

CAP-359 PRINCIPLES AND APPLICATIONS OF DATA MINING

Rafael Santos – rafael.santos@inpe.br www.lac.inpe.br/~rafael.santos/

Data Mining Concepts and Applications

Classification

Some slides on this introduction adapted from *Introduction to Data Mining*; Pang-Ning Tan, Michael Steinbach and Vipin Kumar (2005).

- Prediction of a category or discrete label.
- Model or Classifier creation:
 - Input: instances with known classes.
 - Output: model based on the data and algorithm.

Classification:

- Input: unlabeled data.
- Output: labels for the unlabeled data based on the model.
- Post-processing: model evaluation.

Introduction to Data Mining; Pang-Ning Tan, Michael Steinbach and Vipin Kumar (2005).

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125	No
2	No	Married	100	No
3	No	Single	70	No
4	Yes	Married	120	No
5	No	Divorced	95	Yes
6	No	Married	60	No
7	Yes	Divorced	220	No
8	No	Single	85	Yes
9	No	Married	75	No
10	No	Single	90	Yes

We want to predict who will cheat on taxes based on other attributes.

Tid	Refund	Marital Status	Taxable Income	Cheat
7	Yes	Divorced	220	No
2	No	Married	100	No
4	Yes	Married	120	No
6	No	Married	60	No
9	No	Married	75	No
1	Yes	Single	125	No
3	No	Single	70	No
5	No	Divorced	95	Yes
8	No	Single	85	Yes
10	No	Single	90	Yes

		Marital Taxable		
Tid	Refund	Status	Income	Cheat
2	No	Married	100	No
6	No	Married	60	No
9	No	Married	75	No
3	No	Single	70	No
7	Yes	Divorced	220	No
4	Yes	Married	120	No
1	Yes	Single	125	No
5	No	Divorced	95	Yes
8	No	Single	85	Yes
10	No	Single	90	Yes

Sort 2

Sort 1

Tid	Refund	Marital Status	Taxable Income	Cheat
6	No	Married	60	No
3	No	Single	70	No
9	No	Married	75	No
8	No	Single	85	Yes
10	No	Single	90	Yes
5	No	Divorced	95	Yes
2	No	Married	100	No
4	Yes	Married	120	No
1	Yes	Single	125	No
7	Yes	Divorced	220	No

Tid	Defund	Marital Taxable		Choot
110	Refund	วเลเนร	income	Cheat
6	No	Married	60	No
3	No	Single	70	No
9	No	Married	75	No
8	No	Single	85	Yes
10	No	Single	90	Yes
5	No	Divorced	95	Yes
2	No	Married	100	No
4	Yes	Married	120	No
1	Yes	Single	125	No
7	Yes	Divorced	220	No

		Marital Taxable		
Tid	Refund	Status	Income	Cheat
6	No	Married	60	No
3	No	Single	70	No
9	No	Married	75	No
8	No	Single	85	Yes
10	No	Single	90	Yes
5	No	Divorced	95	Yes
2	No	Married	100	No
4	Yes	Married	120	No
1	Yes	Single	125	No
7	Yes	Divorced	220	No

- Bad rule: nobody cheats: 3/10 errors.
- Bad rule: those who don't get refunds, cheat: 4/10 errors.
- Better rule: if 85 ≤ income ≤ 100 then cheat: 1/10 errors.
- Even better rule: if $85 \le \text{income} \le 95$ then cheat: 0/10 errors.

Tid	Refund	Marital Status	Taxable Income	Cheat
6	No	Married	60	No
3	No	Single	70	No
9	No	Married	75	No
8	No	Single	85	Yes
10	No	Single	90	Yes
5	No	Divorced	95	Yes
2	No	Married	100	No
4	Yes	Married	120	No
1	Yes	Single	125	No
7	Yes	Divorced	220	No

- □ Another perfect rule: if 75 ≤ income ≤ 95 and marital status is {single or divorced} then cheat: 0/10 errors.
- □ Another perfect rule: if 75 ≤ income ≤ 95 and marital status is {single or divorced} and refund is no then cheat: 0/10 errors.

What do we want from a classifier?

- Classify unknown data.
 - Model must be robust enough to deal with previously unknown data generalization!
- Explain our data, e.g. using statistics and rules.
 - Eventually there is no need to explain all data in intricate details: generalization again!

How to create a model?

- Different algorithms creates different models.
- Some models are inherently more precise, some are easier to understand.
- Some models are compact, some are extensive.
- Which is better?

Classification: Evaluation

- □ A simple evaluation technique: confusion matrix.
 - Classify labeled or known data.
 - Usually data used for training or a subset of it

Accuracy: Correct Classifications/All Classifications

395/450 = 87.78%

More Metrics from Confusion Matrix

- Recall for a class (sensitivity or true positive rate)
 - Of the classified as X how many are really X (i.e. not other classes in X's boundary)?
 - TP/(TP+FN): 0.6250 for A;
 1.0000 for B; 0.8837 for C
- Precision for a class (positive predictive value)
 - Of all the X how many were classified as X (i.e. not misclassified)?
 - TP/(TP+FP): 1.0000 for A;
 0.7750 for B; 0.9500 for C

Ideas from the evaluation process

- Labeled data: does it *really* corresponds to samples for a class?
- Are there mixed classes in our labels for class X?
- □ Are there really N classes (instead of N±n)?

- Model is the average of the data points (geometric center).
- Class is determined from the minimum distance to center.
- Other metrics may be used.

 \succ

Decision Boundary with labeled points and classes' prototypes

	Classified as				
	A B C				
Α	50	0	0		
В	11	170	19		
С	4	0	196		

Accuracy: 92.444%

х

Minimum Distance Classifier: cap359Dataset302

 Decision Boundary with labeled points and classes' prototypes

	Classified as					
	Α	A B C D				
Α	356	16	26	2		
В	19	357	1	23		
С	19	0	362	19		
D	4	14	15	367		

Accuracy: 90.125%

х

Minimum Distance Classifier: cap359Dataset402

Decision Boundary with labeled points and classes' prototypes

	Classified as				
	Α	В	С	D	E
Α	195	5	0	0	0
В	1	171	28	0	0
С	0	29	171	0	0
D	0	0	0	198	2
E	0	0	0	2	198

Accuracy: 93.300%

х

Minimum Distance Classifier: cap359Dataset502

А

С

 Decision Boundary with labeled points and classes' prototypes

	Classified as		
	A B		
Α	227	223	
В	224	226	

Accuracy: 50.333%

- Model is the set of decision rules that best separates the classes.
- Class is determined from evaluation of the rules.

C5.0 Decision Tree - Unpruned, min=1

	Classified as				
	A B C				
Α	50	0	0		
В	3	191	6		
С	0	0	200		

Accuracy: 0.98

Pruned tree.

	Classified as		
	Α	В	С
Α	50	0	0
В	3	190	7
С	0	0	200

Accuracy: 0.9777778

Must implement/document this in R! See next version.

Must implement/document this in R! See next version.

Our toy problem:

Tid	Refund	Marital Status	Taxable Income	Cheat
6	No	Married	60	No
3	No	Single	70	No
9	No	Married	75	No
8	No	Single	85	Yes
10	No	Single	90	Yes
5	No	Divorced	95	Yes
2	No	Married	100	No
4	Yes	Married	120	No
1	Yes	Single	125	No
7	Yes	Divorced	220	No

Tid	Refund	Marital Status	Taxable Income	Cheat
6	No	Married	60	No
3	No	Single	70	No
9	No	Married	75	No
8	No	Single	85	Yes
10	No	Single	90	Yes
5	No	Divorced	95	Yes
2	No	Married	100	No
4	Yes	Married	120	No
1	Yes	Single	125	No
7	Yes	Divorced	220	No

C5.0 Decision Tree - Default Parameters

Tid	Refund	Marital Status	Taxable Income	Cheat
6	No	Married	60	No
3	No	Single	70	No
9	No	Married	75	No
8	No	Single	85	Yes
10	No	Single	90	Yes
5	No	Divorced	95	Yes
2	No	Married	100	No
4	Yes	Married	120	No
1	Yes	Single	125	No
7	Yes	Divorced	220	No

₽

Yes

- No Model: uses labeled data points themselves.
 - Computationally intensive.
- Class is determined from majority of labeled nearest neighbors.

- Model: parameters of a neural network, trained to separate classes.
 - Model is hard to understand.
 - Underfitting/Overfitting problem.

Perceptron Х W X₂ W₂ N $s = \sum w_n x_n - b$ X₃ W₃ n = 1W Х ٧ 4 y = T(s)W n Х n b

Multilayer Perceptron

MLP, 1 neuron

 One neuron cannot separate three classes with non-parallel hyperplanes!

MLP, 1 neuron

MLP, 1 neuron

 1 Neuron in the hidden layer: unable to calculate the confusion matrix

	Classified as			
	А	В	С	
А	0	50	0	
В	0	192	8	
С	0	2	198	

Classification: Neural Networks (MLPs)

Missing on this version

- Random Forests
 - Ensembles of trees, outputs mode of classes.

- SVM (Support Vector Machines)
 - A binary classification method, can be combined to use with N classes.

Data Mining Concepts and Applications

What about My Data?

Do I have a classification problem?

- Do you need to predict a class from observational data?
- Do you need to explain the data (rules, trees)?
- Start organizing the data!