Controlling Complexity

Elbert E. N. Macau

Laboratório Associado de Computação e Matemática Aplicada – LAC Instituto Nacional de Pesquisas

Espaciais - INPE

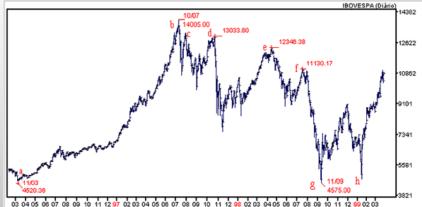
How do we know that a system dynamics is complex ?

It is a fundamental question !

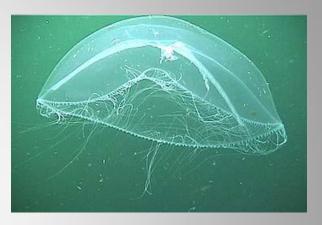
It may present a "complex behavior"...

We "see" it and we have the feeling that it is "complex"...

System with a *"Complex"* behavior I Many systems that surround us are *"Complex"*:



System with a "Complex" behavior II



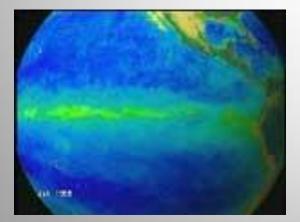
Man made Systems with a "Complex" behavior

Characteristics of a Complex System

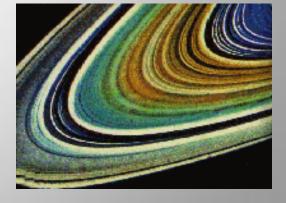
- Regarding the system's behavior, if it is a Complex System, we might expect to find the following:
- 1) A behavior that is neither completely ordered and predictable nor completely random and unpredictable;
- Its evolution reveals patterns in which *coherent structures* develop at various scales, but do not exhibit elementary interconnections;
- 3) The structures can show a *hierarchical relationship*, i.e., nontrivial structures over a wide range of scales can appear.

Complex Systems and interdependent parts

- System that has a *global emergent property* can be identify as being formed out of *interdependent parts*.
- *Interdependent*: the influence one part has on another.
- Interdependent is distinct from "interacting", because even strong interactions do not necessarily imply interdependence of behavior (ex: macroscopic properties of solids).
- *Collective behavior* result from the *interdependency* of parts.



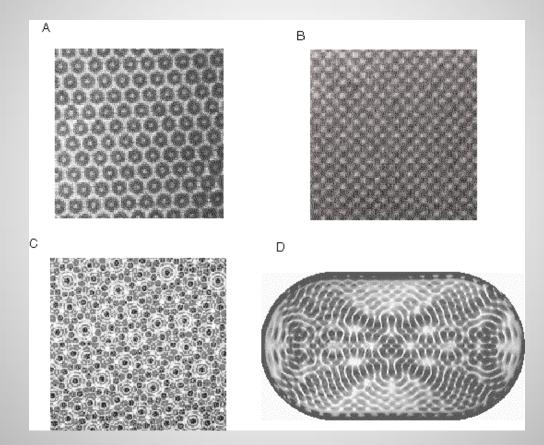
El nino



Galileo

Saturn rings

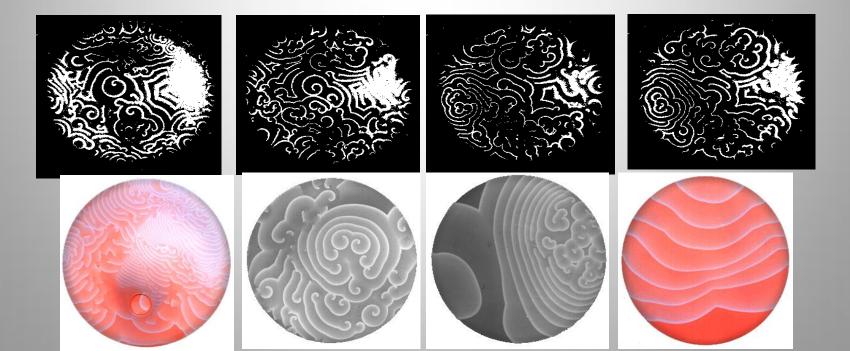
Examples of Complex Systems 1



Patterns of standing waves on fluid surfaces generated by vibrating the containing vessel with various driving frequencies

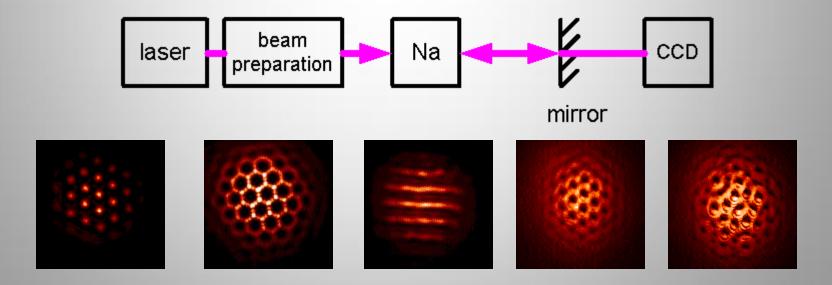
Examples of Complex Systems

- Many chemical reactions exhibit oscillations. An oscillation is a repetitive wave that passes through zero - delineating a transition through two distinct states (+ve and -ve).
- The Belousov-Zhabotinsky reaction is a visual reaction between waves of oxidation and reduction that show color changes to represent phase changes.



Examples of Complex Systems

- A wide range of complex phenomena can be observed in nonlinear optics: temporal instabilities, disordered patterns, spontaneous formation of structures and vortices;
- The basic mechanism: nonlinear interaction between electromagnetic waves and atomic medium ⇒ excitation of many modes;



Complex system characteristics typically appear in...

- Systems with many degrees of freedom;
- For these systems we have a situation where a large number of booth attracting and unstable chaotic sets coexist.
- As a result, we can have a rich and varied dynamical behavior, where many competing behaviors can exist.
- System evolving in the neighborhood of an attracting periodic set ⇒ "ordered" behavior;
- System evolving about the unstable sets ⇒ "non-ordered" behavior;
- The behavior keep changing from one behavior to another, as the system evolves.

Complexity in Low Dimensional Systems

- A complex behavior can also appear in *low dimensional systems*!
- Low dimensional systems with large number of coexisting periodic attractors and a complicated fractal basin structures can present a complex behavior :
 - Double rotor with noise [PRL 75/4023]
 - Single rotor with noise [Chaos 7/597].
- *Multistability:* the key to understand how the complexity thrives in low dimensional systems.

Multistability:

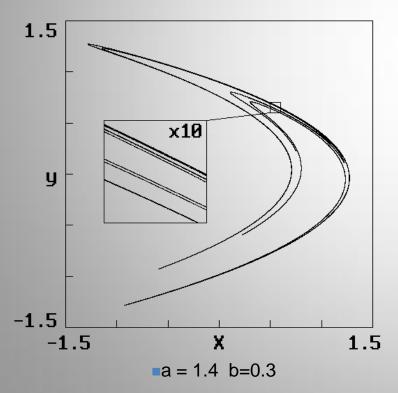
- Multistability means the coexistence of several final states (attractors) for a given set of parameters.
- The long-term behavior of such systems becomes more involved, because there exists a *nontrivial relationship* between these coexisting asymptotic states and their basins of attraction.
- Mtulitstable behavior is found in
 - semiconductor physics;
 - chemistry
 - neuroscience
 - laser physics
 - ...

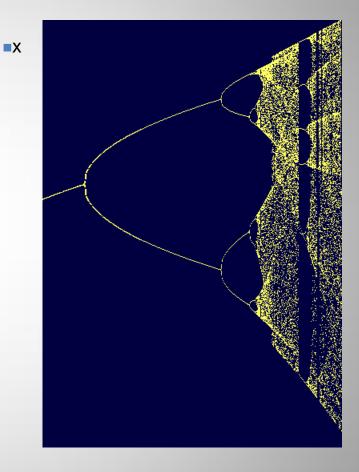
Hénon attractor

2-D map given by the equations:

$$-x_{n+1} = y_n + a - bx_n^2$$

 $- y_{n+1} = x_n$





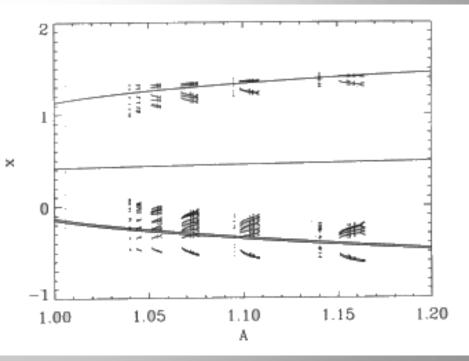
∎a

Hénon map with "small" amount of damping

- A = bifurcation parameter
- $v \in [0,1] \leftarrow$ "dissipation"
- $v = 0 \Rightarrow$ Jacobian matrix $= 1 \Rightarrow$ map is conservative.
- v = 1 ⇒ equations are decoupled ⇒ quadratic map.
- v "small" (~0) ⇒ there are several coexisting attractors!

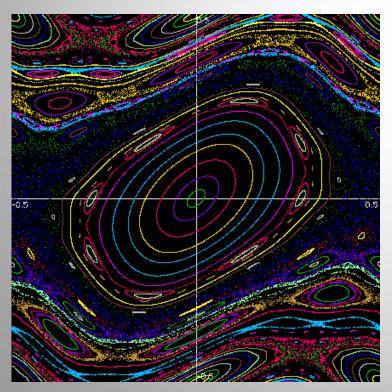
$$x_{n+1} = A - x_n^2 - (1 - \nu) y_n$$

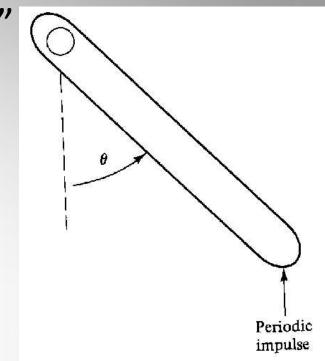
$$y_{n+1} = x_n \, .$$



"kicked single rotor"

- No damping case (v=0): areapreserving standard map;
- It has stable and unstable periodic orbits, KAM surfaces and chaotic regions.



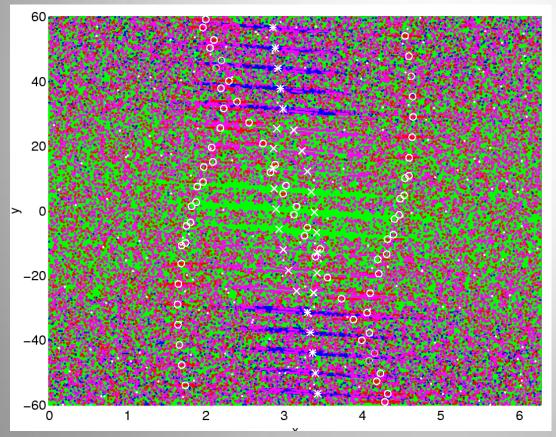


 $x_{k+1} = (x_k + y_k) \mod 2\pi$ $y_{k+1} = (1 - v)y_k + f_0 sin(x_k + y_k)$

*f*₀: force parameter; *v*: damping parameter;
Dynamics lies on the circle [0,2π)

$$x_{k+1} = (x_k + y_k) \mod 2\pi$$

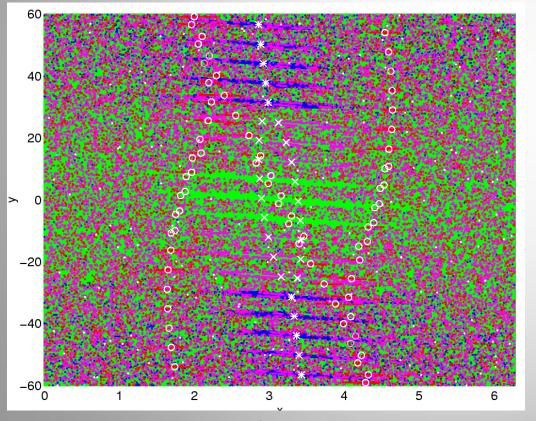
$$y_{k+1} = (1 - v)y_k + f_0 sin(x_k + y_k)$$



- For $v \approx 0$ (very small amount of dissipation):
 - The symmetry in y is broken;
 - The motion takes place on the cylinder $[0,2\pi)\times\Re$;
 - Periodic orbits become sinks;
 - The dissipation leads to a separation of the overlapping periodic orbits, which belongs to a given family, with increasing module of the velocities on the cylinder.

$$x_{k+1} = (x_k + y_k) \mod 2\pi$$

$$y_{k+1} = (1-v)y_k + f_0 sin(x_k + y_k)$$



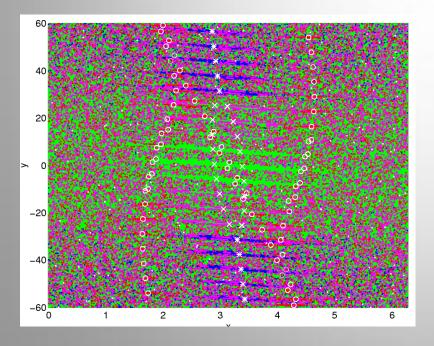
- For $v \approx 0$ (very small amount of dissipation):
 - Great number of coexisting attracting periodic orbits of increasing period;
 - There is a bounded cylinder $[0, 2\pi) \times [$ $y_{max}, y_{max}]$, where $y_{max}=f_0/v$ which contains all of the attractor;
 - All trajectories are eventually trapped inside.

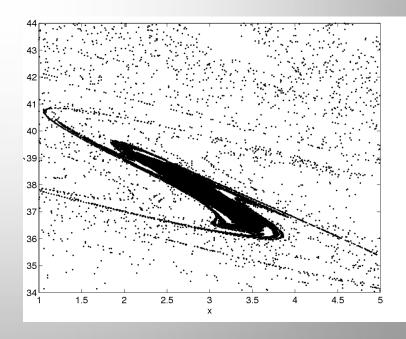
Basin of attraction

 $x_{k+1} = (x_k + y_k) \mod 2\pi$

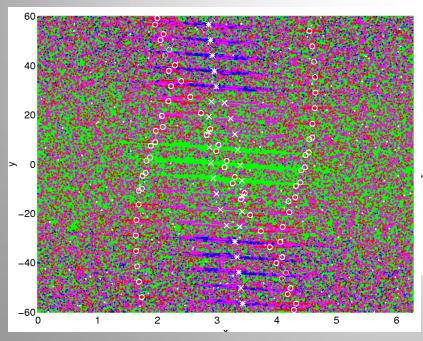
 $y_{k+1} = (1-v)y_k + f_0 sin(x_k + y_k)$

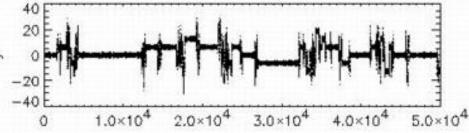
- For $v \approx 0$ (very small amount of dissipation):
 - The basin of attraction for the periodic orbits have fractal basin boundaries;
 - Basin boundaries are organized in a complex interwoven structure that permeate most of the state space, with chaotic saddles embedded in them.
 - Box counting dimension d = 1.994.





- For $v \approx 0$ (very small amount of dissipation):
 - Basin boundaries are organized in a complex interwoven structure that permeate most of the state space, with chaotic saddles embedded in them.
 - Chaotic sets become unstable chaotic sets embedded in the basin boundaries separating the various sinks;
 - Chaotic motion is replaced by long *chaotic transients* that occur before the trajectory is eventually asymptotic to one of the sinks.
 - High sensitive to the final state \Rightarrow multistability !





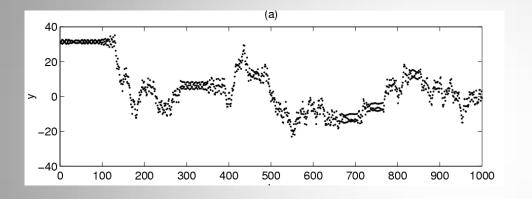
Hopping dynamics for a periodic kick rotor with small dissipation

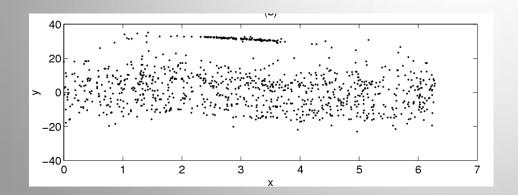
From Multistability to Complexity

$$x_{k+1} = (x_k + y_k) \mod 2\pi + \delta$$

$$y_{k+1} = (1-v)y_k + f_0 sin(x_k + y_k) + \delta$$

$$\delta = small \ amplitude \ noise$$





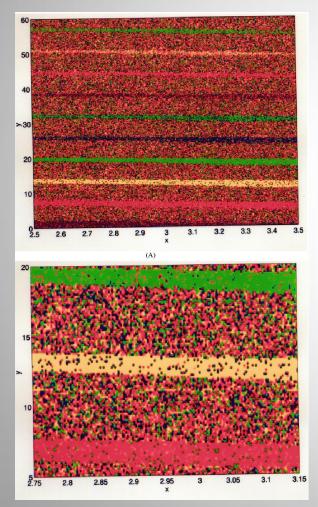
- The noise may prevent the trajectories from settling into stable periodic behavior;
- Trajectories with long chaotic transients ⇒ "random" like behavior;
- Trajectory may come close to one of the periodic attractors and remain in its neighborhood ⇒ "ordered" behavior;
- Noise will eventually move the trajectory out of the "ordered" behavior into the fractal boundary region ⇒ chaotic transient.

Coherent structures

$$x_{k+1} = (x_k + y_k) \mod 2\pi + \delta$$

$$y_{k+1} = (1-v)y_k + f_0 sin(x_k + y_k) + \delta$$

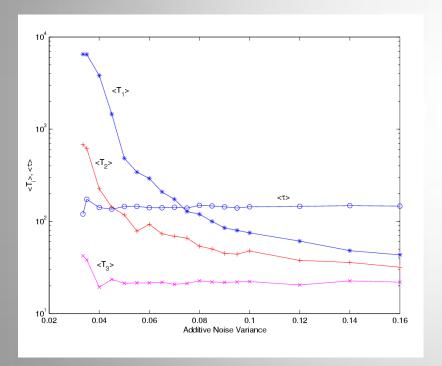
$$\delta = small \ amplitude \ noise$$



- The evolution of an ensemble of initial conditions in physical space reveals coherent structures;
- We iterate an ensemble of initial conditions *n* times and then verify how close each of the *nth* iterated initial condition of the ensemble is from a periodic attractor.
- We determine that the *nth* iterated point is in the neighborhood of a periodic orbit, we associate to this point a positive real number.
- Regions with the same hue indicate which initial points will be after *n* iterations in the neighborhood of the same periodic attractor, while the saturation of each point in the region indicates how close its *nth* iteration will be from the periodic attractor.

Nontrivial Time Scales

 $x_{k+1} = (x_k + y_k) \mod 2\pi + \delta$ $y_{k+1} = (1-\nu)y_k + f_0 sin(x_k + y_k) + \delta$ $\delta = small \ amplitude \ noise$



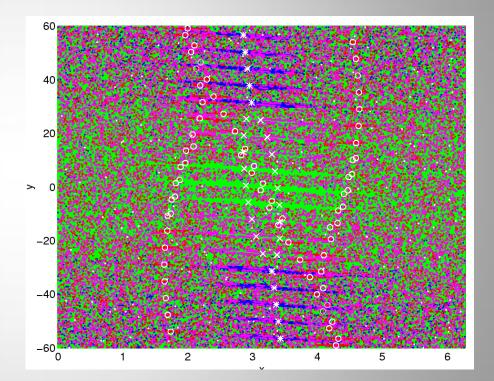
- This complexly interwoven interconnection between the coherent or periodic and random or chaotic structures reflects the appearance of nontrivial time scales in the system.
- We have the mean escape times <T_i> for some of the attractors and the average length of the chaotic transient <τ > associated with the random structure for different values of noise amplitude;
- The mean escape time is, in general, different for different attractors, for the same noise amplitude;
- The average length of the chaotic transient <τ> is related to the dimension and the Lyapunov exponents of the chaotic saddles that are embedded in the fractal basin boundary.

Single Rotor with small dissipation and noise:

- Its behavior is neither completely ordered and predictable nor completely random and unpredictable;
- its time evolution reveals patterns and structures over various time and spatial scales;
- This pattern forms hierarchies, *i.e.*, nontrivial structures over a wide range of scales;
- The interconnection among the structures is complicated;
- ⇒ the single rotor with noise can be characterized as a complex system, regardless for the fact that is a system of low (just two!) dimension.
- The same conclusion follows when similar arguments are applied to other families of multistable systems.

Controlling Complexity 1/2

- for a complex system the unstable chaotic sets in the basin boundaries provide the necessary sensitivity and flexibility to drive the system dynamics toward a specific "ordered" behavior, using small perturbations.
- "ordered" = stabilization of one of the metastable attracting sets of the system.



Controlling Complexity 1/2

- "ordered" = trajectory evolving in the neighborhood of fixed (periodic) point x*;
- $x_{n+1} = F(x_n) + \delta = \widetilde{F}(x_n)$
- The system is left evolving by itself, until it comes close to the desired "ordered" behavior;
- 2. Linearize the system in the neighborhood of x*:

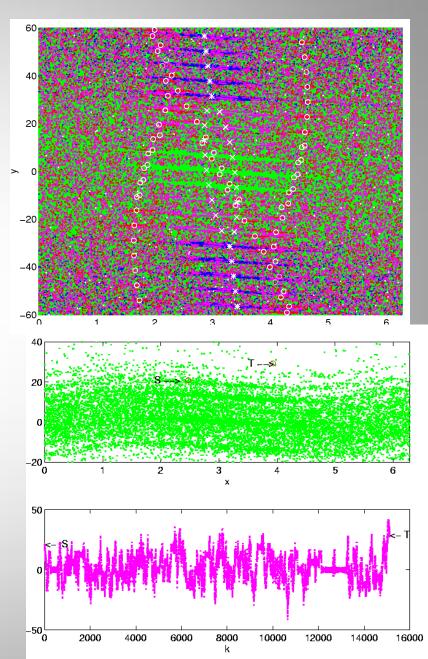
 $F(x^* \! + \! \varepsilon) \sim x^* \! + \! DF(x^*) \! \times \! \varepsilon \! + \! \delta$

3. The trajectory can be stabilized by the addition of a controlling term

 $-DF(x^*) \times (x_i - x^*)$:

$$\hat{x}_{i+1} = F(x_i) + \delta - DF(x^*) \times (x_i - x^*);$$

Problem: *Transport time* can be excessively long!



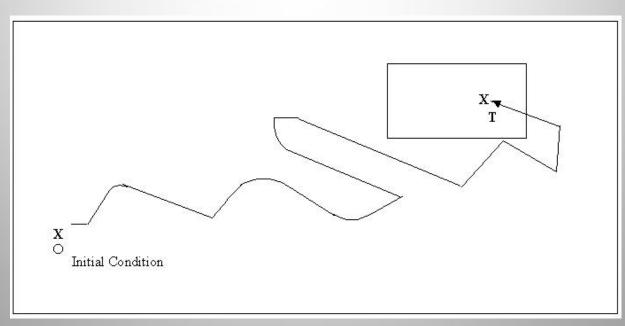
How to reduce the transport time?

By guiding trajectories!

- ☑ Combine targeting type of control problem fo chaotic systems with techniques used in system control theory:
- Regions of "random" behavior (chaotic transient) <= use "targeting" type of control for chaotic systems;
- Regions of "ordered" behavior <= use traditional system control theory methods.

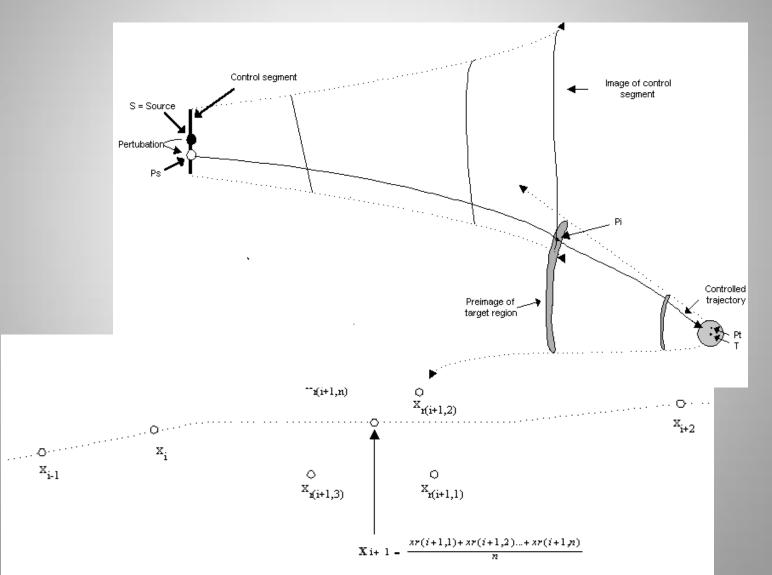
Targeting type of Control of Chaos

- Presence of chaos
- Inherent exponential sensitivity
- Targeting: a procedure to quickly direct a trajectory from o to a small region around T by using small perturbations to some available parameter.



Guiding trajectories in regions of "random" behavior:

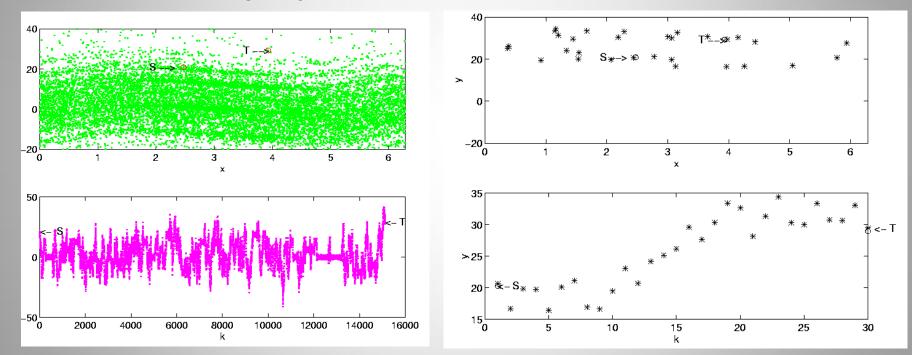
Modified forward-backward targeting method.



Effect of the Targeting Procedure

Without targeting

With targeting



Guiding Trajectories in regions of "ordered" behavior 1/2

•Linearize the system in the neighborhood of x*

$$x_{k+1} = A x_k,$$

where $A = DF(x^*);$

Introduce an input term

$$x_{k+1} = Ax_k + Bu_k,$$

where u_k is a vector of inputs & *B* is a constant matrix (states how the inputs influence the state);

•Goal: pick *u_k* to minimize the *cost function*

$$J = \frac{1}{2} \sum_{k=0}^{N} (x_k^t Q_1 x_k + u_k^t Q_2 u_k).$$

Guiding Trajectories in regions of "ordered" behavior 1/2

$$J = \frac{1}{2} \sum_{k=0}^{N} (x_k^t Q_1 x_k + u_k^t Q_2 u_k).$$

• Minimizing by using Lagrange multipliers...

$$u_k = -K_k x_k,$$

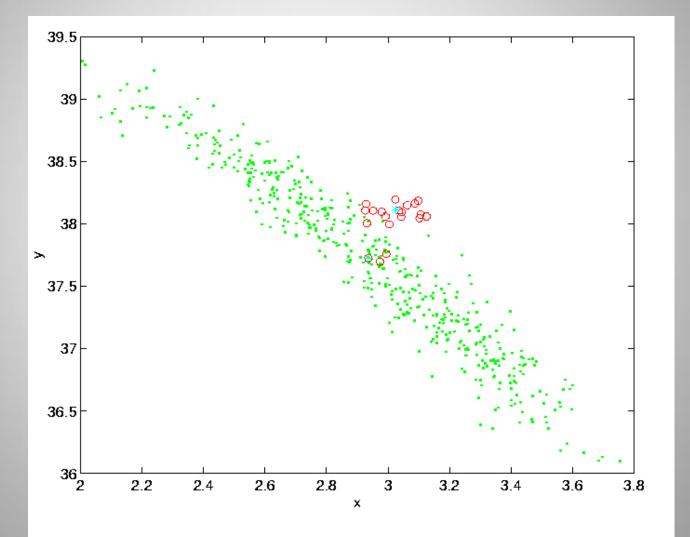
with:

$$M_{k+1} + S_{k+1} - S_{k+1}B(Q_2 + B^t S_{k+1}B)^{-1}B^t S_{k+1}$$
$$S_k = A^t M_{k+1}A + Q_1$$
$$K_k = (Q_2 + B^t S_{k+1}B)^{-1}B^t S_{k+1}A$$

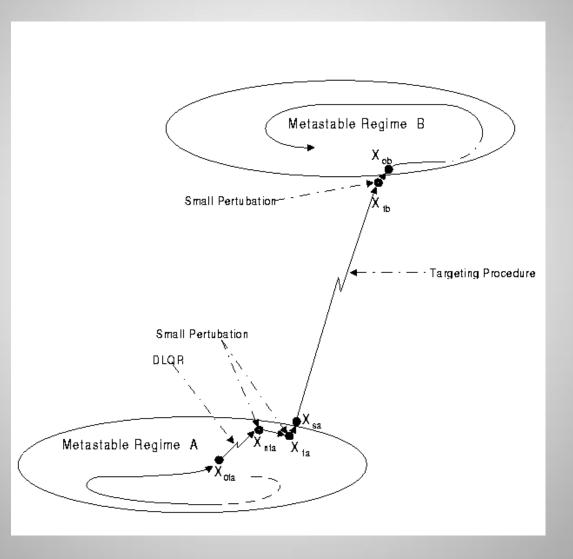
The equation must be solved backward, with the conditions (*two point boundary-value problem*):

$$S_N = Q_1$$
 and $K_N = 0$.

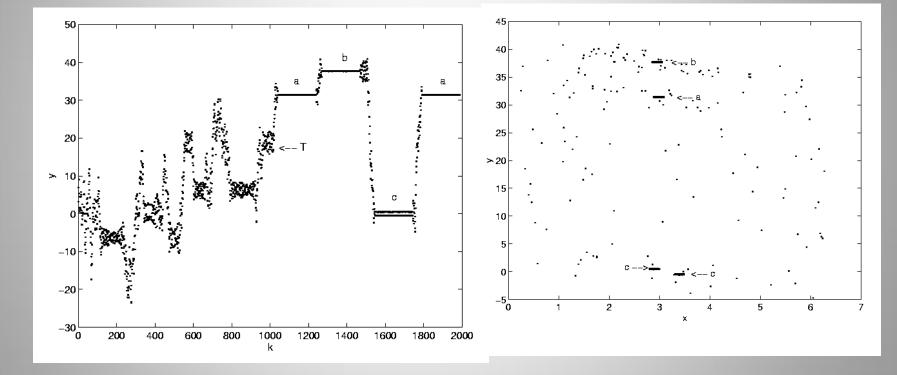
Discrete Linear Quadratic Regulator Action



Combining the Previous Procedures



Controlling the Complexity Changing the Evolution of the System



Conclusion:

- Targeting type of control for chaotic systems can be successfully applied to guide trajectories located in regions of "random" behavior in Complex Systems;
- Traditional system control theory methods can be successfully used to guide trajectories located in regions of "ordered" behavior in Complex Systems;
- The combination of both approaches results in an efficient control strategy to manipulate complex system dynamics.
- That combination can be considered not only for the case of Complex Systems, but also for any system in which complicated dynamics occur.

THANKS

Elbert E. N. Macau Instituto Nacional de Pesquisas Espaciais INPE e-mail: elbert@lit.inpe.br