

ELAC 2018 INTRODUCTION TO DATA SCIENCE

Day 4 Rafael Santos - rafael.santos@inpe.br www.lac.inpe.br/~rafael.santos/talks.html

Introduction to Data Science

About this Lecture

Where are we?

Introduction to Data Science

Machine Learning

Introduction to Data Science

- Prediction of a category or discrete label.
- Model or Classifier creation:
 - Input: instances with known classes.
 - Output: model based on the data and algorithm.

- Input: unlabeled data.
- Output: labels for the unlabeled data based on the model.
- Post-processing: model evaluation.

Tid Refund		Marital Status	Taxable Income	Cheat
1	Yes	Single	125	No
2	No	Married	100	No
3 No		Single	70	No
4	Yes	Married	120	No
5	No	Divorced	95	Yes
6	No	Married	60	No
7 Yes		Divorced	220	No
8	No	Single	85	Yes
9	No	Married	75	No
10	No	Single	90	Yes

We want to predict who will cheat on taxes based on other attributes.

		Marital	Taxable	
Tid	Refund	Status	Income	Cheat
7	Yes	Divorced	220	No
2	No	Married	100	No
4	Yes	Married	120	No
6	No	Married	60	No
9	No	Married	75	No
1	Yes	Single	125	No
3	No	Single	70	No
5	No	Divorced	95	Yes
8	No	Single	85	Yes
10	No	Single	90	Yes

		Marital	Taxable	
Tid	Refund	Status	Income	Cheat
2	No	Married	100	No
6	No	Married	60	No
9	No	Married	75	No
3	No	Single	70	No
7	Yes	Divorced	220	No
4	Yes	Married	120	No
1	Yes	Single	125	No
5	No	Divorced	95	Yes
8	No	Single	85	Yes
10	No	Single	90	Yes

Sort 1

		Marital	Taxable	
Tid	Refund	Status	Income	Cheat
6	No	Married	60	No
3	No	Single	70	No
9	No	Married	75	No
8	No	Single	85	Yes
10	No	Single	90	Yes
5	No	Divorced	95	Yes
2	No	Married	100	No
4	Yes	Married	120	No
1	Yes	Single	125	No
7	Yes	Divorced	220	No

Tid	Defund	Marital	Taxable	Cheat
110	Reiuna	Status	income	Cheat
6	No	Married	60	No
3	No	Single	70	No
9	No	Married	75	No
8 No		Single	85	Yes
10	No	Single	90	Yes
5	No	Divorced	95	Yes
2	No	Married	100	No
4	Yes	Married	120	No
1	Yes	Single	125	No
7	Yes	Divorced	220	No

		Marital	Taxable	
Tid	Refund	Status	Income	Cheat
6	No	Married	60	No
3	No	Single	70	No
9	No	Married	75	No
8	No	Single	85	Yes
10	No	Single	90	Yes
5	No	Divorced	95	Yes
2	No	Married	100	No
4	Yes	Married	120	No
1	Yes	Single	125	No
7	Yes	Divorced	220	No

- Bad rule: nobody cheats: 3/10 errors.
- Bad rule: those who don't get refunds, cheat: 4/10 errors.
- Better rule: if 85 ≤ income ≤ 100 then cheat: 1/10 errors.
- □ Even better rule: if $85 \le \text{income} \le 95$ then cheat: 0/10 errors.

Tid	Refund	Marital Status	Taxable Income	Cheat
6	No	Married	60	No
2	No	Singlo	70	No
5	NU		70	INU .
9	No	Married	75	No
8	No	Single	85	Yes
10	No	Single	90	Yes
5	No	Divorced	95	Yes
2	No	Married	100	No
4	Yes	Married	120	No
1	Yes	Single	125	No
7	Yes	Divorced	220	No

- □ Another perfect rule: if 75 ≤ income ≤ 95 and marital status is {single or divorced} then cheat: 0/10 errors.
- □ Another perfect rule: if 75 ≤ income ≤ 95 and marital status is {single or divorced} and refund is no then cheat: 0/10 errors.

What do we want from a classifier?

- Classify unknown data.
 - Model must be robust enough to deal with previously unknown data generalization!
- Explain our data, e.g. using statistics and rules.
 - Eventually there is no need to explain all data in intricate details: generalization again!

16

How to create a model?

- Different algorithms creates different models.
- Some models are inherently more precise, some are easier to understand.
- Some models are compact, some are extensive.
- Which is better?

Classification: Evaluation

- □ A simple evaluation technique: confusion matrix.
 - Classify labeled or known data.
 - Usually data used for training or a subset of it

Accuracy: Correct Classifications/All Classifications

395/450 = 87.78%

More Metrics from Confusion Matrix

Recall for a class (sensitivity or true positive rate)

- Of the classified as X how many are really X (i.e. not other classes in X's boundary)?
- TP/(TP+FN): 0.6250 for A;
 1.0000 for B; 0.8837 for C
- Precision for a class (positive predictive value)
 - Of all the X how many were classified as X (i.e. not misclassified)?
 - TP/(TP+FP): 1.0000 for A;
 0.7750 for B; 0.9500 for C

Ideas from the evaluation process

- Labeled data: does it *really* corresponds to samples for a class?
- Are there mixed classes in our labels for class X?
- \square Are there really N classes (instead of N±n)?

Classification: Minimum Distance

- Model is the average of the data points (geometric center).
- Class is determined from the minimum distance to center.
- Other metrics may be used.

Classification: Decision Tree

- Model is the set of decision rules that best separates the classes.
- Class is determined from evaluation of the rules.

Classification: Decision Tree

Classification: Nearest Neighbors

- No Model: uses labeled data points themselves.
 - Computationally intensive.
- Class is determined from majority of labeled nearest neighbors.

Classification: Neural Networks (MLPs)

- Model: parameters of a neural network, trained to separate classes.
 - Model is hard to understand.
 - Underfitting/Overfitting problem.

Introduction to Data Science

Clustering

Clustering

Methods that find natural groups in data.

- Data in the same cluster or group are somehow similar.
- Data in different groups are somehow different.
- We don't need labels to train a classifier!

Problems:

- How to define similarity?
- How many groups do we have?

Clustering

Input:

- Data
- Similarity metrics, attributes
- Number of clusters
- Output:
 - Assignment for each data point to each cluster (hard or soft)
 - Clustering quality metrics

K-Means

- Iterative algorithm:
 - 1. Start with K groups
 - 2. Calculate centers of groups based on membership
 - 3. Assign data to groups
 - 4. Repeat 2-4 until stopping condition

$$v_i = \frac{1}{n_i} \sum_{x_k \in C_i} x_k$$

$$J = \sum_{k=1}^{n} \sum_{x_k \in C_i} |x_k - v_i|^2$$

Fuzzy C-Means

- □ Similar to K-Means, but it uses a membership table.
- For cluster analysis, usually last step is defuzzification, but..
 - Allows "Plan B" clustering.
 - We can cut assignment to clusters if max(membership) is too low.

Instância	Classe A	Classe B	Classe C	Classe D
1	0.31	0.19	0.50	0.00
2	0.08	0.01	0.74	0.17
3	0.25	0.24	0.26	0.25
4	0.99	0.00	0.00	0.01
5	0.50	0.50	0.00	0.00

DBScan

Identification of density-based clusters:

- Find core points
- Test reachability
- Identify noise

Hierarchical Clustering

- Methods that create several partitions in the data:
- Top-down: starts with all data in a single cluster, partitions every cluster until each data is in a single cluster.
- Bottom-up: starts with each data in a single cluster, merges data+clusters until all data is in a single cluster.

Hierarchical Clustering

	X	Y			1	2		3	4				
1	0.25	0.27	1	0,0	00	0,644	0,	536	0,092				
2	0,32	0,91	2	0,6	44	0,000	0,	110	0,597	'			
3	0,33	0,80	3	0,5	36	0,110	0,	000	0,493	,			
4	0,18	0,33	4	0,0	92	0,597	0,4	493	0,000				
-													
	Г	X	Υ			1+4	2		3				
	1+4	0.22	0.30	1+4		0,000	0,619		0,513				
	2	0.32	0,91	2		0,619	0,000		0,110		I		
	3	0,33	0,80	3		0,513	0,110		0,000		L		
		· .											
			v v			1+4	2-	⊦3					
	1	+1 0	22 0 30	1+4	4	0,000	0,50	66					
	2	+3 0	33 0.86	2+3	3	0,566	0,00	00					
	2		,00 0,00				· · · · ·						
						XY							
				1+2+3+4	4	0,27 0,58	3						
										1	4	2	3