
Computing turbulent processes
in physics, chemistry & biology

Jörn Davidsen

http://www.ucalgary.ca/complexity/

Collaborators: James Reid, Ghislain St-Yves, UofC
Raymond Kapral, University of Toronto, Canada
Meng Zhan, Wuhan Institute of Physics and Mathematics, China
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I. Spontaneous pattern formation Jörn Davidsen

I. Spontaneous pattern formation in reaction-diffusion media

August 26th 2010 2



I. Spontaneous pattern formation Jörn Davidsen

Reaction-diffusion media (mass action kinetics)

∂t~c(~r) = ~R(~c(~r)) + D∇2~c(~r)

A1, . . . , A5 pool chemical of fixed concentration; model constructed
phenomenologically
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III. (Bio-)Chemical oscillations and beyond Jörn Davidsen

II. Non-equilibrium dynamics: (Bio-)Chemical oscillations

Example: Peroxidase-oxidase reaction
Destruction of bacteria by white blood cells (metabolic process):

2NADH + O2 + 2H+ Per
−→ 2NAD+ + 2H2O

NADH: nicotinamide adenine dinucleotide

reaction catalyzed by enzyme (horseradish peroxidase), its concentration
acts as the control parameter

oscillations and more complex dynamics
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III. (Bio-)Chemical oscillations and beyond Jörn Davidsen

Simple model of peroxidase-oxidase reaction (Steinmetz et al. ’91)

Ȧ = k7 − k1ABX − k3ABY − k9A

Ḃ = k8 − k1ABX − k3ABY

Ẋ = k6 + k1ABX + 2k3ABY − 2k2X
2 − k4X

Ẏ = 2k2X
2 − k3ABY − k5Y
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III. (Bio-)Chemical oscillations and beyond Jörn Davidsen

Chemical chaos in Belousov-Zhabotinsky reaction (Roux et al. ’81)
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III. Nonlinear wave patterns: Spiral waves

Spiral waves in 2d media (Scott ’91)
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III. Spiral waves Jörn Davidsen

Examples

glycolysis in yeast

CO oxidation heart tissue

calcium waves in frog eggs
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III. Spiral waves Jörn Davidsen

Topological definition of spirals

Periodic signal in 2d phase space
(e.g., excitable or oscillatory
media):
phase description φ with dφ

dt = ω0

Phase locking:
|φ1(t) − φ2(t)| < const

It =
1

2π

∮
∇φ(r, t) · dl (index, topological charge)
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III. Spiral waves Jörn Davidsen

Topological theorem for spirals

ΣAIt = 0

Implications:

☞ In the bulk, single-armed spirals are created and annihilated pairwise
with opposite index I

☞ Single spirals can be created and annihilated at the boundaries

For oscillatory media (Hagan ’82):

It = ±1
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IV. Spirals in complex-oscillatory media Jörn Davidsen

IV. Spirals in complex-oscillatory media

“Broken” spirals (Yoneyama et al. ’95)

August 26th 2010 11



IV. Spirals in complex-oscillatory media Jörn Davidsen

Period-2 media: Synchronization defect line (Goryachev et al. ’00)

Ω
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IV. Spirals in complex-oscillatory media Jörn Davidsen

Rössler model (Davidsen et al. ’04 )

∂tc(r, t) = R[c(r, t)] + D∇2
c(r, t),

Rx = −cy − cz, Ry = cx + 0.2cy, Rz = cxcz − Ccz + 0.2 with C ∈ [2.0, 6.0]

v ∝ (C − C2)
γ with C2 ≈ 3.03, γ ≈ 1.5
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IV. Spirals in complex-oscillatory media Jörn Davidsen

Multi-spiral pattern: Novel vortex liquid

b

d

a

c

(a): P1 regime (C = 2.5, L = 1024). (b,c): P2 regime (C = 3.5, L = 512). (d): Trajectories of spiral

cores leading to the configuration shown in (b).
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V. Defect-mediated turbulence Jörn Davidsen

V. Defect-mediated turbulence

spiral break-up induced by change in control parameter
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V. Defect-mediated turbulence Jörn Davidsen

Examples

taken from Rehberg et al. ’89, Morris et al. ’93, Ouyang et al. ’00, Daniels et al. ’02

∂tA = A + (1 + iα)∇2A − (1 + iβ)|A|2A (Complex Ginzburg Landau)
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V. Defect-mediated turbulence Jörn Davidsen

Definition
defects are created and annihilated to give a statistically stationary
number of defects pairs in the system (caused by far-field or core
instabilities, for example (Bär et al. ’04))

experimental results for CO oxidation on Pt (110) (Beta et al. ’06)
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V. Defect-mediated turbulence Jörn Davidsen

Reduced description: Markov model (Gil et al. ’90)

Assumptions: ☞ Defect pairs are statistically independent entities

☞ Creation rate: c(n) = c = const

☞ Annihilation rate: a(n) = an2

Predictions: ☞ dp(n,t)
dt = c(n − 1)p(n − 1, t) + a(n + 1)p(n + 1, t) −

[a(n) + c(n)]p(n, t)

☞ p(n) = [c(n − 1)/a(n)]p(n − 1)

☞ p(n) ∝ (c/a)n/(n!)2

☞ modifications apply if boundary effects, strong
correlations and/or induced nucleation have to be
taken into account
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V. Defect-mediated turbulence Jörn Davidsen

Simple model of peroxidase-oxidase reaction (St-Yves et al. ’10)
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V. Defect-mediated turbulence Jörn Davidsen

Loops of defect trajectories
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V. Defect-mediated turbulence Jörn Davidsen

Cardiac arrhythmia: Ventricular fibrillation (Fenton et al. ’02)
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V. Defect-mediated turbulence Jörn Davidsen

In-vivo episode of human VF (ten Tusscher et al. ’09)
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V. Defect-mediated turbulence Jörn Davidsen

Geometry of the heart

thin atria (2d) vs thick ventricles (3d)
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VI. Scroll waves Jörn Davidsen

VI. Scroll waves & filaments

August 26th 2010 24



VI. Scroll waves Jörn Davidsen

Scroll wave break-up (Luengviriya et al. ’08)
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VI. Scroll waves Jörn Davidsen

Negative line tension instability (Winfree ’94; Alonso et al. ’03)

−

+
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VI. Scroll waves Jörn Davidsen

Scroll wave dynamics in cardiac tissue (ten Tusscher et al. ’09)

in cardiac tissue models of realistic heart geometries, nature of filament
turbulence depends on size and action potential duration
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VII. Surface spiral turbulence Jörn Davidsen

VII. Filament-induced surface spiral turbulence (Davidsen ’08)
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Is it possible to distinguish between the negative line tension instability
and 2D spiral breakup mechanisms if observations are constrained to the
turbulent dynamics of spiral waves on the surface?
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VII. Surface spiral turbulence Jörn Davidsen

Filament turbulence: Complex Ginzburg-Landau (Reid et al. ’10)

∂tA = A + (1 + ib)∇2A − (1 + ic)|A|2A

NLT regime: b = 5, c = 0 AT regime: b = 1, c = −1.5
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VII. Surface spiral turbulence Jörn Davidsen

CGLE: Amplitude turbulence regime
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VII. Surface spiral turbulence Jörn Davidsen

CGLE: Negative line tension regime
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VII. Surface spiral turbulence Jörn Davidsen

Creation of filaments

Annihilation of filaments
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Turbulent processes Jörn Davidsen

VIII. Summary & Outlook

☞ pattern formation is an exciting and highly-interdisciplinary field

☞ chemical systems are prime examples for chaotic and turbulent
dynamics

☞ topological defects (spirals, synchronization defect lines, filaments)
allow a reduced description of complex spatiotemporal dynamics and
their behavior characterizes the underlying instabilities/bifurcations

☞ surface dynamics can tell it all

☞ important applications include cardiac arrhythmia and ventricular
fibrillation
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Phys. Rev. Lett. 93, 018305; Phys. Rev. Lett. 91, 058303



Turbulent processes Jörn Davidsen

“Stationary” chemical patterns: CIMA reaction (Ouyang et al. ’91)
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Turbulent processes Jörn Davidsen

Turing patterns: Activator-inhibitor scheme (Gierer & Mei nhardt ’72)

Diffusion
Activator

Inhibitor

+_

Degradation

Autocatalysis

local self-enhancement & long-range inhibition (Da ≪ Dh)
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Gierer-Meinhardt model

∂a

∂t
= Da∇

2a + ρa
a2

(1 + κaa2)h
− µaa + σa

∂h

∂t
= Dh∇

2h + ρha2 − µhh + σh

Turing patterns: Da ≪ Dh and µh > µa
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Turing patterns in the Gierer-Meinhardt model
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Turbulent processes Jörn Davidsen

Quasiperiodicity: Torus attractor (St-Yves et al. ’10)
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Turbulent synchronization defect lines

C=5.8

C=4.6
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Diffusive motion of spiral cores

ba

(a): Mean squared displacement 〈|∆r(t)|2〉 = 〈|rv(t)−rv(0)|
2〉 for different values of C in the turbulent

regime. Here, rv(t) is the position of the core at time t. (b): The core diffusion coefficient Dv — defined

by 〈|∆rv(t)|
2〉 = 4Dvt — as a function of C.
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Chaotic media

Definition. A chaotic oscillator is a
chaotic dynamical system with the
property that a well-defined phase variable
(monotonically growing quantity on the
attractor) exists. Two non-identical
chaotic oscillators are said to be phase
synchronized if their phases are locked
but their ”amplitudes” are not (6= complete
synchronization).

tan φ(r, t) =
x2(r, t)

x1(r, t)
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Chemical model: Willamowski-R össler (WR)

∂tc(r, t) = R[c(r, t)] + D∇2
c(r, t),

R1 = 31.2c1 − 0.2c2
1 − 1.45c1c2 + κ−2c2

2 − 1.02c1c3 + 0.01,

R2 = 1.45c1c2 − κ−2c2
2 − 10.8c2 + 0.12 and R3 = −1.02c1c3 + 0.01 + 16.5c3 − 0.5c2

3.
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Medium with local deterministic chaos (Davidsen et al. ’03)
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Pair correlation function

Normalized pair correlation function h(|∆r|/r0) with r0 =
p

L2/〈n〉 for WR and CGLE.

h(|∆r|) =
〈n+(r, t)n−(r + ∆r, t)〉r,t

〈n〉2
− 1
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Power spectrum of WR

Power spectrum SL(f) = limT→∞ 1/2T |
T
R

−T

dt n(t) exp−i2πft |2. The thick lines are to guide the

eye. SL(f) ∝ 1/f1.43 for the thick solid line, and γ = 1.60 for the thick dotted line.
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Power spectrum of CGLE

Power spectrum of n(t) for different parameters in the CGLE and L = 128. The thick line is to guide the

eye and decays with γ = 1.9. Note that T̄ = 12.7, 8.40, 5.43 from highest to lowest α.
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Negative line tension instability (Winfree ’94; Alonso et al. ’03)
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Filament turbulence: Excitable Barkley model in 3D

∂tu = Du∇
2u +

1

ǫ
u(1 − u)(u −

υ + b

a
),

∂tυ = Dυ∇
2υ + u − υ,

ǫ = 0.02, a = 1.1, b = 0.21, Du = 1, Dυ = 0

center of rotation: u = 0.5, v = a/2 − b
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Creation of filaments

Annihilation of filaments
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Creation rates

0 10 20 30
n
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Annihilation rates

August 26th 2010 B 18



Turbulent processes Jörn Davidsen

Markov model for filament turbulence

c(n) = β1 + β2n, a(n) = α1 + α2n.

p(n) = p(n0)
zn−n0Γ(n + z1)Γ(n0 + z2 + 1)

Γ(n + z2 + 1)Γ(n0 + z1)

z1 = β1/β2, z2 = α1/α2, z = β2/α2.
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Distribution of surface defects
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Average surface density & average volume

stronger interactions for small system sizes
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CGLE: Average densities
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Action potential via patch clamp

☞ threshold of excitation

☞ amplification of stimulus

☞ refractory period

☞ action potential travels down the
axon as a voltage spike

☞ excitatory signals

☞ inhibitory signals

☞ “negative” resting state maintained
by ion pumps
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Ion flow in action potential

I. Na+ channels open, inflow of
sodium ions, membrane potential
becomes positive

II. K+ channels open, outflow of
potassium ions

III. Na+ channels close, membrane
potential decays

IV. K+ channels close

V. ion pumps restore rest state by
transporting sodium out of the cell
and potassium into the cell
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Excitation dynamics

refractoryrest excited

threshold of excitation: rest state is stable, sufficiently strong perturbation
is required
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Simple model: activator-inhibitor kinetics

du

dt
= −u3 + u − v = Ru(u, v)

dv

dt
= ǫ(u − γv + β) = Rv(u, v)

☞ u: concentration of fast activator (“sodium”)

☞ v: concentration of slow inhibitor or controller (“potassium”)

☞ slow means ǫ ≪ 1

☞ γ, β are constants determined by “chemical kinetics”

☞ generic vs. specific behavior
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Nullclines ( u̇ = 0; v̇ = 0) for FitzHugh Nagumo model

du

dt
= −u3 + u − v = Ru(u, v)

dv

dt
= ǫ(u − γv + β) = Rv(u, v)

August 26th 2010 B 27



Turbulent processes Jörn Davidsen

Stable equilibrium solutions of the FitzHugh Nagumo model

du

dt
= −u3 + u − v = Ru(u, v)

dv

dt
= ǫ(u − γv + β) = Rv(u, v)
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Instabilities

pitchfork bifurcation Hopf bifurcation
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