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ABSTRACT 

The Lagrangean/surrogate relaxation has been explored as a faster computational alternative 

to traditional Lagrangean heuristics. In this work the Lagrangean/surrogate relaxation and 

traditional column generation approaches are combined in order to accelerate and stabilize 

primal and dual bounds, through an improved reduced cost selection. The 

Lagrangean/surrogate multiplier modifies the reduced cost criterion, resulting in the selection 

of more productive columns for the p-median problem, which deals with the localization of p 
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facilities (medians) on a network in order to minimize the sum of all the distances from each 

demand point to its nearest facility. Computational tests running p-median instances taken 

from the literature are presented. 

 

KEYWORDS: P-median, Location, Column Generation, Large-Scale Optimization, Integer 

Programming. 

 

1. INTRODUCTION 

 

This work describes the use of the Lagrangean/surrogate relaxation as a stabilizing method for 

the column generation process for linear programming problems. The Lagrangean/surrogate 

relaxation uses the local information of a surrogate constraint relaxed in the Lagrangean way, 

and has been used to accelerate subgradient-like methods. A local search is conducted at some 

initial iteration of subgradient methods, adjusting the step sizes. The reduction of 

computational times can be substantial for large-scale problems (Narciso and Lorena, 1999; 

Senne and Lorena, 2000). 

 

Column generation is a powerful tool for solving large-scale linear programming problems 

that arise when the columns of the problem are not known in advance and a complete 

enumeration of all columns is not an option, or the problem is rewritten using Dantzig-Wolfe 

decomposition (Dantzig and Wolfe, 1960). Column generation is a natural choice in several 

applications, such as the well-known cutting-stock problem, vehicle routing and crew 

scheduling (Gilmore and Gomory, 1961; Gilmore and Gomory, 1963; Desrochers and 

Soumis, 1989; Desrochers et al., 1992; Vance, 1993; Vance et al., 1994; Day and Ryan, 1997; 

Valério de Carvalho, 1999). 



3 

 

In a classical column generation process, the algorithm iterates between a restricted master 

problem and a column generation subproblem. Solving the master problem yields a dual 

solution, which is used to update the cost coefficients for the subproblem that can produce 

new incoming columns. 

 

The equivalence between Dantzig-Wolfe decomposition, column generation and Lagrangean 

relaxation optimization is well known. Solving a linear programming by Dantzig-Wolfe 

decomposition is equivalent to solving the Lagrangean dual by Kelley's cutting plane method 

(Kelley, 1960). However, in many cases a straightforward application of column generation 

may result in slow convergence. This paper shows how to use the Lagrangean/surrogate 

relaxation to accelerate the column generation process, generating new productive sets of 

columns at each algorithm iteration. 

 

Other attempts to stabilize the dual have appeared before, like the Boxstep method (Marsten 

et al., 1975), where the optimization in the dual space is explicitly restricted to a bounded 

region with the current dual solution as the central point. The Bundle methods (Neame, 1999) 

define a trust region combined with penalties to prevent significant changes between 

consecutive dual solutions. The Analytic Center Cutting Plane method (du Merle et al., 1998) 

takes the current analytic center of the dual function in the next iteration, instead of 

considering the optimal dual solution, avoiding the dual solutions to change too dramatically. 

Other recent alternative methods to stabilize dual solutions have been considered in (du Merle 

et al., 1999). See also Lübbecke and Desrosiers (2002) for selected topics in column 

generation. 
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The search for p-median nodes on a network is a classical location problem. The objective is 

to locate p facilities (medians) such that the sum of the distances from each demand point to 

its nearest facility is minimized. The problem is well known to be NP-hard and several 

heuristics have been developed for p-median problems. The combined use of 

Lagrangean/surrogate relaxation and subgradient optimization in a primal-dual viewpoint 

revealed to be a good solution approach to the problem (Senne and Lorena, 2000). 

 

The initial attempts of using column generation to solve p-median problems appear in 

(Garfinkel et al., 1974) and (Swain, 1974). The authors report convergence problems, even for 

small instances, when the number of medians is small compared to the number of candidate 

nodes in the network. This observation was also confirmed later in (Galvão, 1981). The 

solution of large-scale instances using a stabilized approach is reported in (du Merle et al., 

1999). The use of Lagangean/surrogate as an alternative to stabilize the column generation 

process applied to capacitated p-median problems has appeared in (Lorena and Senne, 2004). 

 

In this paper the use of Lagrangean/surrogate relaxation as a simple, but effective, 

stabilization method for the column generation technique to the p-median problem is 

presented. The paper is organized as follows. Section 2 presents p-median formulations and 

the traditional column generation process. The next section summarizes the 

Lagrangean/surrogate application to the problem and how it can be used in conjunction with 

the column generation process. Section 4 presents the algorithms and the next section shows 

some computational results evidencing the benefits of the new approach. 
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2. P-MEDIAN FORMULATIONS AND COLUMN GENERATION 

 

The p-median problem considered in this paper can be formulated as the following binary 

integer programming problem: 

 (Pmed):  v(Pmed) = ∑ ∑
= =

n

1i

n

1j
ijijxdMin  

subject to ∑
=

=
n

1j
ij 1x , for i ∈  N    (1) 

     px
n

1j
jj =∑

=
     (2) 

     xij ≤ xjj, for i, j ∈  N    (3) 

     xij ∈  {0,1}, for i, j ∈  N   (4) 

where: 

n is the number of nodes in the network and N = {1, ..., n}; 

p is the number of facilities (medians) to be located; 

[dij]n×n is a symmetric cost (distance) matrix, with dii = 0, for i ∈  N; 

[xij]n×n is the allocation matrix, with xij = 1 if node i is assigned to median j, and xij = 0, 

otherwise; xjj = 1 if node j is a median and xjj = 0, otherwise. 

 

Constraints (1) and (3) ensure that each node i is allocated to only one node j, which must be a 

median. Constraint (2) determines that exact p nodes must be selected for the localization of 

the medians, and (4) gives the integer conditions. Any feasible solution for (Pmed) partitions 

the set N into p disjoint subsets, defining clusters containing each one median and the nodes 

allocated to it. 
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(Pmed) is a classical formulation and has been explored in other papers. Garfinkel et al. 

(1974) and Swain (1974) applied the Dantzig-Wolfe decomposition to (Pmed) obtaining the 

following set partition problem with cardinality constraint: 

 

 (SP-Pmed):  v(SP-Pmed) = k
m

1k
k ycMin ∑

=
 

   subject to 1yA k
m

1k
k =∑

=
     (5) 

     py
m

1k
k =∑

=
     (6) 

     yk ∈  {0, 1} 

where 

S = {S1, S2, �, Sm}, is the set of all subsets of N, 

M = {1, 2, �, m}, 

Ak = [ai]n×1, for k ∈  M; with ai = 1 if i ∈  Sk, and ai = 0 otherwise, 














= ∑

∈∈
kk Sj

ij
Si

k dMinc , for k ∈  M, and 

yk is the decision variable, with yk = 1 if the subset Sk is selected, and yk = 0 otherwise. 

 

For each subset Sk, the median node is decided when the cost ck is calculated. So, the columns 

of (SP-Pmed) consider implicitly the constraints set (3) in (Pmed). Constraints (1) and (2) are 

conserved and respectively updated to (5) and (6), according the Dantzig-Wolfe 

decomposition principle. The same formulation is found in Minoux (1987). 
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The cardinality of M can be huge, so a partial set of columns K ⊂  M is considered instead. In 

this case, problem (SP-Pmed) is also known as the restricted master problem in the column 

generation context (Barnhart et al., 1998). 

 

The search for exact solutions of (SP-Pmed) is not the objective of this paper. So, the problem 

to be solved by column generation is the following linear programming relaxation of the 

corresponding set covering formulation for (Pmed): 

 

(SC-Pmed):  v(SC-Pmed) = k
m

1k
k ycMin ∑

=
 

   subject to 1yA k
m

1k
k ≥∑

=
     (7) 

     py
m

1k
k =∑

=
     (8) 

     yk ∈  [0, 1]. 

 

Problem (SC-Pmed) is a relaxed version of (SP-Pmed), so v(SC-Pmed) ≤ v(SP-Pmed). But 

(SC-Pmed) is a problem easier to be solved than (SP-Pmed). 

 

After defining an initial pool of columns, problem (SC-Pmed) is solved and the final dual 

costs µi (i = 1, ..., n) and ρ are used to generate new columns αj = [αij]n×1 as solutions of the 

following subproblem: 

 

 (SubPmed):  v(SubPmed) = 











−∑

=∈∈

n

1i
ijiij

}1,0{αNj
α)µd(MinMin

ij
. 
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(SubPmed) is easily solved, considering each j ∈  N as a median node, and setting αij = 1, if 

(dij � µi) ≤ 0 and αij = 0, if (dij � µi) > 0. The new sets Sj are defined as {i | αij = 1 for 

(SubPmed)}. 

 

The reduced cost is rc = v(SubPmed) � ρ and rc < 0 is the condition for incoming columns. 

Let j* be the node index reaching the overall minimum for v(SubPmed). Then, the column 









1

*jα
 is added to (SC-Pmed) if v(SubPmed) < ρ. But it is well known (Barnhart, 1998) that 

every column 







1

jα
 (j = 1, ..., n) satisfying: 

 












−∑

=∈

n

1i
ijiij

}1,0{α
α)µd(Min

ij
 < ρ,    (9) 

 

can be added to the pool of columns, possibly accelerating the column generation process. 

 

 

3. LAGRANGEAN/SURROGATE AND COLUMN GENERATION 

 

The Lagrangean relaxation for problem (Pmed) is: 

 

(Lπ,λPmed): v(Lπ,λPmed) = ∑ ∑ ∑∑
= = ==

+









−+−

n

1i

n

1j

n

1i
i

n

1j
jjijiij πpxλx)πd(Min  

   subject to (3) and (4) 
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where π ∈  Rn and λ ∈  R are the Lagrangean multipliers of constraints (1) and (2), 

respectively. 

 

Solving (Lπ,λPmed) generates new cutting planes on the Kelley´s method. If µ ∈  nR +  and ρ ∈  

R are dual variables associated to constraints (7) and (8) of (SC-Pmed), respectively, this is 

equivalent to finding the column j* solving subproblem (SubPmed). The column 







1
α *j , as 

well as all the corresponding columns 







1
α j  satisfying expression (9), can be added to (SC-

Pmed). 

 

The Lagrangean/surrogate relaxation for the p-median problem was presented in (Senne and 

Lorena, 2000). As the number of medians is not implicitly considered in (SubPmed), we can 

relax only the constraints (1) in the Lagrangean sense with multipliers π ∈  Rn. Doing this, for 

a given t ∈  R and π ∈  Rn, the Lagrangean/surrogate relaxation of problem (Pmed) can be 

formulated as: 

 

(LSπ,tPmed):  v(LSπ,tPmed) = ∑ ∑ ∑
= = =

+−
n

1i

n

1j

n

1i
iijiij πtx)πtd(Min  

   subject to (2) � (4) 

 

(LSπ,tPmed) can be solved considering implicitly constraint (2) and decomposing the problem 

for index j, obtaining the following n subproblems: 
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    ∑
=

−
n

1i
ijiij x)πtd(Min  

subject to (3) and (4). 

 

Each one of such subproblems is easily solved by letting ∑
=

−=
n

1i
iijj }]πtd,0[min{β  and 

defining J as the index set for the p smallest βj (here constraint (2) is considered implicitly). 

Then, a solution π
ijx  to (LSπ,tPmed) is: 

 



 ∈= otherwise   ,0

Jj if   ,1xπjj  

 

and for all i ≠ j, 

 



 <−∈

=
otherwise,0

0πtdandJjif,1
x iijπ

ij  

 

The solution value is calculated as v(LSπ,tPmed) = ∑∑
==

+
n

1i
i

n

1j

π
jjj πtxβ . Note that π

jjx  is always 

candidate to be 1, since (djj � tπi) = � tπi ≤ 0, and this allows one or more xij�s to be 1 if the 

corresponding (dij � tπi) are negative. 

 

For a fixed multiplier π, the usual Lagrangean relaxation is obtained from (LSπ,tPmed) for the 

case t = 1. The best value for t can be obtained as optimal solution of the local Lagrangean 

dual problem: 
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(Dπ,t):   )}PmedLS(v{Max)D(v t,π
Rt

t,π
∈

= . 

 

It is well known that the function l: R → R, (t, v(LSπ,tPmed)) is concave and piecewise linear. 

Then, an exact solution to (Dπ,t) may be obtained by a search over different values of t (Senne 

and Lorena, 2000). 

 

The Lagrangean/surrogate problem can be integrated to the column generation process 

transferring the multipliers µi (i = 1, ..., n) of problem (SC-Pmed) to the Lagrangean dual 

problem )PmedLS(vMax t,µ
0t≥

. The median (and allocated non-medians) will be determined as 

the node with the smallest contribution to )D(v t,µ  from the cluster that corresponds to the 

incoming column on the new subproblem: 

 

 (SubtPmed):  v(SubtPmed) = 











−∑

=∈∈

n

1i
ijiij

}1,0{αNj
α)µtd(MinMin

ij
. 

 

Let j� be the node index reaching the overall minimum on v(SubtPmed). The new sets Sj are  

{i | αij = 1 for (SubtPmed)} and the column 








1
α 'j , as well as all the corresponding columns 









1
α j  satisfying expression (9), can be added to (SC-Pmed). Note that the columns generated 

can be different from the ones generated using (SubPmed), but they are incoming columns 

only if they satisfy the usual reduced cost tests. 
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Rewriting (SubtPmed), 

v(SubtPmed)  = ( )











−∑

=∈∈

n

1i
ijiij

}1,0{αNj
αµtdMinMin

ij
 

  = ( )




















−+−∑ ∑

= =∈∈

n

1i

n

1i
ijiijiij

}1,0{yNj
αµ)t1(αµdMinMin

ij
, 

 

and the multiplier (1 � t) can be seen as a dual variable corresponding to the following 

additional constraint in the master problem (SC-Pmed): 

 

∑∑ ∑
== =

≥
n

1i
i

n

1i

m

1k
kki µyAµ      (10) 

 

Constraint (10) is formulated using the dual solution µ ∈  nR +  of the current master problem. 

The new (SC-Pmed) is: 

 

(SC-Pmedµ):  v(SC-Pmedµ) = k
m

1k
k ycMin ∑

=
 

    subject to 1yA k
m

1k
k ≥∑

=
 

 px
m

1k
k =∑

=
 

 ∑∑ ∑
== =

≥
n

1i
i

n

1i

m

1k
kki µyAµ  

      yk ∈  [0, 1]. 
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Constraint (10) is a surrogate constraint derived of constraints (7) in (SC-Pmed) and is 

considered only implicitly by the dual variable (1 � t). It follows, by linear programming 

duality, that (1 � t) ≥ 0. As t is the Lagrangean multiplier associated with the surrogate 

constraint derived from constraints (7), it is defined nonnegative, following that the multiplier 

t is always situated in the interval [0,1]. 

 

The implicit consideration of (10) is beneficial to the column generation process because 

some columns can be anticipated in the process. These new identified columns can be more 

productive for the column generation process than the ones generated by (SubPmed). 

 

Comparing subproblems (SubtPmed) and (SubPmed) it is easy to see that, for 0 ≤ t ≤ 1, if dij � 

µi > 0 then dij � tµi > 0 and in the column 







1
y j  the corresponding αij = 0 is not modified by 

using multiplier t. If dij � µi ≤ 0 then dij � tµi ≤ 0 or dij � tµi > 0 and in the column 







1
y j  some 

αij = 1 can be flipped to αij = 0. A direct consequence is that for the same multipliers µi, the 

column cost 













= ∑

∈∈
kk Sj

ij
Si

k dMinc  calculated for problem (SC-Pmed) can be smaller using the 

Lagrangean/surrogate approach. This effect is best shown on computational tests of section 5 

and results on faster convergence, even when multiple columns are added to the pool at each 

iteration of the process. 

 

 

4 ALGORITHM IMPLEMENTATION 
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The column generation algorithm proposed in this paper can be stated as: 

 

CG(t) 

 

(i) Set an initial pool of columns to (SC-Pmed); 

(ii) Solve (SC-Pmed) and obtain the dual prices µi (i = 1, ..., n) and ρ; 

(iii) Solve approximately a local Lagrangean/surrogate dual )PmedLS(vMax t,µ
0t≥

, 

returning the corresponding columns of (SubtPmed); 

(iv) Append the columns 







1
y j  satisfying expression (9) to (SC-Pmed); 

(v) If no columns are found in step (iv) then stop; 

(vi) Perform tests to remove columns and return to step (ii). 

 

The case t = 1 gives the algorithm CG(1), the traditional column generation process. In this 

case, the search for t in the step (iii) is not executed, and the usual Lagrangean bound 

(LSµ,1Pmed) implicitly solves problem (Sub1Pmed). In any case the bounds v(SC-Pmed) and 

v(LSµ,tPmed) are calculated at each iteration. 

 

The following procedure RC is used in step (vi): 

 

Procedure RC 

 

Let  

mean_rc  be the average of the reduced costs for the initial pool of columns of 

(SC-Pmed); 
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 tot_cols  be the total number of columns in the current (SC-Pmed); 

irc   be the reduced cost of the columns in the current (SC-Pmed) (i = 1,..., 

tot_cols); 

 rc_factor  be a parameter to control the strength of the test. 

 

For i = 1, ..., tot_cols do 

 Delete column i from the current (SC-Pmed) if  irc > rc_factor * mean_rc. 

End_For; 

 

5 COMPUTATIONAL TESTS 

 

The algorithms presented in the previous section were implemented in C and executed on a 

Sun Ultra 30 workstation. The initial set of instances used for the tests were drawn from OR-

Library (Beasley, 1990). The results are reported in the following tables (note that the symbol 

��� in these tables means �null gap�). In these tables, all the computer times do not include 

the time needed to setup the problem. 

 

Table 1 reports the results for CG(t) and CG(1) (in parentheses) obtained for rc_factor = 1.0 

and maximum number of iterations = 1000. Table 1 contains: 

− the number of nodes in the network and the number of medians to be located; 

− the optimal integer solution for the instance (available in OR-Library); 

− iter = the number of iterations; 

− the total number of columns generated; 

− the number of columns effectively used in the process; 
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− primal gap = 100 × |(v(SC-Pmed) � optimal)| / optimal, or the percentage deviation 

from optimal to the best primal solution value v(SC-Pmed) found by CPLEX; 

− dual gap = 100 × (optimal � v(LSπ,tPmed)) / optimal, or the percentage deviation from 

optimal to the best relaxation value v(LSπ,tPmed) found; 

− the total computational time (in seconds). 

 

Table 1. Computational results for instances from OR-Library 

 

n p optimal 
solution 

iter columns 
generated 

columns 
used 

primal 
gap 

dual gap total 
time 

100 5 5819 184 
(155) 

5458 
(5969) 

3861 
(3775) 

� 
(�) 

� 
(�) 

36.35 
(36.31) 

200 5 7824 399 
(381) 

16929 
(23630) 

11763 
(12533) 

� 
(�) 

� 
(�) 

902.77 
(1625.63) 

200 10 5631 936 
(757) 

24375 
(24483) 

20584 
(18701) 

� 
(�) 

� 
(�) 

996.00 
(864.83) 

300 5 7696 1000 
(919) 

39299 
(48431) 

38173 
(42704) 

0.246 
(�) 

1.796 
(�) 

17889.12 
(23337.79)

300 10 6634 731 
(1000) 

33342 
(55200) 

26638 
(36864) 

� 
(0.108) 

� 
(0.215) 

10749.91 
(13214.36)

300 30 4374 198 
(1000) 

12040 
(40166) 

8016 
(30381) 

� 
(�) 

� 
(0.118) 

831.22 
(1057.43) 

400 5 8162 1000 
(1000) 

60624 
(85762) 

53181 
(64266) 

0.686 
(0.832) 

1.662 
(1.022) 

52807.93 
(83877.77)

400 10 6999 675 
(627) 

41156 
(66680) 

26561 
(26070) 

� 
(�) 

� 
(�) 

36829.25 
(41202.98)

400 40 4809 195 
(191) 

18160 
(24213) 

13130 
(13101) 

� 
(�) 

� 
(�) 

1055.20 
(1078.27) 

 

The combined use of Lagrangean/surrogate and column generation can be very interesting, 

especially for large-scale problems. Algorithm CG(t) is faster and found the same results of 

CG(1) generating a smaller number of columns. Figure 1 shows that the typical behaviors of 

the Lagrangean bound v(LSπ,1Pmed) and the Lagrangean/surrogate bound v(LSπ,tPmed) are 

conserved using column generation. The figure shows the values obtained at each iteration of 

CG(t) and CG(1) for a problem instance with n = 900 and p = 300. 
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Figure 1. Typical computational behavior of the dual bounds 

v(LSπ,1Pmed) and v(LSπ,tPmed) 

 

The results of Table 1 also show that, for a given number of nodes, the smaller the number of 

medians in the instance, the harder is the problem to be solved using the column generation 

approaches CG(t) or CG(1). 

 

Table 2 includes the LS algorithm, presented in (Senne and Lorena, 2000), which uses the 

Lagrangean/surrogate relaxation embedded on a dual optimized by a subgradient method. 

This table shows the results obtained for the set of the most time consuming instances (for 

LS) from OR-Library in order to compare the CG approaches discussed here and the LS 

approach. The results presented in Table2 were obtained for rc_factor = 1.0 and the maximum 

number of iterations = 50. The columns CG show the results for CG(t) and CG(1) (in 

parentheses). For the LS algorithm, the primal gap = 100 × (feasible solution � optimal)/ 

optimal, where the feasible solution is obtained after a local search procedure performed on 

the clusters identified by medians. 

 

Iterations 
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Table 2. Comparison of LS and CG approaches 

 

n p optimal primal gap dual gap total time 
  solution LS CG LS CG LS CG 

100 33 1355 � � 
(�) � � 

(�) 0.58 0.37 
(0.35) 

200 67 1255 � � 
(�) � � 

(0.667) 4.00 1.29 
(1.89) 

300 100 1729 � 0.116 
(�) � 0.058 

(�) 16.78 4.55 
(4.90) 

400 133 1789 � 0.112 
(�) � 0.950 

(0.783) 51.80 6.21 
(6.04) 

500 167 1828 � 0.055 
(0.036) � 0.310 

(0.210) 127.60 11.00 
(12.91) 

600 200 1989 � 0.302 
(0.101) � 0.285 

(0.235) 257.02 15.81 
(17.59) 

700 233 1847 � 0.081 
(0.325) � 0.379 

(0.785) 482.97 21.50 
(21.41) 

800 267 2026 � 0.518 
(0.222) � 0.346 

(0.271) 1374.74 26.14 
(27.95) 

900 300 2106 0.047 0.518 
(0.607) 0.004 0.827 

(0.443) 3058.65 33.37 
(49.99) 

 

The instances in Table 2 seem to be easy for CG approaches. For these instances the 

computational tests have confirmed the superiority of the combined use of 

Lagrangean/surrogate and column generation compared to the Lagrangean/surrogate 

embedded in a subgradient search method. Note that the LS approach was already shown to 

be faster than Lagrangean heuristics in (Senne and Lorena, 2000). 

 

The results from Table 1 show that CG(t) is able to generate fewer and higher quality columns 

than CG(1). This becomes evident when the number of useful columns is limited by 

decreasing rc_factor, as reported by Table 3 and shown by Figure 2, for the instance with n = 

200 and p = 5. 
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(a) results for rc_factor = 0.5 
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(b) results for rc_factor = 0.4 
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(c) results for rc_factor = 0.3 

 

Figure 2 � (SC-Pmed) values at each iteration 

 

Iterations 

Iterations 

Iterations 
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Table 3 � Limiting useful columns by rc_factor 

 

The results from Table 3 and Figure 2 shows that a column generation procedure which 

includes a Lagrangean/surrogate algorithm CG(t) is able to produce high quality approximate 

solutions even if only a few number of columns is used. The traditional approach CG(1) keeps 

on several iterations with no improvement on the optimal value of the master problem, or it 

can stay unchanged all the time (see Figure 2 for rc_factor = 0.3). 

 

The computational tests proceeded now considering a large-scale instance. The Pcb3038 

instance in the TSPLIB, compiled by Reinelt (1994), was considered for the tests. The results 

are given in Table 4, Table 5 and Table 6. In these tables, primal gap and dual gap are 

calculated as following: 

 

− primal gap = 100 × |(v(SC-Pmed) � best known solution)| / best known solution 

− dual gap = 100 × (best known solution � v(LSπ,tPmed)) / best known solution 

 

 

 

 

 

 

rc_factor iter columns 
generated 

columns 
used 

primal 
gap 

dual gap total time 

0.5 403 
(487) 

18493 
(47634) 

7543 
(7364) 

� 
(�) 

� 
(�) 

619.63 
(971.59) 

0.4 414 
(1000) 

20395 
(167247) 

6627 
(3270) 

� 
(0.631) 

� 
(4.635) 

613.79 
(1370.99) 

0.3 400 
(1000) 

23521 
(186267) 

3886 
(421) 

�0.276 
(11.171) 

2.010 
(65.181) 

532.27 
(905.67) 
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Table 4. Computational results for Pcb3038 instances (rc_factor = 1.0) 

 

p best known
solution 

iter columns 
generated 

columns 
used 

primal 
gap 

dual gap total time

300 187723.46 
42 

(48) 
58339 

(65007) 
44599 

(44081) 
0.043 

(0.043) 
0.044 

(0.043) 
22235.02 
(35132.76

) 

350 170973.34 
47 

(37) 
58758 

(65545) 
45576 

(43956) 
0.044 

(0.044) 
0.045 

(0.045) 
10505.93 
(20457.59

) 

400 157030.46 33 
(35) 

50807 
(60287) 

37318 
(39563) 

0.008 
(0.008) 

0.008 
(0.008) 

4686.27 
(8962.82)

450 145422.94 32 
(30) 

45338 
(52515) 

32637 
(33544) 

0.052 
(0.052) 

0.053 
(0.052) 

1915.84 
(3241.71)

500 135467.85 22 
(21) 

31778 
(36386) 

22854 
(22839) 

0.036 
(0.035) 

0.036 
(0.036) 

597.86 
(787.46) 

 

 

Table 5. Computational results for Pcb3038 instances (rc_factor = 0.5) 

 

p best known
solution 

iter columns 
generated 

columns 
used 

primal 
gap 

dual gap total time

300 187723.46 
79 

(67) 
96798

(111597)
40053

(39448)
0.043 

(0.043) 
0.044 

(0.043) 
19371.01

(36029.23
)

350 170973.34 
65 

(53) 
86113

(90651)
29179

(31664)
0.044 

(0.044) 
0.045 

(0.044) 
7077.99

(12905.94
)

400 157030.46 53 
(49) 

77174
(94716)

22857
(30101)

0.008 
(0.008) 

0.008 
(0.008) 

2872.48
(5682.90)

450 145422.94 40 
(41) 

55870
(80631)

18662
(23767)

0.052 
(0.052) 

0.052 
(0.053) 

1288.56
(2568.56)

500 135467.85 34 
(53) 

45092
(79338)

16750
(22956)

0.036 
(0.036) 

0.036 
(0.044) 

716.78
(1425.33)
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Table 6. Computational results for Pcb3038 instances (rc_factor = 0.2) 

 

p best known
solution 

iter columns 
generated 

columns 
used 

primal 
gap 

dual gap total 
time 

300 187723.46 
617 

(834) 
958984

(1655221)
28718

(93535)
0.043 

(0.043) 
0.044 

(0.043) 
36333.01

(117707.3
1)

350 170973.34 
393 

(719) 
576789

(1232357)
24475

(74005)
0.044 

(0.044) 
0.044 

(0.044) 
10823.10

(49874.03
)

400 157030.46 
235 

(586) 
330475

(1232440)
15973

(54724)
0.008 

(0.008) 
0.008 

(0.008) 
4529.20

(39883.02
)

450 145422.94 
155 

(363) 
176348

(843026)
13489

(20517)
0.052 

(0.052) 
0.052 

(0.052) 
2356.97

(12990.88
)

500 135467.85 121 
(210) 

119884
(420737)

12997
(24254)

0.035 
(0.036) 

0.035 
(0.036) 

1682.15
(4340.33)

 

The results from Tables 4, 5 and 6 confirm that CG(t) is really able to generate better quality 

columns than CG(1). Evidently, if more columns are deleted by RC algorithm, more iterations 

are necessary to reach the same results, which highlights the superiority of CG(t) as compared 

to CG(1). The rc_factor can be viewed as a trade-off parameter to decide about available time 

and storage conditions. 

 

Based on the computational tests we can draw the following overall conclusions: 

− Instances with small number of medians are hard to column generation approaches and 

easy for Lagrangean/surrogate and subgradient methods. On the other hand, instances with 

large number of medians are easy to column generation and hard to Lagrangean/surrogate 

and subgradient methods. It seems that they are companion methods in this sense. 

−  Algorithm CG(t) can be used as a substitute of CG(1), specially on hard instances. 
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6 COMMENTS AND CONCLUSION 

 

Column generation has been recognized as a useful tool for modeling and solving large-scale 

linear programming problems. Despite that, the column generation application may have 

some computational problems, when the subproblem generates too many columns not 

improving the master problem bound.  

 

The combined use of Lagrangean/surrogate relaxation and column generation shows some 

improvement to the traditional column generation process. Depending on the instance both 

methods, the column generation and the Lagrangean/surrogate embedded with subgradient 

like methods, can be improved. 

 

Algorithm CG(t) also calculates lower bounds, the Lagrangean/surrogate bound, that can be 

used, in similar way to other bounds (Farley, 1990), to stop the process at a convenient 

iterations limit. It also can be useful to branch-and-price methods (Vance et al., 1994; 

Barnhart et al., 1998). The CG(t) application to p-median problems is an alternative to 

Lagrangean heuristics, especially on hard instances. 
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