
[dij]n×n is a distance matrix;

[xij]n×n is the allocation matrix, with xij=1 if entity i is allocated to median j, and xij=0,
otherwise; xjj = 1 if median j is selected and xjj = 0, otherwise.
Constraints (2) and (3) impose that each entity is allocated to only one median. Constraint
(4) imposes that a total median capacity must be respected, and (5) provides the integer
conditions.

We assume equal capacities to simplify the alternative set covering formulation to be given

in the sequel.

The CPMP problem can also be modeled as the following set partitioning problem with a

cardinality constraint (SPP):

(SPP) k

m

k
k xcMinSPPv ∑

=

=
1

)(

subject to 1
1

=∑
=

k

m

k
k xA (6)

px
m

k
k =∑

=1

(7)

}1,0{∈kx ,

where

},...,,{ 21 mSSSS = , is a set of subsets of N;

A = [aik]nxm , is a matrix with


 ∈

=
otherwise

Siif
a k

ik ,0

,1
, satisfying Qaq ik

Ni
i ≤∑

∈

;

and 









= ∑

∈
∈ 1

1

k
k Sj

ijSik dMinc , considering 1
kS = { }1=∈ ikk aSi .

This is the formulation found in Minoux [28]. The same formulation can be obtained from

the problem P by applying the Dantzig-Wolfe decomposition. For each subset 1
kS , the

open median is decided when the column cost ck is calculated, and so the columns of SPP

implicitly consider the constraints set (4) in P. Constraints (1) and (2) are conserved and

respectively updated to (6) and (7), according the Dantzig-Wolfe decomposition process

[6].

If S is the set of all subsets of N, the formulation can give an optimal solution to the

CPMP. However, the number of subsets may be huge, and a partial set of columns can be

considered instead. The SPP defined above is also known as the restricted master problem

in the column generation context [1].

3. Lagrangean/surrogate relaxation and Column generation

The equivalencies of Dantzig-Wolfe decomposition, column generation and Lagrangean

relaxation optimization are well known. Solving a linear programming problem by Dantzig-

Wolfe decomposition is the same as solving the Lagrangean by Kelley's cutting plane

method [17]. However, in many cases a straightforward application of column generation

may result in slow convergence [10, 11, 26, 31]. Below, the Lagrangean/surrogate will be

related to the column generation, identifying the common optimization problems

considered at the resolution process of the Lagrangean/surrogate and the reduced cost

problems. The Lagrangean/surrogate is able to identify very good lower bounds and

contributes with new columns that accelerate the column generation process.

For a given λ ∈ nR + and t ≥ 0, the Lagrangean/surrogate relaxation of CPMP is given by:

(LtP
λ) v(LtP

λ) = Min ∑ ∑ ∑
∈ ∈ ∈

+−
Ni Nj Ni

iijiij txtd λλ)(

subject to constraints (3), (4), and (5).

Problem LtPλ
 is solved considering implicitly constraint (3), and decomposing for index j

obtaining the following n 0-1 knapsack problems:

j
tknapv)(λ = Min ∑

∈

−
Ni

ijiij xtd)(λ (8)

subject to constraints (4) and (5).

Each problem is solved using Horowitz and Sahni code (see Martello and Toth [27]). Let J

be the index set of the p smallest j
tknapv)(λ , j ∈ N (here constraint (3) is considered

implicitly). The Lagrangean/surrogate value is given by:

v(LtP
λ) = ∑ ∑

∈ ∈

+
Jj Ni

ij
t tknapv λλ)(. (9)

The interesting feature of relaxation LtPλ
 is that, for t = 1, expression (9) is the usual

Lagrangean relaxation with the multiplier λ. Two duals can be identified here, an external

dual for the multidimensional variable λ, usually optimized by subgradient methods, and

for a fixed multiplier λ, the best value designed for t can be found through an inner

Lagrangean dual v(λ
tD) =

0≥t
Max v(LtP

λ). The best Lagrangean/surrogate relaxation value

gives an improved bound to the usual Lagrangean relaxation and accelerates the overall

optimization process. To find an approximated best Lagrangean/surrogate multiplier t , the

dichotomous search procedure SH described in [33] is used.

Lorena and Senne [24] applied the Lagrangean/surrogate to solve the dual by standard

subgradient methods. The dual solutions should be made primal feasible and local search

heuristics are combined with the dual process. The quality of feasible solutions obtained is

comparable to metaheuristic approaches, but employs small computational times on large-

scale real data obtained using Geographic Information Systems software [12].

The problem to be solved by column generation is the linear programming set covering

(SCP):

(SCP) k

m

k
k xcMinSCPv ∑

=

=
1

)(

subject to 1
1

≥∑
=

k

m

k
k xA (10)

px
m

k
k =∑

=1

]1,0[∈kx .

Observe that dij ≥ 0, ∀i,j and (7) can be replaced with (10) in the linear model, and the

main advantage is that problem SCP is easier solvable than SPP.

After defining an initial pool of columns, problem SCP is solved and the final dual costs

iπ , i = 1,...,n and µ are used to generate new columns by solving the following sub-

problem (to simplify the notation consider for each j , xij = zi):

(SubπP) })({)(jNj
knapvMinPSubv π

π ∈
= .

Problem SubπP is solved decomposing for index j, obtaining the n 0-1 knapsack problems

of equation (8). The associated reduced cost is v(SubπP) - µ, and column 





1
iz

 is added to

SCP if v(SubπP) < µ . In practice, for j = 1,...,n, all the corresponding columns satisfying

∑
∈

≤
Ni

ii Qzq and ()∑
∈

−
Ni

iiij zd π < µ (11)

can be added to the pool of columns, accelerating the column generation process.

Note that for λ = π, the same n knapsack problems of equation (8) come out in the solution

of L1Pπ (for the Lagrangean case, where t = 1) and SubπP. Then, if the multipliers iπ (i =

1,...,n) of problem SCP are given to problem L1Pπ, the corresponding Lagrangean problem

can be used to generate columns and also to give a lower bound to P and SCP.

The Lagrangean/surrogate is integrated to the column generation process transferring the

multipliers iπ (i = 1,...,n) of problem SCP to the problem
0≥t

Max v(LtPπ), and returning the

corresponding columns. If the new columns continue to satisfy expression (11), then they

can be added to the pool of candidate columns. The resulting effect is an acceleration of the

convergence, even when multiple columns are added to the pool at each iteration of the

process.

The Lagrangean/surrogate is a valid lower bound to the column generation process. In

particular it is better than the Lagrangean bound (t = 1) and can be useful to define

convergence settings to the restricted master. Figure 1 shows a typical behavior of dual

bounds integrated to the column generation.

Figure 1. Typical computational behavior of dual bounds

4. The algorithms

The parameter t is the differential in the Lagrangean/surrogate relaxation. Varying this

parameter can reproduce the usual Lagrangean relaxation (t is fixed to 1) and better

Lagrangean bounds (t is identified using the dichotomous search procedure SH described in

[33]). The column generation algorithms are then identified by the use of parameter t , and

are labeled by this parameter. The algorithms can be stated as:

Algorithm CG (t)

(i) Set an initial pool of columns to SCP;

(ii) Solve SCP using the CPLEX [16] and return the dual prices jπ , j = 1,...,n and µ;

(iii) Solve approximately (by dichotomous search) a local Lagrangean/surrogate dual
)(

0

πPLvMax t
t ≥

, returning the identified columns;

(iv) Append to SCP the columns 





1
iz

 satisfying expression (11);

(v) If no columns are found in step (iv) or [)(
0

πPLvMax t
t ≥

– v(SCP)] < 1 then stop;

(vi) Perform tests to remove columns and return to (ii).

Steps (i) and (vi) are described in the sequel. If t = 1, CG(1) gives the traditional column

generation process: step (iii) calculates the usual Lagrangean bound)(1
πPLv . In any case

the bounds v(SCP) and)(πPLv t are calculated at each iteration.

The following sub-routine is used in step (i):
Let nc = 0 and C = { }.
While nc < NCOLS do:

dtotal = 0;
N = { 1, ..., n };
While Q ≥ dtotal do:

Let k a random value of N;
C = C ∪ { k }
N = N – { k }
dtotal = dtotal + qk

End_while;
Find the best median on cluster C;
Add to SCP the column corresponding to cluster C;
nc = nc + 1.

End_while.

NCOLS is set to 1000 in computational tests described in the next section. To prevent

infeasibilities, a high cost dummy column formed of ones is also included on the initial set.

In order to remove columns we have conserved in the process only the 3000 columns

presenting the smaller reduced costs.

5. Computational experiments

The algorithms described in section 4 are coded in C and the computational tests were

made on a Sun Ultra30 workstation.

The set of instances comprising real data were collected using the Geographical

Information System ArcView (ESRI [12]), and report the central area of São José dos

Campos city. Six instances (100x10), (200x15), (300x25), (300x30), (402x30) and

(402x40) are created, containing 100, 200, 300 and 402 nodes. Each point is located on a

block, which presents a demand node and is also a possible place to locate medians.

Demand was estimated considering the number of houses (apartments) at each block. An

empty block received value 1. Capacities are then estimated as













α×
= ∑

mediansofnumber

demands
C , where α was set equal to 0.9 or 0.8. These instances are

available at http://www.lac.inpe.br/~lorena/instancias.html, and Figures 2 and 3 show,

respectively, the set of points for a instance of 100 nodes and the corresponding solution for

10 medians.

Figure 2: Instance of 100 nodes (central area of São José dos Campos)

Figure 3: Instance of 100 nodes (solution for 10 medians)

Tables 1 and 2 report the computational results obtained by the CG(t) and CG(1)

algorithms. The primal-dual gaps compare the best known feasible solutions of (P),

obtained using the location-allocation heuristics reported in [24] (see also Table 3), and the

respective dual and linear programming bounds (v(LtPπ) and v(SCP)).

Table 1 – Results for CG(t)

Table 2 – Results for CG(1)

Observe from Tables 1 and 2 that algorithm CG(t) is faster and able to generate fewer

productive columns than CG(1). This result can be very interesting for large scale

instances.

These results are even better when compared with the Lagrangean/surrogate relaxation

associated to a subgradient method. Table 3 reports the results obtained by the LSLSH(t)

heuristic, described in [24], to the same set of instances. Heuristic LSLSH(t) is a

Lagrangean/surrogate heuristic combined with a traditional subgradient method and

location-allocation primal heuristics.

Table 3 – Results for LSLSH(t)

It is interesting to investigate whether the columns generated by CG(t) are productive when

the number of columns is limited at the master problem. Table 4 presents the results for the

time-consuming instance sjc4a. The number of columns at the master problem is set to

values on the interval [2800, 3500].

Table 4 – Restricting the number of columns at the master problem

Note that as the number of fixed columns decreases the CG(t) algorithm remains

operational finding the respective solutions of Table 1. Algorithm CG(1) presented a

degraded effect when the number of columns decreases, especially for 2900 and 2800

columns. The gaps increase and the results of Table 2 are not reproduced. All the

computational tests reported have made with an iteration limit of 300.

The computational tests proceeded with a large-scale instance. The Pcb3038 instance in the

TSPLIB, compiled by Reinelt [33], was considered for the tests. The capacities were

estimated as












×
= ∑

8.0mediansofnumber

demands
C and the number of columns at the master

problem was fixed to 20000. These instances are also available at

http://www.lac.inpe.br/~lorena/instancias.html. The results presented in Tables 5 and 6

confirm that CG(t) is able to generate better quality columns than CG(1). We can also

observe that when the number of required medians decreases the problems are more

difficult and time consuming. The CG(t) expends almost half the computational time of

CG(1), which seems to be an important consideration for such large scale instances.

Table 5. Computational results for CG(t) on Pcb3038 instances

Table 6. Computational results for CG(1) on Pcb3038 instances

6. Conclusions

This paper presented column generation approaches for a CPMP. The approaches integrate

the traditional column generation to the Lagrangean/surrogate relaxation context,

identifying new productive columns and accelerating the computational process.

The computational results show that the Lagrangean/surrogate sub-problem generates a

small number of productive columns and the restricted master is also manageable with a

small number of columns.

The Lagrangean/surrogate lower bounds can be useful to branch-and-price trees and are

currently being explored in this context.

Acknowledgments: The authors acknowledge Fundação de Amparo à Pesquisa do Estado de São
Paulo - FAPESP (proc. 99/06954-7) and Conselho Nacional de Desenvolvimento Científico e
Tecnológico - CNPq (processes 302408/88-6 and 300837/89-5) for partial financial research
support. We also acknowledge the very useful suggestions and comments of two anonymous
referees.

References

1. Barnhart, C.; Johnson, E.L.; Nemhauser, G.L.; Savelsbergh, M.W.P.; Vance, P.H. Branch-
and-Price: Column Generation for Solving Huge Integer Programs. Operations Research
1998; 46: 316-329.

2. Beasley, J.E. Or-library: Distributing test problems by electronic mail. Journal Operational
Research Society 1990; 41: 1069-1072.

3. Bramel, J,; Simchi-Levi, D. A location based heuristic for general routing problems.
Operations Research 1995; 43: 649-660.

4. Carvalho, J.M.V. Exact Solution of Bin-Packing Problems Using Column Generation and
Branch-and-Bound, Universidade do Minho, Departamento Produção e Sistemas, Working
Paper, 1996.

5. Cooper, L. Location-allocation problems. Operations Research 1963; 11: 331-343.
6. Dantzig, G.B.; Wolfe, P. Decomposition principle for linear programs. Operations Research

1960; 8: 101-111.
7. Day, P.R.; Ryan, D.M. Flight Attendant Rostering for Short-Haul Airline Operations.

Operations Research 1997; 45: 649-661.
8. Desrochers, M.; Desrosiers, J.; Solomon, M. A New Optimization Algorithm for the

Vehicle Routing Problem with Time Windows. Operations Research 1992; 40: 342-354.
9. Desrochers, M.; Soumis, F. A Column Generation Approach to the Urban Transit Crew

Scheduling Problem. Transportation Science 1989; 23: 1-13.
10. du Merle, O.; Goffin, J.L.; Vial, J.P. On Improvements to the Analytic Centre Cutting Plane

Method. Computational Optimization and Applications 1998; 11: 37-52.
11. du Merle, O.; Villeneuve, D.; Desrosiers, J.; Hansen, P. Stabilized column generation.

Discrete Mathematics 1999; 194: 229-237.
12. ESRI Environmental Systems Research Institute, Inc. Avenue Customization and

Application Development for ArcView, 1996.
13. França, P.M.; Sosa, N.M.; Pureza, V. An adaptive tabu search algorithm for the capacitated

p-median problem. International Transactions in Operations Research 1999; 6: 665-678.
14. Gilmore, P.C.; Gomory, R.E. A linear programming approach to the cutting stock problem.

Operations Research 1961; 9: 849-859.
15. Gilmore, P.C.; Gomory, R.E. A linear programming approach to the cutting stock problem -

part ii. Operations Research 1963; 11: 863-888.
16. ILOG CPLEX 6.5. ILOG Inc. Cplex Division, 1999.
17. Kelley, J.E. The Cutting Plane Method for Solving Convex Programs. Journal of the SIAM

1960; 8: 703-712.
18. Klein, K.; Aronson, J.E. Optimal clustering: a model and method. Naval Research Logistics

1991; 38, 447-461.
19. Koskosidis, Y.A.; Powell, W.R. Clustering algorithms for consolidation of costumes orders

into vehicle shipments. Transportation Research B 1992; 26: 365-379.
20. Lorena, L. A. N.; Furtado, J. C. Constructive Genetic Algorithm for Clustering Problems.

Evolutionary Computation 2001; 9(3): 309-327.
21. Lorena, L.A.N.; Lopes, F.B. A surrogate heuristic for set covering problems. European

Journal of Operational Research 1994; 79: 138-150.
22. Lorena, L.A.N.; Narciso, M.G. Relaxation heuristics for a generalized assignment problem.

European Journal of Operational Research 1996; 91: 600-610.
23. Lorena, L.A.N.; Senne, E.L.F. Improving traditional subgradient scheme for Lagrangean

relaxation: an application to location problems. International Journal of Mathematical
Algorithms 1999; 1: 133-151.

24. Lorena, L.A.N.; Senne, E.L.F. Local search heuristics for capacitated p-median problems.
Networks and Spatial Economics 2002; to appear.

25. Maniezzo, V.; Mingozzi, A.; Baldaci, R. A bionomic approach to the capacitated p-median
problem. Journal of Heuristics 1998; 4: 263-280.

26. Marsten, R.M.; Hogan, W.; Blankenship, J. The Boxstep method for large-scale
optimization. Operations Research 1975; 23: 389-405.

27. Martello, S.; Toth, P. Knapsack problems: Algorithms and computer implementations, John
Wiley & Sons, 1990.

28. Minoux, M. A Class of Combinatorial Problems with Polynomially Solvable Large Scale
Set Covering/Set Partitioning Relaxations. RAIRO 1987; 21 (2): 105–136.

29. Mulvey, J.M.; Beck, M.P. Solving capacitated clustering problems. European Journal of
Operational Research 1984; 18: 339-348.

30. Narciso, M.G.; Lorena, L.A.N. Lagrangean/surrogate relaxation for generalized assignment
problems. European Journal of Operational Research 1999; 114: 165-177.

31. Neame, P.J. Nonsmooth Dual Methods in Integer Programming Phd Thesis - Department of
Mathematics and Statistics, The University of Melbourne, 1999.

32. Osman, I.H.; Christofides, N. Capacitated clustering problems by hybrid simulated
annealing and tabu search. International Transactions in Operational Research 1994; 1: 317-
336.

33. Reinelt, G. The traveling salesman problem: computational solutions for TSP applications.
Lecture Notes in Computer Science 840, Springer Verlag, Berlin, 1994.

34. Senne, E.L.F.; Lorena, L.A.N. Lagrangean/Surrogate Heuristics for p-Median Problems. In
Computing Tools for Modeling, Optimization and Simulation: Interfaces in Computer
Science and Operations Research, M. Laguna and J.L. Gonzalez-Velarde (Eds.), Kluwer
Academic Publishers, 2000. p. 115-130.

35. Vance, P. Crew scheduling, cutting stock and column generation: solving huge integer
programs. PhD thesis, Georgia Institute of Technology, 1993.

36. Vance, P.H.; Barnhart, C.; Johnson, E.L.; Nemhauser, G.L. Solving Binary Cutting Stock
Problems by Column Generation and Branch-and-Bound. Computational Optimization and
Applications 1994; 3: 111-130.

Vitae

Luiz Antonio Nogueira Lorena is a senior researcher of the Applied Mathematics and Computation
Laboratory (LAC) at INPE (Brazilian Space Research Institute), Brazil. He received a Dr. Degree in
System Engineering and Computation (1985) from COPPE at Federal University of Rio de Janeiro,
Brazil. His main research activities are on combinatorial optimization applications with particular
emphasis in heuristics. He has published in European Journal of Operational Research, Journal of
the Operational Research Society, Evolutionary Computation, Geoinformatica, IEEE TCAD,
International Journal of Industrial Engineering, and International Journal of Mathematical
Algorithms.

Edson Luiz França Senne is a computer science professor in the Mathematics Department at São
Paulo State University, Campus of Guaratinguetá. He received the Doctorate in Applied
Computation in 1987 from INPE – Brazilian Space Research Institute. His research interest includes
combinatorial optimization applications, decision support systems and geographical information
systems. He has published in European Journal of Operational Research, Journal of Intelligent
Systems and International Journal of Mathematical Algorithms.

-10000

-8000

-6000

-4000

-2000

0

2000

4000

0 10 20 30 40 50 60

Lagrangean Lagrangean/surrogate

Figure 1. Typical computational behavior of dual bounds

v(LtPπ)

Iterations

Figure 2: Instance of 100 nodes (central area of São José dos Campos)

Figure 3: Instance of 100 nodes (solution for 10 medians)

Instance n p Best
v(SCP)

Best
v(LtP

π)
Gap-CG Columns

Generated
Time (s)

sjc1 100 10 17149.57 17149.56 0.806 3297 10.80

sjc2 200 15 33232.59 33231.89 0.487 9277 114.20
sjc3a 300 25 45244.70 45243.83 0.263 16480 351.51
sjc3b 300 30 40634.36 40634.34 0.002 17011 316.40
sjc4a 402 30 61850.64 61850.20 0.241 30931 1125.08
sjc4b 402 40 52403.89 52403.89 0.451 28643 729.01

Table 1 – Results for CG(t)

The columns contain:

Instance = the instance identification;

n and p = number of nodes and the required number of medians;

Best v(SCP) = the best value obtained to (SCP);

Best v(LtP
π) = the best (dual) lower bound obtained using the Lagrangean/surrogate relaxation;

Gap-CG = 100 * (Best known feasible solution – Best v(SCP))/(Best known feasible solution);

Columns Generated = number of columns generated;

Time = total computational time (in seconds).

Instance n p Best
v(SCP)

Best
v(L1P

π)
Gap-CG Columns

Generated
Time (s)

sjc1 100 10 16889.02 16893.91 2.313 4287 14.05

sjc2 200 15 33232.59 33231.78 0.487 12167 151.59
sjc3a 300 25 45240.03 45239.55 0.273 22499 553.76
sjc3b 300 30 40635.90 40635.89 0.002 21196 382.24
sjc4a 402 30 61816.25 61815.36 0.241 37240 1522.31

sjc4b 402 40 52369.48 52369.26 0.517 34769 894.25

Table 2 – Results for CG(1)

The columns contain:

Instance = the instance identification;

n and p = number of nodes and the required number of medians;

Best v(SCP) = the best value obtained to (SCP);

Best v(L1Pπ) = the best (dual) lower bound obtained using the Lagrangean relaxation;

Gap-CG = 100 * (Best known feasible solution – Best v(SCP))/(Best known feasible solution);

Columns Generated = number of columns generated;

Time = total computational time (in seconds).

Instance n p Best known
feasible solution

Best
v(LtPλ)

Gap-LS Time

sjc1 100 10 17288.99 17252.12 0.213 68.62
sjc2 200 15 33395.38 33223.66 0.514 2083.37
sjc3a 300 25 45364.30 45313.43 0.112 2604.92
sjc3b 300 30 40635.90 40634.91 0.002 867.68
sjc4a 402 30 62000.23 61842.49 0.254 27717.11
sjc4b 402 40 52641.79 52396.54 0.466 4649.47

Table 3 – Results for LSLSH(t)

The columns contains:

Best known feasible solution = solution to P obtained using location-allocation heuristics [24];

n and p = number of nodes and the required number of medians;

Best v(LtPλ) = the best (dual) lower bound obtained using the Lagrangean/surrogate relaxation and

subgradient method;

Gap-LS = 100 * (Best known feasible solution – Best v(LtPλ
))/(Best known feasible solution).

Time = total computational time (in seconds).

CG(t)
Number

of
Columns

iterations
Columns
Generated

Best
v(SCP) Gap-CG

Best
v(LtP

π) Gap-LS Time

3500 101 30149 61850.64 0.241 61849.90 0.011 1169.96
3300 102 30544 61850.64 0.241 61850.64 0.013 1097.56
3100 113 32678 61849.29 0.243 61849.26 0.011 1175.25
3000 106 30931 61850.64 0.241 61850.20 0.013 1112.29
2900 96 29156 61850.64 0.241 61850.63 0.013 1079.85
2800 111 32429 61850.64 0.241 61850.23 0.012 1115.98

CG(1)
Number

of
Columns

iterations
Columns
Generated

Best
v(SCP) Gap-CG

Best
v(L1P

π) Gap-LS Time

3500 120 39334 61665.98 0.539 61666.28 - 0.284 1672.67
3300 126 38273 61844.14 0.251 61843.67 0.010 1578.46
3100 134 40982 61667.16 0.537 61667.16 - 0.283 1638.28
3000 119 37240 61816.25 0.296 61815.36 - 0.043 1525.35
2900 300 82790 62108.74 - 0.175 54691.75 - 11.562 1855.60
2800 300 90360 62483.74 - 0.779 44403.46 - 28.129 1832.64

Table 4 – Restricting the number of columns at the master problem

The columns contain:

Number of columns = fixed number of columns at the master problem.

Columns Generated = number of columns generated;

Best v(SCP) = the best value obtained to (SCP);

Gap-CG = 100 * (Best known feasible solution – Best v(SCP))/(Best known feasible solution);

Best v(LtP
π) = the best (dual) lower bound obtained using the Lagrangean/surrogate relaxation;

Best v(L1Pπ) = the best (dual) lower bound obtained using the Lagrangean relaxation;

Gap-LS = 100 * (Best known feasible solution – Best v(LtPλ))/(Best known feasible solution);

Time = total computational time (in seconds).

p iterations Columns
Generated

Best
v(SCP)

Best
v(LtP

π)
Time

1000 33 87438 83012.98 83231.58 20210.25
900 36 92578 90131.62 90239.65 25306.54
800 38 98445 98483.26 98530.99 33844.27
700 42 106365 108657.04 108685.59 46705.53
600 48 116623 122020.69 122020.66 59593.02

Table 5. Computational results for CG(t) on Pcb3038 instances

The columns contain:

Columns Generated = number of columns generated;

Best v(SCP) = the best value obtained to (SCP);

Best v(LtP
π) = the best (dual) lower bound obtained using the Lagrangean/surrogate relaxation;

Time = total computational time (in seconds).

P iterations Columns
Generated

Best
v(SCP)

Best
v(L1P

π)
Time

1000 83 234140 82876.12 83063.37 38888.77
900 85 243657 89950.80 90009.72 45456.65
800 96 266708 98309.25 98378.65 64686.50
700 103 283213 108658.92 108684.88 90724.47
600 111 311157 121960.16 121980.34 123581.41

Table 6. Computational results for CG(1) on Pcb3038 instances

The columns contain:

Columns Generated = number of columns generated;

Best v(SCP) = the best value obtained to (SCP);

Best v(L1Pπ) = the best (dual) lower bound obtained using the Lagrangean relaxation;

Time = total computational time (in seconds).

