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How do we know that a system 
dynamics is complex ?

 It may present a “complex behavior”...

 We “see” it and we have the feeling that it is 

“complex”…

 It is a fundamental question !



System with a “Complex” behavior I

• Many systems that surround us are “Complex”:



System with a “Complex” behavior II



Man made Systems with a “Complex”
behavior



Characteristics of a Complex System

• Regarding the system’s behavior, if it is a Complex System, 
we might expect to find the following:

1) A behavior that is neither completely ordered and 
predictable nor completely random and unpredictable;

2) Its evolution reveals patterns in which coherent structures 
develop at various scales, but do not exhibit elementary 
interconnections;

3) The structures can show a hierarchical relationship, i.e., 
nontrivial structures over a wide range of scales can 
appear.



Complex Systems and interdependent parts

• System that has a global emergent property can be identify 
as being formed out of interdependent parts.

• Interdependent: the influence one part has on another.

• Interdependent is distinct from “interacting”, because even 
strong interactions do not necessarily imply interdependence 
of behavior (ex: macroscopic properties of solids).

• Collective behavior result from the interdependency of parts.

El  nino Galileo Saturn rings



Examples of Complex Systems 1

Patterns of standing waves on fluid surfaces

generated by vibrating the containing vessel

with various driving frequencies



Examples of Complex Systems
• Many chemical reactions exhibit oscillations.  An oscillation is a 

repetitive wave that passes through zero - delineating a 
transition through two distinct states ( +ve and -ve).

• The Belousov-Zhabotinsky reaction is a visual reaction 
between waves of oxidation and reduction that show color 
changes to represent phase changes.



Examples of Complex Systems

• A wide range of complex phenomena can be observed in 
nonlinear optics: temporal instabilities, disordered 
patterns, spontaneous formation of structures and 
vortices;

• The basic mechanism: nonlinear interaction between 
electromagnetic waves and atomic medium excitation 
of many modes;



Complex system characteristics typically appear 
in...

• Systems with many degrees of freedom;

• For these systems we have a situation where a large number 
of booth attracting and unstable chaotic sets coexist.

• As a result, we can have a rich and varied dynamical behavior, 
where many competing behaviors can exist.

• System evolving in the neighborhood of an attracting periodic 
set “ordered” behavior;

• System evolving about the unstable sets “non-ordered” 
behavior;

• The behavior keep changing from one behavior to another, as 
the system evolves.



Complexity in Low Dimensional Systems

• A complex behavior can also appear in low dimensional 
systems!

• Low dimensional systems with large number of coexisting 
periodic attractors and a complicated fractal basin 
structures can present a complex behavior :
– Double rotor with noise [PRL 75/4023]

– Single rotor with noise [Chaos 7/597].

• Multistability: the key to understand how the complexity 
thrives in low dimensional systems.



Multistability:

• Multistability means the coexistence of several final states 
(attractors) for a given set of parameters.

• The long-term behavior of such systems becomes more 
involved, because there exists a nontrivial relationship 
between these coexisting asymptotic states and their 
basins of attraction.

• Mtulitstable behavior is found in
– semiconductor physics;

– chemistry

– neuroscience

– laser physics

– ...



Hénon attractor 
• 2-D map given by the 

equations:

– xn+1 = yn + a – bxn
2

– yn+1 = xn

x

a

a = 1.4  b=0.3



Hénon map with “small” amount of damping

• A = bifurcation parameter

• v [0,1] “dissipation”

• v =0 Jacobian matrix =1 
map is conservative.

• v = 1 equations are 
decoupled quadratic 
map.

• v “small” ( ~0) there are 
several coexisting attractors!
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“kicked single rotor”

• No damping case (v=0): area-
preserving standard map;

• It has stable and unstable 
periodic orbits, KAM surfaces 
and chaotic regions.
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 f0: force parameter;

v: damping parameter;

Dynamics lies on the 

circle [0,2 )



Single Rotor with “Small” Dissipation

• For v 0 (very small amount 
of dissipation):

– The symmetry in y is broken;

– The motion takes place on 
the cylinder [0,2 ) ;

– Periodic orbits become sinks;

– The dissipation leads to a 
separation of the overlapping 
periodic orbits, which 
belongs to a given family, 
with increasing module of the 
velocities on the cylinder.
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Single Rotor with “Small” Dissipation

• For v 0 (very small amount 
of dissipation):

– Great number of 
coexisting attracting 
periodic orbits of 
increasing period;

– There is a bounded 
cylinder [0, 2 ) [-

ymax,ymax], where
ymax=f0/ which contains 
all of the attractor;

– All trajectories are 
eventually trapped inside.
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Basin of attraction



Single Rotor with “Small” Dissipation

• For v 0 (very small amount of dissipation):

– The basin of attraction for the periodic orbits have fractal basin boundaries;

– Basin boundaries are organized in a complex interwoven structure that 
permeate most of the state space, with chaotic saddles embedded in them.

– Box counting dimension d = 1.994.
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Single Rotor with “Small” Dissipation

• For v 0 (very small amount of dissipation):

– Basin boundaries are organized in a complex interwoven structure that 
permeate most of the state space, with chaotic saddles embedded in them.

– Chaotic sets become unstable chaotic sets embedded in the basin 
boundaries separating the various sinks;

– Chaotic motion is replaced by long chaotic transients that occur before the 
trajectory is eventually asymptotic to one of the sinks.

– High sensitive to the final state multistability !

Hopping dynamics for a periodic kick rotor with

small dissipation



From Multistability to Complexity

• The noise may prevent the 
trajectories from settling into 
stable periodic behavior;

• Trajectories with long chaotic 
transients “random” like 
behavior;

• Trajectory may come close to one 
of the periodic attractors and 
remain in its neighborhood 
“ordered” behavior;

• Noise will eventually move the 
trajectory out of the “ordered” 
behavior into the fractal boundary 
region chaotic transient.
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Coherent structures

• The evolution of an ensemble of initial 
conditions in physical space reveals 
coherent structures;

• We iterate an ensemble of initial 
conditions n times and then verify how 
close each of the nth iterated initial 
condition of the ensemble is from a 
periodic attractor.

• We determine that the nth iterated point 
is in the neighborhood of a periodic 
orbit, we associate to this point a 

positive real number.

• Regions with the same hue indicate 
which initial points will be after n 
iterations in the neighborhood of the 
same periodic attractor, while the 
saturation of each point in the region 
indicates how close its nth iteration will 
be from the periodic attractor.
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Nontrivial Time Scales
• This complexly interwoven 

interconnection between the coherent or 
periodic and random or chaotic 
structures reflects the appearance of 

nontrivial time scales in the system.

• We have the mean escape times <Ti> for 
some of the attractors and the average 
length of the chaotic transient < > 
associated with the random structure for 
different values of noise amplitude; 

• The mean escape time is, in general, 
different for different attractors, for the 
same noise amplitude;

• The average length of the chaotic 
transient < > is related to the dimension 
and the Lyapunov exponents of the 
chaotic saddles that are embedded in 
the fractal basin boundary.
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Single Rotor with small dissipation and noise:

• Its behavior is neither completely ordered and predictable 
nor completely random and unpredictable;

• its time evolution reveals patterns and structures over 

various time and spatial scales;

• This pattern forms hierarchies, i.e., nontrivial structures 
over a wide range of scales;

• The interconnection among the structures is complicated;

• the single rotor with noise can be characterized as a 
complex system, regardless for the fact that is a system of 
low (just two!) dimension.

• The same conclusion follows when similar arguments are 
applied to other families of multistable systems.



Controlling Complexity 1/2

• for a complex system the 
unstable chaotic sets in the 
basin boundaries provide the 
necessary sensitivity and 
flexibility to drive the system 
dynamics toward a specific 
“ordered” behavior, using 
small perturbations.

• “ordered” stabilization of 
one of the metastable 
attracting sets of the system.



Controlling Complexity 1/2

• “ordered” trajectory evolving in the 
neighborhood of fixed (periodic) 
point x*;

•

1. The system is left evolving by itself, 
until it comes close to the desired 
“ordered” behavior;

2. Linearize the system in the 
neighborhood of x*:

3. The trajectory can be stabilized by the 
addition of a controlling term

Problem: Transport time can be 
excessively long!
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How to reduce the transport time?

By guiding trajectories!

Combine targeting type of control problem fo chaotic 
systems with techniques used in system control theory:

• Regions of “random” behavior (chaotic transient) <= use 
“targeting” type of control for chaotic systems;

• Regions of “ordered” behavior <= use traditional system control 
theory methods.



Targeting type of Control of Chaos

• Presence of chaos

• Inherent exponential sensitivity

• Targeting: a procedure to quickly direct a trajectory from 

o to a small region around T by using small perturbations 

to some available parameter.



Guiding trajectories in regions of “random” 
behavior:

• Modified forward-backward targeting method.



Effect of the Targeting Procedure

Without targeting With targeting



Guiding Trajectories in regions of “ordered” 
behavior 1/2

•Linearize the system in the neighborhood of x*

where 

•Introduce an input term

where       is a vector of inputs & B is a constant matrix (states 
how the inputs influence the state);

•Goal: pick      to minimize the cost function
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Guiding Trajectories in regions of “ordered” 
behavior 1/2

• Minimizing by using Lagrange multipliers...
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The equation must be solved backward, with the

conditions (two point boundary-value problem):

1QSN and .0NK



Discrete Linear Quadratic Regulator Action



Combining the Previous Procedures



Controlling the Complexity
Changing the Evolution of the System



Conclusion:

• Targeting type of control for chaotic systems can be 
successfully applied to guide trajectories located in 
regions of “random” behavior in Complex Systems;

• Traditional system control theory methods can be 
successfully used to guide trajectories located in regions 
of “ordered” behavior in Complex Systems;

• The combination of both approaches results in an efficient 
control strategy to manipulate complex system dynamics.

• That combination can be considered not only for the case 
of Complex Systems, but also for any system in which 
complicated dynamics occur.
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