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•A software tool to model genetic regulatory networks.

(More details in the tutorial on Computational Biology)

•The calibration of a pattern formation model in Drosophila early 

development --- parameter determination by a swarm technique.

Non-determinancy of parameters.

•Evolutionary computation techniques (multi-objective) to calibrate the 

parameters of a morphogenesis model of Drosophila early development. 

Pareto fronts. Non-unicity of parameter solutions.

•Making predictions about protein regulation.

1st Conference on

Computational Interdisciplinary Sciences (CCIS 2010)

23-27 August 2010, INPE, São José dos Campos, Brasil
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A software tool to model genetic regulatory networks. Applications to the modeling 

of threshold phenomena and of spatial patterning in Drosophila.

R. Dilão and D. Muraro,  PLoS ONE, 5 (5) (2010) 1-10 (e10743).

We present a general methodology in order to build mathematical models of genetic

regulatory networks. This approach is based on the mass action law and on the Jacob and

Monod operon model.

--- The mathematical models are built symbolically by Mathematica software package

GeneticNetworks. This package accepts as input the interaction graphs of the transcriptional

activators and repressors and, as output, gives the mathematical model in the form of a

system of ordinary differential equations. All the relevant biological parameters are chosen

automatically by the software.

--- We show that threshold effects in biology emerge from the catalytic properties of genes

and its associated conservation laws.

---We show that spatial patterning in embryology can be obtained as a dynamic threshold

effect.



3

F. Alves and R. Dilão, J. Theoretical Biology, 241 (2006) 342-

359.

S. Legewie, N. Blüthgen, H. Herzel, Mathematical Modeling 

Identifies Inhibitors of Apoptosis as Mediators of Positive 

Feedback and Bistability, PLOS Comp. Biology, 2(9) (2006) 1061-

1073.

V. Chickarmane, C. Troein, U. A. Nuber, H. M. 

Sauro, C. Peterson, Transcriptional Dynamics of the 

Embryonic Stem Cell Switch, PLOS Comp. Biology, 

2(9) (2006) 1080-1092.

Koch et al. 98, Development

To develop a computational and an analytical tool 

to analyse regulatory networks, enabling

the calibration with biological parameters and protein 

concentrations. 
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The mass action law

An ensemble of m chemicals Ai that react in a media according to the 

mechanisms:

There are  m chemicals and n reactions. Assuming a well stirred media,

and that the chemicals have a Brownian type motion, we have the reaction

evolution laws:
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The microscopic mechanism associated with the mass action law
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Transcriptomics  -- cis-regulation of gene expression

This approach is based on the operon model (Jacob and Monod, 1961) as a paradigm 

of genetic regulation in bacteria. 

Activators: transcriptional activators

Repressors: transcriptional repressors

Model assumptions:
•Genes are considered templates for protein production.

•Transcriptional and translational mechanisms are described by one overall rate constant.

•We only consider bi-molecular mass action law, (no ad-hoc regulatory functions in 

intermediate

states like Michaelis-Menton type functional forms).

•Regulation (activation, repression, competition) occurs only through the binding sites.

Choices:

•To make, ab initio,  the mathematical framework as simple as possible in such a way that

any regulatory genetic network can be described in this framework.

•We don't want to introduce had hoc threshold effects (at the end we will have dynamic 

threshold effects).

F. Alves and R. Dilão, A simple framework to describe the regulation of gene expression in prokaryotes, Comptes Rendus - Biologies, 328 (2005) 

429-444.

.
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Free protein production:

basic model 

Simplified model that 

will be used

Regulation of gene expression 
DNA

mRNA

Proteins

Transcription

Translation

Biological  FUNCTION

(conservation of

information)

A gene is a catalytic substance
(R. Dilão and D. Muraro,  PLoS ONE, 5 (5) (2010) 1-10 (e10743))
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Dynamic threshold effects and conservation laws
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initial condition
F. Alves and R. Dilão, Comptes Rendus - Biologies, 328 (2005) 429-444.
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Spatial patterning without diffusion

Spatial patterning obtained without 

diffusion (dynamic thresholds)

A(x)
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Software

Download:

https://sd.ist.utl.pt/Download/download.html/GeneticNetworks.zip

Software

(biological) input
model
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mRNA diffusion explains protein gradients in Drosophila early development

R. Dilão and D. Muraro, Journal of Theoretical Biology, 264 (2010) 847-853, doi:10.1016/j.jtbi.2010.03.012.

We propose a new model describing the production and the establishment of the stable gradient of the

Bicoid protein along the antero-posterior axis of the embryo of Drosophila. In this model, we consider

that bicoid mRNA diffuses along the antero-posterior axis of the embryo and the protein is produced in

the ribosomes localized near the syncytial nuclei. Bicoid protein stays localized near the syncytial nuclei as

observed in experiments.

We calibrate the parameters of the mathematical model with experimental data taken during the cleavage

stages 11 to 14 of the developing embryo of Drosophila.

--- We obtain good agreement between the experimental and the model gradients, with relative errors in

the range 5-8%.

--- The inferred diffusion coefficient of bicoid mRNA is in the range 4.6 10-12-1.5 10-11 m2s-1, in agreement

with the theoretical predictions and experimental measurements for the diffusion of macromolecules in the

cytoplasm.

!!! The model based on the mRNA diffusion hypothesis is consistent with the known observational data,

supporting the recent experimental findings of the gradient of bicoid mRNA in Drosophila [Spirov et al.

(2009) Development 136:605-614].
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maternal-effect genes

gap genes

pair-rule genes

segment-polarity genes

15 to 70 minminutes after 

fertilization:
70 to 130 min0 to 15 

min

cellularization

130 to 180 min 195 to 200 min 200 to 230 min 230 to 260 min 260 to 320 min 440 to 580 

min

620 to 680 min 800 to 900 

min

first mitotic 
cycles

pronuclear
fusion

85 to 95 min

70 to 80 min

85 to 115 min

120 to 195 min

© John Reinitz lab

Genetic (transcriptional) regulatory 

network

Alves & Dilão, JTB 2006
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Cleavage cycle 11 (ab18) Cleavage cycle 12 (ab17)

Cleavage cycle 13 (ab12)
In cleavage cycles 11, 12, 13 and 

14, images show that the Bicoid 

protein is localised near the 

nucleus. 

Bicoid  protein do not diffuse!
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Experimental evidence of mRNA diffusion:

Cha, et al., Cell (2001),”saltatory movements in injected mRNA bicoid with dispersion but 

without localization“.

Forrest and Gavis, Curr. Biol. (2003), “mRNA nanos has diffusive like behaviour”.

(2009)
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Parameters to be determined from
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Bicoid protein steady state:

bicoid mRNA initial condition:

+
zero

flux

mRNA diffusion model:

The model depends on 7 parameters

The solution depends on 4 parameters
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Fitting the mRNA diffusion model with the experimental data for protein 

gradients --- calibration and validation of the model

Ad-hoc parameter values:

Fits with a swarm algorithm.

Mean relative error between 

experimental and theoretical predictions:

5% - 8%

Non-determinancy of parameters.
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Parameter swarming

(slow convergence)

Swarm rule: the randomly chosen 

parameter is updated only if the fitness function decreases.

(There are other techniques for parameter estimation, specifically 

suited for ill defied problems: Covariance Matrix Adaptation Evolutionary Strategy ) 
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Validation of a morphogenesis model of Drosophila early development by a multi-

objective evolutionary optimization algorithm

R. Dilão, D. Muraro, M. Nicolau and M. Schoenauer, 

In C. Pizzuti, M.D. Ritchie, and M. Giacobini (Eds.): EvoBIO 2009, Lecture Notes in Computer Science

5483, pp. 176–190, 2009. 

Best Paper Nomination  EvoBIO2009.

We apply evolutionary computation to calibrate the parameters of a morphogenesis model of Drosophila

early development.

The model aims to describe the establishment of the steady gradients of Bicoid and Caudal proteins along

the antero-posterior axis of the embryo of Drosophila.

The model equations consist of a system of non-linear parabolic partial differential equations (PDE) with

initial and zero flux boundary conditions.

--- We compare the results of single- and multi-objective variants of the CMA-ES algorithm for the model

calibration with the experimental data. Whereas the multi-objective algorithm computes a full

approximation of the Pareto front, repeated runs of the single-objective algorithm give solutions that

dominate (in the Pareto sense) the results of the multi-objective approach. We retain as best solutions those

found by the latter technique.

--- From the biological point of view, all such solutions are all equally acceptable, and for our test cases, the

relative error between the experimental data and validated model solutions on the Pareto front are in the

range 3%-6%.

--- This technique is general and can be used as a generic tool for parameter calibration problems.
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Further developments of the mRNA diffusion model with a 

multiobjective approach --- Pareto optimality. 
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Initial distribution of mRNA

Diffusion of Bicoid mRNA

How to calibrate the parameters with the experimental data?
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Pareto Optimization

Multi-objective optimization problem

Fitness functions 

Parameters space (compact set) 

• to find the set of parameters (N) that minimizes the 

objective (fitness) function

• the parameters are sampled in a compact search space

• we consider two objectives: the 

fitness of Bicoid and the fitness of 

Caudal
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Comparison of 

solutions
Goals

• to find a good approximaximation 

to the Pareto set

• to distribute the solutions as 

uniformly as possible on the 

Pareto front

• the solutions are selected 

according to the dominance 

criterium
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The solutions on the Pareto front are 

not dominated by any other solutions.

So, from the parametric point of view, 

any solution of the Pareto set is 

admissible. 
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Non-unicity of 

parameter solutions
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Pareto front for the Bicoid-Caudal multiobjective optimization
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Fitness of Bicoid
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Pareto Front
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Picture a: best fit for Bicoid and worst for Caudal. 

Picture i: best fit for Caudal and worst for Bicoid.
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ab8
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Calibration and validation of a genetic regulatory network model describing the 

production of the protein Hunchback in Drosophila early development. 

R. Dilão and D. Muraro, 2010, submitted.

---We fit the parameters of a differential equations model describing the production of gap gene proteins

Hunchback and Knirps along the antero-posterior axis of the embryo of Drosophila.

As initial data for the differential equations model, we take the antero-posterior distribution of

the proteins Bicoid, Hunchback and Tailless at the beginning of cleavage cycle 14.

--- We calibrate and validate the model with experimental data using single- and multi-objective

evolutionary optimization techniques. In the multi-objective optimization technique, we compute the

associated Pareto fronts.

--- We analyze the cross regulation mechanism between the gap-genes protein pair Hunchback-Knirps and

we show that the posterior distribution of Hunchback follow the experimental data if Hunchback is

negatively regulated by the Huckebein protein. (Experimentaly supported).

!!! This approach enables to predict the posterior localization on the embryo of the protein Huckebein, and

we validate with the experimental data the genetic regulatory network responsible for the antero-posterior

distribution of the gap gene protein Hunchback.

!!! We discuss the importance of Pareto multi-objective optimization techniques in the calibration and

validation of biological models (evolutionary selection).
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Calibration of the Hunchback-Knirps

gap gene proteins 

with the mRNA diffusion hypothesis

Embryo length, L

Maternal phase

mRNA diffusion

gap gene phase

NO diffusion

pure mass action 

approach

emergent thresholds

1 instantiation of the Pareto front

Pareto front for the pair HB-KNI
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Calibration of the Hunchback-Knirps and Huckebein 

gap gene proteins 

with the mRNA diffusion hypothesis

Embryo length, L

Maternal phase

mRNA diffusion

gap gene phase

NO diffusion

pure mass action 

approach

emergent thresholds

14 equations

23 (42) free parameters

Dynamic pattern: 29 seconds 

after 14A.

1 instantiation of the Pareto front

Pareto front for the pair HB-KNI-HKB

Prediction of the 

HKB distribution
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Thank you


